mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-21 03:32:57 -06:00
1092 lines
44 KiB
C++
1092 lines
44 KiB
C++
/*
|
|
Copyright 2017 SINTEF Digital, Mathematics and Cybernetics.
|
|
Copyright 2017 Statoil ASA.
|
|
Copyright 2018 IRIS
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <config.h>
|
|
#include <opm/simulators/wells/WellInterfaceFluidSystem.hpp>
|
|
|
|
#include <opm/material/fluidsystems/BlackOilFluidSystem.hpp>
|
|
|
|
#include <opm/parser/eclipse/EclipseState/Schedule/Well/WellTestState.hpp>
|
|
#include <opm/parser/eclipse/EclipseState/Schedule/Schedule.hpp>
|
|
|
|
#include <opm/simulators/utils/DeferredLogger.hpp>
|
|
#include <opm/simulators/wells/RateConverter.hpp>
|
|
#include <opm/simulators/wells/ParallelWellInfo.hpp>
|
|
#include <opm/simulators/wells/WellGroupHelpers.hpp>
|
|
#include <opm/simulators/wells/WellState.hpp>
|
|
#include <opm/simulators/wells/SingleWellState.hpp>
|
|
#include <opm/simulators/wells/GroupState.hpp>
|
|
#include <opm/simulators/wells/TargetCalculator.hpp>
|
|
|
|
#include <cassert>
|
|
#include <cmath>
|
|
|
|
namespace Opm
|
|
{
|
|
|
|
template<class FluidSystem>
|
|
WellInterfaceFluidSystem<FluidSystem>::
|
|
WellInterfaceFluidSystem(const Well& well,
|
|
const ParallelWellInfo& parallel_well_info,
|
|
const int time_step,
|
|
const RateConverterType& rate_converter,
|
|
const int pvtRegionIdx,
|
|
const int num_components,
|
|
const int num_phases,
|
|
const int index_of_well,
|
|
const std::vector<PerforationData>& perf_data)
|
|
: WellInterfaceGeneric(well, parallel_well_info, time_step,
|
|
pvtRegionIdx, num_components, num_phases,
|
|
index_of_well, perf_data)
|
|
, rateConverter_(rate_converter)
|
|
{
|
|
}
|
|
|
|
template<typename FluidSystem>
|
|
void
|
|
WellInterfaceFluidSystem<FluidSystem>::
|
|
calculateReservoirRates(SingleWellState& ws) const
|
|
{
|
|
const int fipreg = 0; // not considering the region for now
|
|
const int np = number_of_phases_;
|
|
|
|
std::vector<double> surface_rates(np, 0.0);
|
|
for (int p = 0; p < np; ++p) {
|
|
surface_rates[p] = ws.surface_rates[p];
|
|
}
|
|
|
|
std::vector<double> voidage_rates(np, 0.0);
|
|
rateConverter_.calcReservoirVoidageRates(fipreg, pvtRegionIdx_, surface_rates, voidage_rates);
|
|
ws.reservoir_rates = voidage_rates;
|
|
}
|
|
|
|
|
|
template <typename FluidSystem>
|
|
Well::ProducerCMode
|
|
WellInterfaceFluidSystem<FluidSystem>::
|
|
activeProductionConstraint(const SingleWellState& ws,
|
|
const SummaryState& summaryState) const
|
|
{
|
|
const PhaseUsage& pu = this->phaseUsage();
|
|
const auto controls = this->well_ecl_.productionControls(summaryState);
|
|
const auto currentControl = ws.production_cmode;
|
|
|
|
if (controls.hasControl(Well::ProducerCMode::BHP) && currentControl != Well::ProducerCMode::BHP) {
|
|
const double bhp_limit = controls.bhp_limit;
|
|
double current_bhp = ws.bhp;
|
|
if (bhp_limit > current_bhp)
|
|
return Well::ProducerCMode::BHP;
|
|
}
|
|
|
|
if (controls.hasControl(Well::ProducerCMode::ORAT) && currentControl != Well::ProducerCMode::ORAT) {
|
|
double current_rate = -ws.surface_rates[pu.phase_pos[BlackoilPhases::Liquid]];
|
|
if (controls.oil_rate < current_rate)
|
|
return Well::ProducerCMode::ORAT;
|
|
}
|
|
|
|
if (controls.hasControl(Well::ProducerCMode::WRAT) && currentControl != Well::ProducerCMode::WRAT) {
|
|
double current_rate = -ws.surface_rates[pu.phase_pos[BlackoilPhases::Aqua]];
|
|
if (controls.water_rate < current_rate)
|
|
return Well::ProducerCMode::WRAT;
|
|
}
|
|
|
|
if (controls.hasControl(Well::ProducerCMode::GRAT) && currentControl != Well::ProducerCMode::GRAT) {
|
|
double current_rate = -ws.surface_rates[pu.phase_pos[BlackoilPhases::Vapour]];
|
|
if (controls.gas_rate < current_rate)
|
|
return Well::ProducerCMode::GRAT;
|
|
}
|
|
|
|
if (controls.hasControl(Well::ProducerCMode::LRAT) && currentControl != Well::ProducerCMode::LRAT) {
|
|
double current_rate = -ws.surface_rates[pu.phase_pos[BlackoilPhases::Liquid]];
|
|
current_rate -= ws.surface_rates[pu.phase_pos[BlackoilPhases::Aqua]];
|
|
if (controls.liquid_rate < current_rate)
|
|
return Well::ProducerCMode::LRAT;
|
|
}
|
|
|
|
if (controls.hasControl(Well::ProducerCMode::RESV) && currentControl != Well::ProducerCMode::RESV) {
|
|
double current_rate = 0.0;
|
|
if (pu.phase_used[BlackoilPhases::Aqua])
|
|
current_rate -= ws.reservoir_rates[pu.phase_pos[BlackoilPhases::Aqua]];
|
|
|
|
if (pu.phase_used[BlackoilPhases::Liquid])
|
|
current_rate -= ws.reservoir_rates[pu.phase_pos[BlackoilPhases::Liquid]];
|
|
|
|
if (pu.phase_used[BlackoilPhases::Vapour])
|
|
current_rate -= ws.reservoir_rates[pu.phase_pos[BlackoilPhases::Vapour]];
|
|
|
|
if (controls.prediction_mode && controls.resv_rate < current_rate)
|
|
return Well::ProducerCMode::RESV;
|
|
|
|
if (!controls.prediction_mode) {
|
|
const int fipreg = 0; // not considering the region for now
|
|
const int np = number_of_phases_;
|
|
|
|
std::vector<double> surface_rates(np, 0.0);
|
|
if (pu.phase_used[BlackoilPhases::Aqua])
|
|
surface_rates[pu.phase_pos[BlackoilPhases::Aqua]] = controls.water_rate;
|
|
if (pu.phase_used[BlackoilPhases::Liquid])
|
|
surface_rates[pu.phase_pos[BlackoilPhases::Liquid]] = controls.oil_rate;
|
|
if (pu.phase_used[BlackoilPhases::Vapour])
|
|
surface_rates[pu.phase_pos[BlackoilPhases::Vapour]] = controls.gas_rate;
|
|
|
|
std::vector<double> voidage_rates(np, 0.0);
|
|
rateConverter_.calcReservoirVoidageRates(fipreg, pvtRegionIdx_, surface_rates, voidage_rates);
|
|
|
|
double resv_rate = 0.0;
|
|
for (int p = 0; p < np; ++p)
|
|
resv_rate += voidage_rates[p];
|
|
|
|
if (resv_rate < current_rate)
|
|
return Well::ProducerCMode::RESV;
|
|
}
|
|
}
|
|
|
|
if (controls.hasControl(Well::ProducerCMode::THP) && currentControl != Well::ProducerCMode::THP) {
|
|
const auto& thp = getTHPConstraint(summaryState);
|
|
double current_thp = ws.thp;
|
|
if (thp > current_thp)
|
|
return Well::ProducerCMode::THP;
|
|
}
|
|
|
|
return currentControl;
|
|
}
|
|
|
|
|
|
template <typename FluidSystem>
|
|
Well::InjectorCMode
|
|
WellInterfaceFluidSystem<FluidSystem>::
|
|
activeInjectionConstraint(const SingleWellState& ws,
|
|
const SummaryState& summaryState) const
|
|
{
|
|
const PhaseUsage& pu = this->phaseUsage();
|
|
|
|
const auto controls = this->well_ecl_.injectionControls(summaryState);
|
|
const auto currentControl = ws.injection_cmode;
|
|
|
|
if (controls.hasControl(Well::InjectorCMode::BHP) && currentControl != Well::InjectorCMode::BHP)
|
|
{
|
|
const auto& bhp = controls.bhp_limit;
|
|
double current_bhp = ws.bhp;
|
|
if (bhp < current_bhp)
|
|
return Well::InjectorCMode::BHP;
|
|
}
|
|
|
|
if (controls.hasControl(Well::InjectorCMode::RATE) && currentControl != Well::InjectorCMode::RATE)
|
|
{
|
|
InjectorType injectorType = controls.injector_type;
|
|
double current_rate = 0.0;
|
|
|
|
switch (injectorType) {
|
|
case InjectorType::WATER:
|
|
{
|
|
current_rate = ws.surface_rates[ pu.phase_pos[BlackoilPhases::Aqua] ];
|
|
break;
|
|
}
|
|
case InjectorType::OIL:
|
|
{
|
|
current_rate = ws.surface_rates[ pu.phase_pos[BlackoilPhases::Liquid] ];
|
|
break;
|
|
}
|
|
case InjectorType::GAS:
|
|
{
|
|
current_rate = ws.surface_rates[ pu.phase_pos[BlackoilPhases::Vapour] ];
|
|
break;
|
|
}
|
|
default:
|
|
throw("Expected WATER, OIL or GAS as type for injectors " + this->well_ecl_.name());
|
|
}
|
|
|
|
if (controls.surface_rate < current_rate)
|
|
return Well::InjectorCMode::RATE;
|
|
}
|
|
|
|
if (controls.hasControl(Well::InjectorCMode::RESV) && currentControl != Well::InjectorCMode::RESV)
|
|
{
|
|
double current_rate = 0.0;
|
|
if( pu.phase_used[BlackoilPhases::Aqua] )
|
|
current_rate += ws.reservoir_rates[ pu.phase_pos[BlackoilPhases::Aqua] ];
|
|
|
|
if( pu.phase_used[BlackoilPhases::Liquid] )
|
|
current_rate += ws.reservoir_rates[ pu.phase_pos[BlackoilPhases::Liquid] ];
|
|
|
|
if( pu.phase_used[BlackoilPhases::Vapour] )
|
|
current_rate += ws.reservoir_rates[ pu.phase_pos[BlackoilPhases::Vapour] ];
|
|
|
|
if (controls.reservoir_rate < current_rate)
|
|
return Well::InjectorCMode::RESV;
|
|
}
|
|
|
|
if (controls.hasControl(Well::InjectorCMode::THP) && currentControl != Well::InjectorCMode::THP)
|
|
{
|
|
const auto& thp = getTHPConstraint(summaryState);
|
|
double current_thp = ws.thp;
|
|
if (thp < current_thp)
|
|
return Well::InjectorCMode::THP;
|
|
}
|
|
|
|
return currentControl;
|
|
}
|
|
|
|
template <typename FluidSystem>
|
|
bool
|
|
WellInterfaceFluidSystem<FluidSystem>::
|
|
checkIndividualConstraints(SingleWellState& ws,
|
|
const SummaryState& summaryState) const
|
|
{
|
|
if (this->well_ecl_.isProducer()) {
|
|
auto new_cmode = this->activeProductionConstraint(ws, summaryState);
|
|
if (new_cmode != ws.production_cmode) {
|
|
ws.production_cmode = new_cmode;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (this->well_ecl_.isInjector()) {
|
|
auto new_cmode = this->activeInjectionConstraint(ws, summaryState);
|
|
if (new_cmode != ws.injection_cmode) {
|
|
ws.injection_cmode = new_cmode;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
template <typename FluidSystem>
|
|
std::pair<bool, double>
|
|
WellInterfaceFluidSystem<FluidSystem>::
|
|
checkGroupConstraintsInj(const Group& group,
|
|
const WellState& well_state,
|
|
const GroupState& group_state,
|
|
const double efficiencyFactor,
|
|
const Schedule& schedule,
|
|
const SummaryState& summaryState,
|
|
DeferredLogger& deferred_logger) const
|
|
{
|
|
// Translate injector type from control to Phase.
|
|
const auto& well_controls = this->well_ecl_.injectionControls(summaryState);
|
|
auto injectorType = well_controls.injector_type;
|
|
Phase injectionPhase;
|
|
switch (injectorType) {
|
|
case InjectorType::WATER:
|
|
{
|
|
injectionPhase = Phase::WATER;
|
|
break;
|
|
}
|
|
case InjectorType::OIL:
|
|
{
|
|
injectionPhase = Phase::OIL;
|
|
break;
|
|
}
|
|
case InjectorType::GAS:
|
|
{
|
|
injectionPhase = Phase::GAS;
|
|
break;
|
|
}
|
|
default:
|
|
throw("Expected WATER, OIL or GAS as type for injector " + name());
|
|
}
|
|
|
|
// Make conversion factors for RESV <-> surface rates.
|
|
std::vector<double> resv_coeff(phaseUsage().num_phases, 1.0);
|
|
rateConverter_.calcInjCoeff(0, pvtRegionIdx_, resv_coeff); // FIPNUM region 0 here, should use FIPNUM from WELSPECS.
|
|
|
|
const auto& ws = well_state.well(this->index_of_well_);
|
|
// Call check for the well's injection phase.
|
|
return WellGroupHelpers::checkGroupConstraintsInj(name(),
|
|
well_ecl_.groupName(),
|
|
group,
|
|
well_state,
|
|
group_state,
|
|
current_step_,
|
|
guide_rate_,
|
|
ws.surface_rates.data(),
|
|
injectionPhase,
|
|
phaseUsage(),
|
|
efficiencyFactor,
|
|
schedule,
|
|
summaryState,
|
|
resv_coeff,
|
|
deferred_logger);
|
|
}
|
|
|
|
template <typename FluidSystem>
|
|
std::pair<bool, double>
|
|
WellInterfaceFluidSystem<FluidSystem>::
|
|
checkGroupConstraintsProd(const Group& group,
|
|
const WellState& well_state,
|
|
const GroupState& group_state,
|
|
const double efficiencyFactor,
|
|
const Schedule& schedule,
|
|
const SummaryState& summaryState,
|
|
DeferredLogger& deferred_logger) const
|
|
{
|
|
// Make conversion factors for RESV <-> surface rates.
|
|
std::vector<double> resv_coeff(this->phaseUsage().num_phases, 1.0);
|
|
rateConverter_.calcCoeff(0, pvtRegionIdx_, resv_coeff); // FIPNUM region 0 here, should use FIPNUM from WELSPECS.
|
|
|
|
const auto& ws = well_state.well(this->index_of_well_);
|
|
return WellGroupHelpers::checkGroupConstraintsProd(name(),
|
|
well_ecl_.groupName(),
|
|
group,
|
|
well_state,
|
|
group_state,
|
|
current_step_,
|
|
guide_rate_,
|
|
ws.surface_rates.data(),
|
|
phaseUsage(),
|
|
efficiencyFactor,
|
|
schedule,
|
|
summaryState,
|
|
resv_coeff,
|
|
deferred_logger);
|
|
}
|
|
|
|
template <typename FluidSystem>
|
|
bool
|
|
WellInterfaceFluidSystem<FluidSystem>::
|
|
checkGroupConstraints(WellState& well_state,
|
|
const GroupState& group_state,
|
|
const Schedule& schedule,
|
|
const SummaryState& summaryState,
|
|
DeferredLogger& deferred_logger) const
|
|
{
|
|
const auto& well = well_ecl_;
|
|
const int well_index = index_of_well_;
|
|
auto& ws = well_state.well(well_index);
|
|
|
|
if (well.isInjector()) {
|
|
const auto currentControl = ws.injection_cmode;
|
|
|
|
if (currentControl != Well::InjectorCMode::GRUP) {
|
|
// This checks only the first encountered group limit,
|
|
// in theory there could be several, and then we should
|
|
// test all but the one currently applied. At that point,
|
|
// this if-statement should be removed and we should always
|
|
// check, skipping over only the single group parent whose
|
|
// control is the active one for the well (if any).
|
|
const auto& group = schedule.getGroup( well.groupName(), current_step_ );
|
|
const double efficiencyFactor = well.getEfficiencyFactor();
|
|
const std::pair<bool, double> group_constraint =
|
|
checkGroupConstraintsInj(group, well_state, group_state, efficiencyFactor,
|
|
schedule, summaryState, deferred_logger);
|
|
// If a group constraint was broken, we set the current well control to
|
|
// be GRUP.
|
|
if (group_constraint.first) {
|
|
ws.injection_cmode = Well::InjectorCMode::GRUP;
|
|
const int np = well_state.numPhases();
|
|
for (int p = 0; p<np; ++p) {
|
|
ws.surface_rates[p] *= group_constraint.second;
|
|
}
|
|
}
|
|
return group_constraint.first;
|
|
}
|
|
}
|
|
|
|
if (well.isProducer( )) {
|
|
const auto currentControl = ws.production_cmode;
|
|
|
|
if (currentControl != Well::ProducerCMode::GRUP) {
|
|
// This checks only the first encountered group limit,
|
|
// in theory there could be several, and then we should
|
|
// test all but the one currently applied. At that point,
|
|
// this if-statement should be removed and we should always
|
|
// check, skipping over only the single group parent whose
|
|
// control is the active one for the well (if any).
|
|
const auto& group = schedule.getGroup( well.groupName(), current_step_ );
|
|
const double efficiencyFactor = well.getEfficiencyFactor();
|
|
const std::pair<bool, double> group_constraint =
|
|
checkGroupConstraintsProd(group, well_state, group_state, efficiencyFactor,
|
|
schedule, summaryState, deferred_logger);
|
|
// If a group constraint was broken, we set the current well control to
|
|
// be GRUP.
|
|
if (group_constraint.first) {
|
|
ws.production_cmode = Well::ProducerCMode::GRUP;
|
|
const int np = well_state.numPhases();
|
|
for (int p = 0; p<np; ++p) {
|
|
ws.surface_rates[p] *= group_constraint.second;
|
|
}
|
|
}
|
|
return group_constraint.first;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
template <typename FluidSystem>
|
|
bool
|
|
WellInterfaceFluidSystem<FluidSystem>::
|
|
checkConstraints(WellState& well_state,
|
|
const GroupState& group_state,
|
|
const Schedule& schedule,
|
|
const SummaryState& summaryState,
|
|
DeferredLogger& deferred_logger) const
|
|
{
|
|
const bool ind_broken = checkIndividualConstraints(well_state.well(this->index_of_well_), summaryState);
|
|
if (ind_broken) {
|
|
return true;
|
|
} else {
|
|
return checkGroupConstraints(well_state, group_state, schedule, summaryState, deferred_logger);
|
|
}
|
|
}
|
|
|
|
template<typename FluidSystem>
|
|
bool
|
|
WellInterfaceFluidSystem<FluidSystem>::
|
|
checkRateEconLimits(const WellEconProductionLimits& econ_production_limits,
|
|
const double* rates_or_potentials,
|
|
DeferredLogger& deferred_logger) const
|
|
{
|
|
const PhaseUsage& pu = phaseUsage();
|
|
|
|
if (econ_production_limits.onMinOilRate()) {
|
|
assert(FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx));
|
|
const double oil_rate = rates_or_potentials[pu.phase_pos[ Oil ] ];
|
|
const double min_oil_rate = econ_production_limits.minOilRate();
|
|
if (std::abs(oil_rate) < min_oil_rate) {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (econ_production_limits.onMinGasRate() ) {
|
|
assert(FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx));
|
|
const double gas_rate = rates_or_potentials[pu.phase_pos[ Gas ] ];
|
|
const double min_gas_rate = econ_production_limits.minGasRate();
|
|
if (std::abs(gas_rate) < min_gas_rate) {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (econ_production_limits.onMinLiquidRate() ) {
|
|
assert(FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx));
|
|
assert(FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx));
|
|
const double oil_rate = rates_or_potentials[pu.phase_pos[ Oil ] ];
|
|
const double water_rate = rates_or_potentials[pu.phase_pos[ Water ] ];
|
|
const double liquid_rate = oil_rate + water_rate;
|
|
const double min_liquid_rate = econ_production_limits.minLiquidRate();
|
|
if (std::abs(liquid_rate) < min_liquid_rate) {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (econ_production_limits.onMinReservoirFluidRate()) {
|
|
deferred_logger.warning("NOT_SUPPORTING_MIN_RESERVOIR_FLUID_RATE", "Minimum reservoir fluid production rate limit is not supported yet");
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
template<typename FluidSystem>
|
|
void
|
|
WellInterfaceFluidSystem<FluidSystem>::
|
|
checkMaxWaterCutLimit(const WellEconProductionLimits& econ_production_limits,
|
|
const SingleWellState& ws,
|
|
RatioLimitCheckReport& report) const
|
|
{
|
|
assert(FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx));
|
|
assert(FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx));
|
|
|
|
// function to calculate water cut based on rates
|
|
auto waterCut = [](const std::vector<double>& rates,
|
|
const PhaseUsage& pu) {
|
|
|
|
const double oil_rate = rates[pu.phase_pos[Oil]];
|
|
const double water_rate = rates[pu.phase_pos[Water]];
|
|
|
|
// both rate should be in the same direction
|
|
assert(oil_rate * water_rate >= 0.);
|
|
|
|
const double liquid_rate = oil_rate + water_rate;
|
|
if (liquid_rate != 0.) {
|
|
return (water_rate / liquid_rate);
|
|
} else {
|
|
return 0.;
|
|
}
|
|
};
|
|
|
|
const double max_water_cut_limit = econ_production_limits.maxWaterCut();
|
|
assert(max_water_cut_limit > 0.);
|
|
|
|
const bool watercut_limit_violated = checkMaxRatioLimitWell(ws, max_water_cut_limit, waterCut);
|
|
|
|
if (watercut_limit_violated) {
|
|
report.ratio_limit_violated = true;
|
|
checkMaxRatioLimitCompletions(ws, max_water_cut_limit, waterCut, report);
|
|
}
|
|
}
|
|
|
|
template<typename FluidSystem>
|
|
void
|
|
WellInterfaceFluidSystem<FluidSystem>::
|
|
checkMaxGORLimit(const WellEconProductionLimits& econ_production_limits,
|
|
const SingleWellState& ws,
|
|
RatioLimitCheckReport& report) const
|
|
{
|
|
assert(FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx));
|
|
assert(FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx));
|
|
|
|
// function to calculate gor based on rates
|
|
auto gor = [](const std::vector<double>& rates,
|
|
const PhaseUsage& pu) {
|
|
|
|
const double oil_rate = rates[pu.phase_pos[Oil]];
|
|
const double gas_rate = rates[pu.phase_pos[Gas]];
|
|
|
|
// both rate should be in the same direction
|
|
assert(oil_rate * gas_rate >= 0.);
|
|
|
|
double gas_oil_ratio = 0.;
|
|
|
|
if (oil_rate != 0.) {
|
|
gas_oil_ratio = gas_rate / oil_rate;
|
|
} else {
|
|
if (gas_rate != 0.) {
|
|
gas_oil_ratio = 1.e100; // big value to mark it as violated
|
|
} else {
|
|
gas_oil_ratio = 0.0;
|
|
}
|
|
}
|
|
|
|
return gas_oil_ratio;
|
|
};
|
|
|
|
const double max_gor_limit = econ_production_limits.maxGasOilRatio();
|
|
assert(max_gor_limit > 0.);
|
|
|
|
const bool gor_limit_violated = checkMaxRatioLimitWell(ws, max_gor_limit, gor);
|
|
|
|
if (gor_limit_violated) {
|
|
report.ratio_limit_violated = true;
|
|
checkMaxRatioLimitCompletions(ws, max_gor_limit, gor, report);
|
|
}
|
|
}
|
|
|
|
template<typename FluidSystem>
|
|
void
|
|
WellInterfaceFluidSystem<FluidSystem>::
|
|
checkMaxWGRLimit(const WellEconProductionLimits& econ_production_limits,
|
|
const SingleWellState& ws,
|
|
RatioLimitCheckReport& report) const
|
|
{
|
|
assert(FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx));
|
|
assert(FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx));
|
|
|
|
// function to calculate wgr based on rates
|
|
auto wgr = [](const std::vector<double>& rates,
|
|
const PhaseUsage& pu) {
|
|
|
|
const double water_rate = rates[pu.phase_pos[Water]];
|
|
const double gas_rate = rates[pu.phase_pos[Gas]];
|
|
|
|
// both rate should be in the same direction
|
|
assert(water_rate * gas_rate >= 0.);
|
|
|
|
double water_gas_ratio = 0.;
|
|
|
|
if (gas_rate != 0.) {
|
|
water_gas_ratio = water_rate / gas_rate;
|
|
} else {
|
|
if (water_rate != 0.) {
|
|
water_gas_ratio = 1.e100; // big value to mark it as violated
|
|
} else {
|
|
water_gas_ratio = 0.0;
|
|
}
|
|
}
|
|
|
|
return water_gas_ratio;
|
|
};
|
|
|
|
const double max_wgr_limit = econ_production_limits.maxWaterGasRatio();
|
|
assert(max_wgr_limit > 0.);
|
|
|
|
const bool wgr_limit_violated = checkMaxRatioLimitWell(ws, max_wgr_limit, wgr);
|
|
|
|
if (wgr_limit_violated) {
|
|
report.ratio_limit_violated = true;
|
|
checkMaxRatioLimitCompletions(ws, max_wgr_limit, wgr, report);
|
|
}
|
|
}
|
|
|
|
template<typename FluidSystem>
|
|
void
|
|
WellInterfaceFluidSystem<FluidSystem>::
|
|
checkRatioEconLimits(const WellEconProductionLimits& econ_production_limits,
|
|
const SingleWellState& ws,
|
|
RatioLimitCheckReport& report,
|
|
DeferredLogger& deferred_logger) const
|
|
{
|
|
// TODO: not sure how to define the worst-offending completion when more than one
|
|
// ratio related limit is violated.
|
|
// The defintion used here is that we define the violation extent based on the
|
|
// ratio between the value and the corresponding limit.
|
|
// For each violated limit, we decide the worst-offending completion separately.
|
|
// Among the worst-offending completions, we use the one has the biggest violation
|
|
// extent.
|
|
|
|
if (econ_production_limits.onMaxWaterCut()) {
|
|
checkMaxWaterCutLimit(econ_production_limits, ws, report);
|
|
}
|
|
|
|
if (econ_production_limits.onMaxGasOilRatio()) {
|
|
checkMaxGORLimit(econ_production_limits, ws, report);
|
|
}
|
|
|
|
if (econ_production_limits.onMaxWaterGasRatio()) {
|
|
checkMaxWGRLimit(econ_production_limits, ws, report);
|
|
}
|
|
|
|
if (econ_production_limits.onMaxGasLiquidRatio()) {
|
|
deferred_logger.warning("NOT_SUPPORTING_MAX_GLR", "the support for max Gas-Liquid ratio is not implemented yet!");
|
|
}
|
|
|
|
if (report.ratio_limit_violated) {
|
|
assert(report.worst_offending_completion != INVALIDCOMPLETION);
|
|
assert(report.violation_extent > 1.);
|
|
}
|
|
}
|
|
|
|
template<typename FluidSystem>
|
|
void
|
|
WellInterfaceFluidSystem<FluidSystem>::
|
|
updateWellTestStateEconomic(const SingleWellState& ws,
|
|
const double simulation_time,
|
|
const bool write_message_to_opmlog,
|
|
WellTestState& well_test_state,
|
|
DeferredLogger& deferred_logger) const
|
|
{
|
|
if (this->wellIsStopped())
|
|
return;
|
|
|
|
const WellEconProductionLimits& econ_production_limits = well_ecl_.getEconLimits();
|
|
|
|
// if no limit is effective here, then continue to the next well
|
|
if ( !econ_production_limits.onAnyEffectiveLimit() ) {
|
|
return;
|
|
}
|
|
|
|
// flag to check if the mim oil/gas rate limit is violated
|
|
bool rate_limit_violated = false;
|
|
|
|
const auto& quantity_limit = econ_production_limits.quantityLimit();
|
|
if (econ_production_limits.onAnyRateLimit()) {
|
|
if (quantity_limit == WellEconProductionLimits::QuantityLimit::POTN)
|
|
rate_limit_violated = checkRateEconLimits(econ_production_limits, ws.well_potentials.data(), deferred_logger);
|
|
else {
|
|
rate_limit_violated = checkRateEconLimits(econ_production_limits, ws.surface_rates.data(), deferred_logger);
|
|
}
|
|
}
|
|
|
|
if (rate_limit_violated) {
|
|
if (econ_production_limits.endRun()) {
|
|
const std::string warning_message = std::string("ending run after well closed due to economic limits")
|
|
+ std::string("is not supported yet \n")
|
|
+ std::string("the program will keep running after ") + name()
|
|
+ std::string(" is closed");
|
|
deferred_logger.warning("NOT_SUPPORTING_ENDRUN", warning_message);
|
|
}
|
|
|
|
if (econ_production_limits.validFollowonWell()) {
|
|
deferred_logger.warning("NOT_SUPPORTING_FOLLOWONWELL", "opening following on well after well closed is not supported yet");
|
|
}
|
|
|
|
well_test_state.close_well(name(), WellTestConfig::Reason::ECONOMIC, simulation_time);
|
|
if (write_message_to_opmlog) {
|
|
if (this->well_ecl_.getAutomaticShutIn()) {
|
|
const std::string msg = std::string("well ") + name() + std::string(" will be shut due to rate economic limit");
|
|
deferred_logger.info(msg);
|
|
} else {
|
|
const std::string msg = std::string("well ") + name() + std::string(" will be stopped due to rate economic limit");
|
|
deferred_logger.info(msg);
|
|
}
|
|
}
|
|
// the well is closed, not need to check other limits
|
|
return;
|
|
}
|
|
|
|
|
|
if ( !econ_production_limits.onAnyRatioLimit() ) {
|
|
// there is no need to check the ratio limits
|
|
return;
|
|
}
|
|
|
|
// checking for ratio related limits, mostly all kinds of ratio.
|
|
RatioLimitCheckReport ratio_report;
|
|
|
|
checkRatioEconLimits(econ_production_limits, ws, ratio_report, deferred_logger);
|
|
|
|
if (ratio_report.ratio_limit_violated) {
|
|
const auto workover = econ_production_limits.workover();
|
|
switch (workover) {
|
|
case WellEconProductionLimits::EconWorkover::CON:
|
|
{
|
|
const int worst_offending_completion = ratio_report.worst_offending_completion;
|
|
|
|
well_test_state.close_completion(name(), worst_offending_completion, simulation_time);
|
|
if (write_message_to_opmlog) {
|
|
if (worst_offending_completion < 0) {
|
|
const std::string msg = std::string("Connection ") + std::to_string(- worst_offending_completion)
|
|
+ std::string(" for well ") + name() + std::string(" will be closed due to economic limit");
|
|
deferred_logger.info(msg);
|
|
} else {
|
|
const std::string msg = std::string("Completion ") + std::to_string(worst_offending_completion)
|
|
+ std::string(" for well ") + name() + std::string(" will be closed due to economic limit");
|
|
deferred_logger.info(msg);
|
|
}
|
|
}
|
|
|
|
bool allCompletionsClosed = true;
|
|
const auto& connections = well_ecl_.getConnections();
|
|
for (const auto& connection : connections) {
|
|
if (connection.state() == Connection::State::OPEN
|
|
&& !well_test_state.completion_is_closed(name(), connection.complnum())) {
|
|
allCompletionsClosed = false;
|
|
}
|
|
}
|
|
|
|
if (allCompletionsClosed) {
|
|
well_test_state.close_well(name(), WellTestConfig::Reason::ECONOMIC, simulation_time);
|
|
if (write_message_to_opmlog) {
|
|
if (this->well_ecl_.getAutomaticShutIn()) {
|
|
const std::string msg = name() + std::string(" will be shut due to last completion closed");
|
|
deferred_logger.info(msg);
|
|
} else {
|
|
const std::string msg = name() + std::string(" will be stopped due to last completion closed");
|
|
deferred_logger.info(msg);
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case WellEconProductionLimits::EconWorkover::WELL:
|
|
{
|
|
well_test_state.close_well(name(), WellTestConfig::Reason::ECONOMIC, simulation_time);
|
|
if (write_message_to_opmlog) {
|
|
if (well_ecl_.getAutomaticShutIn()) {
|
|
// tell the control that the well is closed
|
|
const std::string msg = name() + std::string(" will be shut due to ratio economic limit");
|
|
deferred_logger.info(msg);
|
|
} else {
|
|
const std::string msg = name() + std::string(" will be stopped due to ratio economic limit");
|
|
deferred_logger.info(msg);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case WellEconProductionLimits::EconWorkover::NONE:
|
|
break;
|
|
default:
|
|
{
|
|
deferred_logger.warning("NOT_SUPPORTED_WORKOVER_TYPE",
|
|
"not supporting workover type " + WellEconProductionLimits::EconWorkover2String(workover) );
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
template<typename FluidSystem>
|
|
void
|
|
WellInterfaceFluidSystem<FluidSystem>::
|
|
updateWellTestState(const SingleWellState& ws,
|
|
const double& simulationTime,
|
|
const bool& writeMessageToOPMLog,
|
|
WellTestState& wellTestState,
|
|
DeferredLogger& deferred_logger) const
|
|
{
|
|
// updating well test state based on physical (THP/BHP) limits.
|
|
updateWellTestStatePhysical(simulationTime, writeMessageToOPMLog, wellTestState, deferred_logger);
|
|
|
|
// updating well test state based on Economic limits.
|
|
updateWellTestStateEconomic(ws, simulationTime, writeMessageToOPMLog, wellTestState, deferred_logger);
|
|
|
|
// TODO: well can be shut/closed due to other reasons
|
|
}
|
|
|
|
template<typename FluidSystem>
|
|
template <typename RatioFunc>
|
|
void WellInterfaceFluidSystem<FluidSystem>::
|
|
checkMaxRatioLimitCompletions(const SingleWellState& ws,
|
|
const double max_ratio_limit,
|
|
const RatioFunc& ratioFunc,
|
|
RatioLimitCheckReport& report) const
|
|
{
|
|
int worst_offending_completion = INVALIDCOMPLETION;
|
|
|
|
// the maximum water cut value of the completions
|
|
// it is used to identify the most offending completion
|
|
double max_ratio_completion = 0;
|
|
const int np = number_of_phases_;
|
|
|
|
const auto& perf_data = ws.perf_data;
|
|
const auto& perf_phase_rates = perf_data.phase_rates;
|
|
// look for the worst_offending_completion
|
|
for (const auto& completion : completions_) {
|
|
std::vector<double> completion_rates(np, 0.0);
|
|
|
|
// looping through the connections associated with the completion
|
|
const std::vector<int>& conns = completion.second;
|
|
for (const int c : conns) {
|
|
for (int p = 0; p < np; ++p) {
|
|
const double connection_rate = perf_phase_rates[c * np + p];
|
|
completion_rates[p] += connection_rate;
|
|
}
|
|
} // end of for (const int c : conns)
|
|
|
|
parallel_well_info_.communication().sum(completion_rates.data(), completion_rates.size());
|
|
const double ratio_completion = ratioFunc(completion_rates, phaseUsage());
|
|
|
|
if (ratio_completion > max_ratio_completion) {
|
|
worst_offending_completion = completion.first;
|
|
max_ratio_completion = ratio_completion;
|
|
}
|
|
} // end of for (const auto& completion : completions_)
|
|
|
|
assert(max_ratio_completion > max_ratio_limit);
|
|
assert(worst_offending_completion != INVALIDCOMPLETION);
|
|
const double violation_extent = max_ratio_completion / max_ratio_limit;
|
|
assert(violation_extent > 1.0);
|
|
|
|
if (violation_extent > report.violation_extent) {
|
|
report.worst_offending_completion = worst_offending_completion;
|
|
report.violation_extent = violation_extent;
|
|
}
|
|
}
|
|
|
|
template<typename FluidSystem>
|
|
template<typename RatioFunc>
|
|
bool WellInterfaceFluidSystem<FluidSystem>::
|
|
checkMaxRatioLimitWell(const SingleWellState& ws,
|
|
const double max_ratio_limit,
|
|
const RatioFunc& ratioFunc) const
|
|
{
|
|
const int np = number_of_phases_;
|
|
|
|
std::vector<double> well_rates(np, 0.0);
|
|
for (int p = 0; p < np; ++p) {
|
|
well_rates[p] = ws.surface_rates[p];
|
|
}
|
|
|
|
const double well_ratio = ratioFunc(well_rates, phaseUsage());
|
|
return (well_ratio > max_ratio_limit);
|
|
}
|
|
|
|
template<typename FluidSystem>
|
|
int
|
|
WellInterfaceFluidSystem<FluidSystem>::
|
|
flowPhaseToEbosPhaseIdx(const int phaseIdx) const
|
|
{
|
|
const auto& pu = this->phaseUsage();
|
|
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx) && pu.phase_pos[Water] == phaseIdx)
|
|
return FluidSystem::waterPhaseIdx;
|
|
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) && pu.phase_pos[Oil] == phaseIdx)
|
|
return FluidSystem::oilPhaseIdx;
|
|
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) && pu.phase_pos[Gas] == phaseIdx)
|
|
return FluidSystem::gasPhaseIdx;
|
|
|
|
// for other phases return the index
|
|
return phaseIdx;
|
|
}
|
|
|
|
template<typename FluidSystem>
|
|
std::optional<double>
|
|
WellInterfaceFluidSystem<FluidSystem>::
|
|
getGroupInjectionTargetRate(const Group& group,
|
|
const WellState& well_state,
|
|
const GroupState& group_state,
|
|
const Schedule& schedule,
|
|
const SummaryState& summaryState,
|
|
const InjectorType& injectorType,
|
|
double efficiencyFactor,
|
|
DeferredLogger& deferred_logger) const
|
|
{
|
|
// Setting some defaults to silence warnings below.
|
|
// Will be overwritten in the switch statement.
|
|
Phase injectionPhase = Phase::WATER;
|
|
switch (injectorType) {
|
|
case InjectorType::WATER:
|
|
{
|
|
injectionPhase = Phase::WATER;
|
|
break;
|
|
}
|
|
case InjectorType::OIL:
|
|
{
|
|
injectionPhase = Phase::OIL;
|
|
break;
|
|
}
|
|
case InjectorType::GAS:
|
|
{
|
|
injectionPhase = Phase::GAS;
|
|
break;
|
|
}
|
|
default:
|
|
// Should not be here.
|
|
assert(false);
|
|
}
|
|
|
|
auto currentGroupControl = group_state.injection_control(group.name(), injectionPhase);
|
|
if (currentGroupControl == Group::InjectionCMode::FLD ||
|
|
currentGroupControl == Group::InjectionCMode::NONE) {
|
|
if (!group.injectionGroupControlAvailable(injectionPhase)) {
|
|
// We cannot go any further up the hierarchy. This could
|
|
// be the FIELD group, or any group for which this has
|
|
// been set in GCONINJE or GCONPROD. If we are here
|
|
// anyway, it is likely that the deck set inconsistent
|
|
// requirements, such as GRUP control mode on a well with
|
|
// no appropriate controls defined on any of its
|
|
// containing groups. We will therefore use the wells' bhp
|
|
// limit equation as a fallback.
|
|
return std::nullopt;
|
|
} else {
|
|
// Inject share of parents control
|
|
const auto& parent = schedule.getGroup( group.parent(), currentStep());
|
|
efficiencyFactor *= group.getGroupEfficiencyFactor();
|
|
return getGroupInjectionTargetRate(parent, well_state, group_state, schedule, summaryState, injectorType, efficiencyFactor, deferred_logger);
|
|
}
|
|
}
|
|
|
|
const auto pu = phaseUsage();
|
|
|
|
if (!group.isInjectionGroup()) {
|
|
return std::nullopt;
|
|
}
|
|
|
|
// If we are here, we are at the topmost group to be visited in the recursion.
|
|
// This is the group containing the control we will check against.
|
|
|
|
// Make conversion factors for RESV <-> surface rates.
|
|
std::vector<double> resv_coeff(pu.num_phases, 1.0);
|
|
rateConverter_.calcCoeff(0, pvtRegionIdx(), resv_coeff); // FIPNUM region 0 here, should use FIPNUM from WELSPECS.
|
|
|
|
double sales_target = 0;
|
|
if (schedule[currentStep()].gconsale().has(group.name())) {
|
|
const auto& gconsale = schedule[currentStep()].gconsale().get(group.name(), summaryState);
|
|
sales_target = gconsale.sales_target;
|
|
}
|
|
WellGroupHelpers::InjectionTargetCalculator tcalc(currentGroupControl, pu, resv_coeff, group.name(), sales_target, group_state, injectionPhase, group.has_gpmaint_control(injectionPhase, currentGroupControl), deferred_logger);
|
|
WellGroupHelpers::FractionCalculator fcalc(schedule, well_state, group_state, currentStep(), guideRate(), tcalc.guideTargetMode(), pu, false, injectionPhase);
|
|
|
|
auto localFraction = [&](const std::string& child) {
|
|
return fcalc.localFraction(child, child); //Note child needs to be passed to always include since the global isGrup map is not updated yet.
|
|
};
|
|
|
|
auto localReduction = [&](const std::string& group_name) {
|
|
const std::vector<double>& groupTargetReductions = group_state.injection_reduction_rates(group_name);
|
|
return tcalc.calcModeRateFromRates(groupTargetReductions);
|
|
};
|
|
|
|
const double orig_target = tcalc.groupTarget(group.injectionControls(injectionPhase, summaryState), deferred_logger);
|
|
const auto chain = WellGroupHelpers::groupChainTopBot(name(), group.name(), schedule, currentStep());
|
|
// Because 'name' is the last of the elements, and not an ancestor, we subtract one below.
|
|
const size_t num_ancestors = chain.size() - 1;
|
|
double target = orig_target;
|
|
for (size_t ii = 0; ii < num_ancestors; ++ii) {
|
|
if ((ii == 0) || guideRate()->has(chain[ii], injectionPhase)) {
|
|
// Apply local reductions only at the control level
|
|
// (top) and for levels where we have a specified
|
|
// group guide rate.
|
|
target -= localReduction(chain[ii]);
|
|
}
|
|
target *= localFraction(chain[ii+1]);
|
|
}
|
|
return std::max(0.0, target / efficiencyFactor);
|
|
}
|
|
template<typename FluidSystem>
|
|
double
|
|
WellInterfaceFluidSystem<FluidSystem>::
|
|
getGroupProductionTargetRate(const Group& group,
|
|
const WellState& well_state,
|
|
const GroupState& group_state,
|
|
const Schedule& schedule,
|
|
const SummaryState& summaryState,
|
|
double efficiencyFactor) const
|
|
{
|
|
const Group::ProductionCMode& currentGroupControl = group_state.production_control(group.name());
|
|
if (currentGroupControl == Group::ProductionCMode::FLD ||
|
|
currentGroupControl == Group::ProductionCMode::NONE) {
|
|
if (!group.productionGroupControlAvailable()) {
|
|
return 1.0;
|
|
} else {
|
|
// Produce share of parents control
|
|
const auto& parent = schedule.getGroup(group.parent(), currentStep());
|
|
efficiencyFactor *= group.getGroupEfficiencyFactor();
|
|
return getGroupProductionTargetRate(parent, well_state, group_state, schedule, summaryState, efficiencyFactor);
|
|
}
|
|
}
|
|
|
|
const auto pu = phaseUsage();
|
|
|
|
if (!group.isProductionGroup()) {
|
|
return 1.0;
|
|
}
|
|
|
|
// If we are here, we are at the topmost group to be visited in the recursion.
|
|
// This is the group containing the control we will check against.
|
|
|
|
// Make conversion factors for RESV <-> surface rates.
|
|
std::vector<double> resv_coeff(phaseUsage().num_phases, 1.0);
|
|
rateConverter_.calcCoeff(0, pvtRegionIdx(), resv_coeff); // FIPNUM region 0 here, should use FIPNUM from WELSPECS.
|
|
|
|
// gconsale may adjust the grat target.
|
|
// the adjusted rates is send to the targetCalculator
|
|
double gratTargetFromSales = 0.0;
|
|
if (group_state.has_grat_sales_target(group.name()))
|
|
gratTargetFromSales = group_state.grat_sales_target(group.name());
|
|
|
|
WellGroupHelpers::TargetCalculator tcalc(currentGroupControl, pu, resv_coeff, gratTargetFromSales, group.name(), group_state, group.has_gpmaint_control(currentGroupControl));
|
|
WellGroupHelpers::FractionCalculator fcalc(schedule, well_state, group_state, currentStep(), guideRate(), tcalc.guideTargetMode(), pu, true, Phase::OIL);
|
|
|
|
auto localFraction = [&](const std::string& child) {
|
|
return fcalc.localFraction(child, child); //Note child needs to be passed to always include since the global isGrup map is not updated yet.
|
|
};
|
|
|
|
auto localReduction = [&](const std::string& group_name) {
|
|
const std::vector<double>& groupTargetReductions = group_state.production_reduction_rates(group_name);
|
|
return tcalc.calcModeRateFromRates(groupTargetReductions);
|
|
};
|
|
|
|
const double orig_target = tcalc.groupTarget(group.productionControls(summaryState));
|
|
const auto chain = WellGroupHelpers::groupChainTopBot(name(), group.name(), schedule, currentStep());
|
|
// Because 'name' is the last of the elements, and not an ancestor, we subtract one below.
|
|
const size_t num_ancestors = chain.size() - 1;
|
|
double target = orig_target;
|
|
for (size_t ii = 0; ii < num_ancestors; ++ii) {
|
|
if ((ii == 0) || guideRate()->has(chain[ii])) {
|
|
// Apply local reductions only at the control level
|
|
// (top) and for levels where we have a specified
|
|
// group guide rate.
|
|
target -= localReduction(chain[ii]);
|
|
}
|
|
target *= localFraction(chain[ii+1]);
|
|
}
|
|
// Avoid negative target rates coming from too large local reductions.
|
|
const double target_rate = std::max(0.0, target / efficiencyFactor);
|
|
const auto& ws = well_state.well(this->index_of_well_);
|
|
const auto& rates = ws.surface_rates;
|
|
const auto current_rate = -tcalc.calcModeRateFromRates(rates); // Switch sign since 'rates' are negative for producers.
|
|
double scale = 1.0;
|
|
if (current_rate > 1e-14)
|
|
scale = target_rate/current_rate;
|
|
return scale;
|
|
}
|
|
template class WellInterfaceFluidSystem<BlackOilFluidSystem<double,BlackOilDefaultIndexTraits>>;
|
|
|
|
} // namespace Opm
|