opm-simulators/opm/autodiff/NewtonIterationUtilities.cpp
2015-09-07 13:01:31 +02:00

293 lines
10 KiB
C++

/*
Copyright 2014 SINTEF ICT, Applied Mathematics.
Copyright 2014 IRIS AS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#include <opm/autodiff/NewtonIterationUtilities.hpp>
#include <opm/autodiff/AutoDiffHelpers.hpp>
#include <opm/core/utility/ErrorMacros.hpp>
#include <opm/core/utility/platform_dependent/disable_warnings.h>
#if HAVE_UMFPACK
#include <Eigen/UmfPackSupport>
#else
#include <Eigen/SparseLU>
#endif
#include <opm/core/utility/platform_dependent/reenable_warnings.h>
namespace Opm
{
typedef AutoDiffBlock<double> ADB;
typedef ADB::V V;
typedef ADB::M M;
typedef Eigen::SparseMatrix<double> S;
std::vector<ADB> eliminateVariable(const std::vector<ADB>& eqs, const int n)
{
// Check that the variable index to eliminate is within bounds.
const int num_eq = eqs.size();
const int num_vars = eqs[0].derivative().size();
if (num_eq != num_vars) {
OPM_THROW(std::logic_error, "eliminateVariable() requires the same number of variables and equations.");
}
if (n >= num_eq) {
OPM_THROW(std::logic_error, "Trying to eliminate variable from too small set of equations.");
}
// Schur complement of (A B ; C D) wrt. D is A - B*inv(D)*C.
// This is applied to all 2x2 block submatrices
// The right hand side is modified accordingly. bi = bi - B * inv(D)* bn;
// We do not explicitly compute inv(D) instead Du = C is solved
// Extract the submatrix
const std::vector<M>& Jn = eqs[n].derivative();
// Use sparse LU to solve the block submatrices i.e compute inv(D)
typedef Eigen::SparseMatrix<double> Sp;
Sp Jnn;
Jn[n].toSparse(Jnn);
#if HAVE_UMFPACK
const Eigen::UmfPackLU<Sp> solver(Jnn);
#else
const Eigen::SparseLU<Sp> solver(Jnn);
#endif
Sp id(Jn[n].rows(), Jn[n].cols());
id.setIdentity();
const Sp Di = solver.solve(id);
// compute inv(D)*bn for the update of the right hand side
// Note: Eigen version > 3.2 requires a non-const reference to solve.
ADB::V eqs_n_v = eqs[n].value();
const Eigen::VectorXd& Dibn = solver.solve(eqs_n_v.matrix());
std::vector<V> vals(num_eq); // Number n will remain empty.
std::vector<std::vector<M>> jacs(num_eq); // Number n will remain empty.
for (int eq = 0; eq < num_eq; ++eq) {
jacs[eq].reserve(num_eq - 1);
const std::vector<M>& Je = eqs[eq].derivative();
const M& B = Je[n];
// Update right hand side.
vals[eq] = eqs[eq].value().matrix() - B * Dibn;
}
for (int var = 0; var < num_eq; ++var) {
if (var == n) {
continue;
}
// solve Du = C
// const M u = Di * Jn[var]; // solver.solve(Jn[var]);
M u;
fastSparseProduct(Di, Jn[var], u); // solver.solve(Jn[var]);
for (int eq = 0; eq < num_eq; ++eq) {
if (eq == n) {
continue;
}
const std::vector<M>& Je = eqs[eq].derivative();
const M& B = Je[n];
// Create new jacobians.
// Add A
jacs[eq].push_back(Je[var]);
M& J = jacs[eq].back();
// Subtract Bu (B*inv(D)*C)
M Bu;
fastSparseProduct(B, u, Bu);
J = J + (Bu * -1.0);
}
}
// Create return value.
std::vector<ADB> retval;
retval.reserve(num_eq - 1);
for (int eq = 0; eq < num_eq; ++eq) {
if (eq == n) {
continue;
}
retval.push_back(ADB::function(std::move(vals[eq]), std::move(jacs[eq])));
}
return retval;
}
V recoverVariable(const ADB& equation, const V& partial_solution, const int n)
{
// The equation to solve for the unknown y (to be recovered) is
// Cx + Dy = b
// Dy = (b - Cx)
// where D is the eliminated block, C is the jacobian of
// the eliminated equation with respect to the
// non-eliminated unknowms, b is the right-hand side of
// the eliminated equation, and x is the partial solution
// of the non-eliminated unknowns.
const M& D1 = equation.derivative()[n];
// Build C.
std::vector<M> C_jacs = equation.derivative();
C_jacs.erase(C_jacs.begin() + n);
V equation_value = equation.value();
ADB eq_coll = collapseJacs(ADB::function(std::move(equation_value), std::move(C_jacs)));
const M& C = eq_coll.derivative()[0];
// Use sparse LU to solve the block submatrices
typedef Eigen::SparseMatrix<double> Sp;
Sp D;
D1.toSparse(D);
#if HAVE_UMFPACK
const Eigen::UmfPackLU<Sp> solver(D);
#else
const Eigen::SparseLU<Sp> solver(D);
#endif
// Compute value of eliminated variable.
const Eigen::VectorXd b = (equation.value().matrix() - C * partial_solution.matrix());
const Eigen::VectorXd elim_var = solver.solve(b);
// Find the relevant sizes to use when reconstructing the full solution.
const int nelim = equation.size();
const int npart = partial_solution.size();
assert(C.cols() == npart);
const int full_size = nelim + npart;
int start = 0;
for (int i = 0; i < n; ++i) {
start += equation.derivative()[i].cols();
}
assert(start < full_size);
// Reconstruct complete solution vector.
V sol(full_size);
std::copy_n(partial_solution.data(), start, sol.data());
std::copy_n(elim_var.data(), nelim, sol.data() + start);
std::copy_n(partial_solution.data() + start, npart - start, sol.data() + start + nelim);
return sol;
}
/// Form an elliptic system of equations.
/// \param[in] num_phases the number of fluid phases
/// \param[in] eqs the equations
/// \param[out] A the resulting full system matrix
/// \param[out] b the right hand side
/// This function will deal with the first num_phases
/// equations in eqs, and return a matrix A for the full
/// system that has a elliptic upper left corner, if possible.
void formEllipticSystem(const int num_phases,
const std::vector<ADB>& eqs_in,
Eigen::SparseMatrix<double, Eigen::RowMajor>& A,
V& b)
{
if (num_phases != 3) {
OPM_THROW(std::logic_error, "formEllipticSystem() requires 3 phases.");
}
// A concession to MRST, to obtain more similar behaviour:
// swap the first two equations, so that oil is first, then water.
auto eqs = eqs_in;
eqs[0].swap(eqs[1]);
// Characterize the material balance equations.
const int n = eqs[0].size();
const double ratio_limit = 0.01;
typedef Eigen::Array<double, Eigen::Dynamic, Eigen::Dynamic> Block;
// The l1 block indicates if the equation for a given cell and phase is
// sufficiently strong on the diagonal.
Block l1 = Block::Zero(n, num_phases);
{
S J;
for (int phase = 0; phase < num_phases; ++phase) {
eqs[phase].derivative()[0].toSparse(J);
V dj = J.diagonal().cwiseAbs();
V sod = V::Zero(n);
for (int elem = 0; elem < n; ++elem) {
sod(elem) = J.col(elem).cwiseAbs().sum() - dj(elem);
}
l1.col(phase) = (dj/sod > ratio_limit).cast<double>();
}
}
// By default, replace first equation with sum of all phase equations.
// Build helper vectors.
V l21 = V::Zero(n);
V l22 = V::Ones(n);
V l31 = V::Zero(n);
V l33 = V::Ones(n);
// If the first phase diagonal is not strong enough, we need further treatment.
// Then the first equation will be the sum of the remaining equations,
// and we swap the first equation into one of their slots.
for (int elem = 0; elem < n; ++elem) {
if (!l1(elem, 0)) {
const double l12x = l1(elem, 1);
const double l13x = l1(elem, 2);
const bool allzero = (l12x + l13x == 0);
if (allzero) {
l1(elem, 0) = 1;
} else {
if (l12x >= l13x) {
l21(elem) = 1;
l22(elem) = 0;
} else {
l31(elem) = 1;
l33(elem) = 0;
}
}
}
}
// Construct the sparse matrix L that does the swaps and sums.
Span i1(n, 1, 0);
Span i2(n, 1, n);
Span i3(n, 1, 2*n);
std::vector< Eigen::Triplet<double> > t;
t.reserve(7*n);
for (int ii = 0; ii < n; ++ii) {
t.emplace_back(i1[ii], i1[ii], l1(ii));
t.emplace_back(i1[ii], i2[ii], l1(ii+n));
t.emplace_back(i1[ii], i3[ii], l1(ii+2*n));
t.emplace_back(i2[ii], i1[ii], l21(ii));
t.emplace_back(i2[ii], i2[ii], l22(ii));
t.emplace_back(i3[ii], i1[ii], l31(ii));
t.emplace_back(i3[ii], i3[ii], l33(ii));
}
S L(3*n, 3*n);
L.setFromTriplets(t.begin(), t.end());
// Combine in single block.
ADB total_residual = vertcatCollapseJacs(eqs);
S derivative;
total_residual.derivative()[0].toSparse(derivative);
// Create output as product of L with equations.
A = L * derivative;
b = L * total_residual.value().matrix();
}
} // namespace Opm