mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-04 13:36:57 -06:00
293f7ca1c7
Improvments in convergence for flow_ebos
1463 lines
63 KiB
C++
1463 lines
63 KiB
C++
/*
|
|
Copyright 2013, 2015 SINTEF ICT, Applied Mathematics.
|
|
Copyright 2014, 2015 Dr. Blatt - HPC-Simulation-Software & Services
|
|
Copyright 2014, 2015 Statoil ASA.
|
|
Copyright 2015 NTNU
|
|
Copyright 2015 IRIS AS
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#ifndef OPM_BLACKOILMODELEBOS_HEADER_INCLUDED
|
|
#define OPM_BLACKOILMODELEBOS_HEADER_INCLUDED
|
|
|
|
#include <ebos/eclproblem.hh>
|
|
#include <ewoms/common/start.hh>
|
|
|
|
#include <opm/autodiff/BlackoilModelParameters.hpp>
|
|
#include <opm/autodiff/StandardWellsDense.hpp>
|
|
#include <opm/autodiff/AutoDiffBlock.hpp>
|
|
#include <opm/autodiff/AutoDiffHelpers.hpp>
|
|
#include <opm/autodiff/GridHelpers.hpp>
|
|
#include <opm/autodiff/WellHelpers.hpp>
|
|
#include <opm/autodiff/BlackoilPropsAdInterface.hpp>
|
|
#include <opm/autodiff/GeoProps.hpp>
|
|
#include <opm/autodiff/WellDensitySegmented.hpp>
|
|
#include <opm/autodiff/VFPProperties.hpp>
|
|
#include <opm/autodiff/VFPProdProperties.hpp>
|
|
#include <opm/autodiff/VFPInjProperties.hpp>
|
|
#include <opm/autodiff/DefaultBlackoilSolutionState.hpp>
|
|
#include <opm/autodiff/BlackoilDetails.hpp>
|
|
#include <opm/autodiff/BlackoilModelEnums.hpp>
|
|
#include <opm/autodiff/NewtonIterationBlackoilInterface.hpp>
|
|
|
|
#include <opm/core/grid.h>
|
|
#include <opm/core/linalg/LinearSolverInterface.hpp>
|
|
#include <opm/core/linalg/ParallelIstlInformation.hpp>
|
|
#include <opm/core/props/rock/RockCompressibility.hpp>
|
|
#include <opm/common/ErrorMacros.hpp>
|
|
#include <opm/common/Exceptions.hpp>
|
|
#include <opm/common/OpmLog/OpmLog.hpp>
|
|
#include <opm/parser/eclipse/Units/Units.hpp>
|
|
#include <opm/core/well_controls.h>
|
|
#include <opm/core/simulator/SimulatorReport.hpp>
|
|
#include <opm/core/simulator/SimulatorTimer.hpp>
|
|
#include <opm/core/utility/parameters/ParameterGroup.hpp>
|
|
#include <opm/parser/eclipse/EclipseState/EclipseState.hpp>
|
|
#include <opm/parser/eclipse/EclipseState/Tables/TableManager.hpp>
|
|
|
|
#include <opm/autodiff/ISTLSolver.hpp>
|
|
#include <opm/common/data/SimulationDataContainer.hpp>
|
|
|
|
#include <dune/istl/owneroverlapcopy.hh>
|
|
#include <dune/common/parallel/collectivecommunication.hh>
|
|
|
|
#include <cassert>
|
|
#include <cmath>
|
|
#include <iostream>
|
|
#include <iomanip>
|
|
#include <limits>
|
|
#include <vector>
|
|
#include <algorithm>
|
|
//#include <fstream>
|
|
|
|
|
|
|
|
namespace Ewoms {
|
|
namespace Properties {
|
|
NEW_TYPE_TAG(EclFlowProblem, INHERITS_FROM(BlackOilModel, EclBaseProblem));
|
|
SET_BOOL_PROP(EclFlowProblem, DisableWells, true);
|
|
SET_BOOL_PROP(EclFlowProblem, EnableDebuggingChecks, false);
|
|
}}
|
|
|
|
namespace Opm {
|
|
|
|
|
|
namespace parameter { class ParameterGroup; }
|
|
class DerivedGeology;
|
|
class RockCompressibility;
|
|
class NewtonIterationBlackoilInterface;
|
|
class VFPProperties;
|
|
class SimulationDataContainer;
|
|
|
|
|
|
|
|
|
|
/// A model implementation for three-phase black oil.
|
|
///
|
|
/// The simulator is capable of handling three-phase problems
|
|
/// where gas can be dissolved in oil and vice versa. It
|
|
/// uses an industry-standard TPFA discretization with per-phase
|
|
/// upwind weighting of mobilities.
|
|
class BlackoilModelEbos
|
|
{
|
|
typedef BlackoilModelEbos ThisType;
|
|
public:
|
|
// --------- Types and enums ---------
|
|
typedef BlackoilState ReservoirState;
|
|
typedef WellStateFullyImplicitBlackoilDense WellState;
|
|
typedef BlackoilModelParameters ModelParameters;
|
|
typedef DefaultBlackoilSolutionState SolutionState;
|
|
|
|
typedef typename TTAG(EclFlowProblem) TypeTag;
|
|
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator ;
|
|
typedef typename GET_PROP_TYPE(TypeTag, Grid) Grid;
|
|
typedef typename GET_PROP_TYPE(TypeTag, SolutionVector) SolutionVector ;
|
|
typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) PrimaryVariables ;
|
|
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
|
|
typedef typename GET_PROP_TYPE(TypeTag, Indices) BlackoilIndices;
|
|
typedef typename GET_PROP_TYPE(TypeTag, MaterialLaw) MaterialLaw;
|
|
typedef typename GET_PROP_TYPE(TypeTag, MaterialLawParams) MaterialLawParams;
|
|
|
|
typedef double Scalar;
|
|
typedef Dune::FieldVector<Scalar, 3 > VectorBlockType;
|
|
typedef Dune::FieldMatrix<Scalar, 3, 3 > MatrixBlockType;
|
|
typedef Dune::BCRSMatrix <MatrixBlockType> Mat;
|
|
typedef Dune::BlockVector<VectorBlockType> BVector;
|
|
|
|
typedef ISTLSolver< MatrixBlockType, VectorBlockType > ISTLSolverType;
|
|
//typedef typename SolutionVector :: value_type PrimaryVariables ;
|
|
|
|
struct FIPData {
|
|
enum FipId {
|
|
FIP_AQUA = Opm::Water,
|
|
FIP_LIQUID = Opm::Oil,
|
|
FIP_VAPOUR = Opm::Gas,
|
|
FIP_DISSOLVED_GAS = 3,
|
|
FIP_VAPORIZED_OIL = 4,
|
|
FIP_PV = 5, //< Pore volume
|
|
FIP_WEIGHTED_PRESSURE = 6
|
|
};
|
|
std::array<std::vector<double>, 7> fip;
|
|
};
|
|
|
|
// --------- Public methods ---------
|
|
|
|
/// Construct the model. It will retain references to the
|
|
/// arguments of this functions, and they are expected to
|
|
/// remain in scope for the lifetime of the solver.
|
|
/// \param[in] param parameters
|
|
/// \param[in] grid grid data structure
|
|
/// \param[in] fluid fluid properties
|
|
/// \param[in] geo rock properties
|
|
/// \param[in] rock_comp_props if non-null, rock compressibility properties
|
|
/// \param[in] wells well structure
|
|
/// \param[in] vfp_properties Vertical flow performance tables
|
|
/// \param[in] linsolver linear solver
|
|
/// \param[in] eclState eclipse state
|
|
/// \param[in] terminal_output request output to cout/cerr
|
|
BlackoilModelEbos(Simulator& ebosSimulator,
|
|
const ModelParameters& param,
|
|
const BlackoilPropsAdInterface& fluid,
|
|
const DerivedGeology& geo ,
|
|
const RockCompressibility* rock_comp_props,
|
|
const StandardWellsDense<FluidSystem, BlackoilIndices>& well_model,
|
|
const NewtonIterationBlackoilInterface& linsolver,
|
|
const bool terminal_output)
|
|
: ebosSimulator_(ebosSimulator)
|
|
, grid_(ebosSimulator_.gridManager().grid())
|
|
, istlSolver_( dynamic_cast< const ISTLSolverType* > (&linsolver) )
|
|
, fluid_ (fluid)
|
|
, geo_ (geo)
|
|
, vfp_properties_(
|
|
eclState().getTableManager().getVFPInjTables(),
|
|
eclState().getTableManager().getVFPProdTables())
|
|
, active_(detail::activePhases(fluid.phaseUsage()))
|
|
, has_disgas_(FluidSystem::enableDissolvedGas())
|
|
, has_vapoil_(FluidSystem::enableVaporizedOil())
|
|
, param_( param )
|
|
, well_model_ (well_model)
|
|
, terminal_output_ (terminal_output)
|
|
, current_relaxation_(1.0)
|
|
, dx_old_(AutoDiffGrid::numCells(grid_))
|
|
, isBeginReportStep_(false)
|
|
, isRestart_(false)
|
|
{
|
|
const double gravity = detail::getGravity(geo_.gravity(), UgGridHelpers::dimensions(grid_));
|
|
const std::vector<double> pv(geo_.poreVolume().data(), geo_.poreVolume().data() + geo_.poreVolume().size());
|
|
const std::vector<double> depth(geo_.z().data(), geo_.z().data() + geo_.z().size());
|
|
well_model_.init(&fluid_, &active_, &vfp_properties_, gravity, depth, pv);
|
|
wellModel().setWellsActive( localWellsActive() );
|
|
global_nc_ = Opm::AutoDiffGrid::numCells(grid_);
|
|
// compute global sum of number of cells
|
|
global_nc_ = grid_.comm().sum( global_nc_ );
|
|
|
|
if (!istlSolver_)
|
|
{
|
|
OPM_THROW(std::logic_error,"solver down cast to ISTLSolver failed");
|
|
}
|
|
}
|
|
|
|
bool
|
|
isParallel() const
|
|
{
|
|
#if HAVE_MPI
|
|
if ( istlSolver().parallelInformation().type() !=
|
|
typeid(ParallelISTLInformation) )
|
|
{
|
|
return false;
|
|
}
|
|
else
|
|
{
|
|
const auto& comm =boost::any_cast<const ParallelISTLInformation&>(istlSolver().parallelInformation()).communicator();
|
|
return comm.size() > 1;
|
|
}
|
|
#else
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
|
|
const EclipseState& eclState() const
|
|
{ return *ebosSimulator_.gridManager().eclState(); }
|
|
|
|
/// Called once before each time step.
|
|
/// \param[in] timer simulation timer
|
|
/// \param[in, out] reservoir_state reservoir state variables
|
|
/// \param[in, out] well_state well state variables
|
|
void prepareStep(const SimulatorTimerInterface& /*timer*/,
|
|
const ReservoirState& /*reservoir_state*/,
|
|
const WellState& /* well_state */)
|
|
{
|
|
}
|
|
|
|
|
|
/// Called once per nonlinear iteration.
|
|
/// This model will perform a Newton-Raphson update, changing reservoir_state
|
|
/// and well_state. It will also use the nonlinear_solver to do relaxation of
|
|
/// updates if necessary.
|
|
/// \param[in] iteration should be 0 for the first call of a new timestep
|
|
/// \param[in] timer simulation timer
|
|
/// \param[in] nonlinear_solver nonlinear solver used (for oscillation/relaxation control)
|
|
/// \param[in, out] reservoir_state reservoir state variables
|
|
/// \param[in, out] well_state well state variables
|
|
template <class NonlinearSolverType>
|
|
IterationReport nonlinearIteration(const int iteration,
|
|
const SimulatorTimerInterface& timer,
|
|
NonlinearSolverType& nonlinear_solver,
|
|
ReservoirState& reservoir_state,
|
|
WellState& well_state)
|
|
{
|
|
if (iteration == 0) {
|
|
// For each iteration we store in a vector the norms of the residual of
|
|
// the mass balance for each active phase, the well flux and the well equations.
|
|
residual_norms_history_.clear();
|
|
current_relaxation_ = 1.0;
|
|
dx_old_ = 0.0;
|
|
}
|
|
IterationReport iter_report = assemble(timer, iteration, reservoir_state, well_state);
|
|
std::vector<double> residual_norms;
|
|
const bool converged = getConvergence(timer, iteration,residual_norms);
|
|
residual_norms_history_.push_back(residual_norms);
|
|
bool must_solve = (iteration < nonlinear_solver.minIter()) || (!converged);
|
|
// is first set to true if a linear solve is needed, but then it is set to false if the solver succeed.
|
|
isRestart_ = must_solve && (iteration == nonlinear_solver.maxIter());
|
|
// don't solve if we have reached the maximum number of iteration.
|
|
must_solve = must_solve && (iteration < nonlinear_solver.maxIter());
|
|
if (must_solve) {
|
|
// enable single precision for solvers when dt is smaller then 20 days
|
|
//residual_.singlePrecision = (unit::convert::to(dt, unit::day) < 20.) ;
|
|
|
|
// Compute the nonlinear update.
|
|
const int nc = AutoDiffGrid::numCells(grid_);
|
|
const int nw = wellModel().wells().number_of_wells;
|
|
BVector x(nc);
|
|
BVector xw(nw);
|
|
solveJacobianSystem(x, xw);
|
|
|
|
// Stabilize the nonlinear update.
|
|
bool isOscillate = false;
|
|
bool isStagnate = false;
|
|
nonlinear_solver.detectOscillations(residual_norms_history_, iteration, isOscillate, isStagnate);
|
|
if (isOscillate) {
|
|
current_relaxation_ -= nonlinear_solver.relaxIncrement();
|
|
current_relaxation_ = std::max(current_relaxation_, nonlinear_solver.relaxMax());
|
|
if (terminalOutputEnabled()) {
|
|
std::string msg = " Oscillating behavior detected: Relaxation set to "
|
|
+ std::to_string(current_relaxation_);
|
|
OpmLog::info(msg);
|
|
}
|
|
}
|
|
nonlinear_solver.stabilizeNonlinearUpdate(x, dx_old_, current_relaxation_);
|
|
|
|
// Apply the update, applying model-dependent
|
|
// limitations and chopping of the update.
|
|
updateState(x,reservoir_state);
|
|
wellModel().updateWellState(xw, well_state);
|
|
|
|
// since the solution was changed, the cache for the intensive quantities
|
|
// are invalid
|
|
ebosSimulator_.model().invalidateIntensiveQuantitiesCache(/*timeIdx=*/0);
|
|
|
|
// solver has succeed i.e. no need for restart.
|
|
isRestart_ = false;
|
|
}
|
|
const bool failed = false; // Not needed in this model.
|
|
const int linear_iters = must_solve ? linearIterationsLastSolve() : 0;
|
|
return IterationReport{ failed, converged, linear_iters, iter_report.well_iterations };
|
|
}
|
|
void printIf(int c, double x, double y, double eps, std::string type) {
|
|
if (std::abs(x-y) > eps) {
|
|
std::cout << type << " " <<c << ": "<<x << " " << y << std::endl;
|
|
}
|
|
}
|
|
|
|
|
|
/// Called once after each time step.
|
|
/// In this class, this function does nothing.
|
|
/// \param[in] timer simulation timer
|
|
/// \param[in, out] reservoir_state reservoir state variables
|
|
/// \param[in, out] well_state well state variables
|
|
void afterStep(const SimulatorTimerInterface& timer,
|
|
const ReservoirState& reservoir_state,
|
|
WellState& well_state)
|
|
{
|
|
}
|
|
|
|
/// Assemble the residual and Jacobian of the nonlinear system.
|
|
/// \param[in] reservoir_state reservoir state variables
|
|
/// \param[in, out] well_state well state variables
|
|
/// \param[in] initial_assembly pass true if this is the first call to assemble() in this timestep
|
|
IterationReport assemble(const SimulatorTimerInterface& timer,
|
|
const int iterationIdx,
|
|
const ReservoirState& reservoir_state,
|
|
WellState& well_state)
|
|
{
|
|
using namespace Opm::AutoDiffGrid;
|
|
|
|
// -------- Mass balance equations --------
|
|
assembleMassBalanceEq(timer, iterationIdx, reservoir_state);
|
|
|
|
// -------- Well equations ----------
|
|
double dt = timer.currentStepLength();
|
|
|
|
IterationReport iter_report;
|
|
try
|
|
{
|
|
iter_report = wellModel().assemble(ebosSimulator_, iterationIdx, dt, well_state);
|
|
}
|
|
catch ( const Dune::FMatrixError& e )
|
|
{
|
|
isRestart_ = true;
|
|
OPM_THROW(Opm::NumericalProblem,"Well equation did not converge");
|
|
}
|
|
|
|
return iter_report;
|
|
}
|
|
|
|
|
|
/// \brief compute the relative change between to simulation states
|
|
// \return || u^n+1 - u^n || / || u^n+1 ||
|
|
double relativeChange( const SimulationDataContainer& previous, const SimulationDataContainer& current ) const
|
|
{
|
|
std::vector< double > p0 ( previous.pressure() );
|
|
std::vector< double > sat0( previous.saturation() );
|
|
|
|
const std::size_t pSize = p0.size();
|
|
const std::size_t satSize = sat0.size();
|
|
|
|
// compute u^n - u^n+1
|
|
for( std::size_t i=0; i<pSize; ++i ) {
|
|
p0[ i ] -= current.pressure()[ i ];
|
|
}
|
|
|
|
for( std::size_t i=0; i<satSize; ++i ) {
|
|
sat0[ i ] -= current.saturation()[ i ];
|
|
}
|
|
|
|
// compute || u^n - u^n+1 ||
|
|
const double stateOld = detail::euclidianNormSquared( p0.begin(), p0.end(), 1, istlSolver().parallelInformation() ) +
|
|
detail::euclidianNormSquared( sat0.begin(), sat0.end(),
|
|
current.numPhases(),
|
|
istlSolver().parallelInformation() );
|
|
|
|
// compute || u^n+1 ||
|
|
const double stateNew = detail::euclidianNormSquared( current.pressure().begin(), current.pressure().end(), 1, istlSolver().parallelInformation() ) +
|
|
detail::euclidianNormSquared( current.saturation().begin(), current.saturation().end(),
|
|
current.numPhases(),
|
|
istlSolver().parallelInformation() );
|
|
|
|
if( stateNew > 0.0 ) {
|
|
return stateOld / stateNew ;
|
|
}
|
|
else {
|
|
return 0.0;
|
|
}
|
|
}
|
|
|
|
|
|
/// The size (number of unknowns) of the nonlinear system of equations.
|
|
int sizeNonLinear() const
|
|
{
|
|
const int nc = Opm::AutoDiffGrid::numCells(grid_);
|
|
const int nw = wellModel().wells().number_of_wells;
|
|
return numPhases() * (nc + nw);
|
|
}
|
|
|
|
/// Number of linear iterations used in last call to solveJacobianSystem().
|
|
int linearIterationsLastSolve() const
|
|
{
|
|
return istlSolver().iterations();
|
|
}
|
|
|
|
template <class X, class Y>
|
|
void applyWellModel(const X& x, Y& y )
|
|
{
|
|
wellModel().apply(x, y);
|
|
}
|
|
|
|
|
|
/// Solve the Jacobian system Jx = r where J is the Jacobian and
|
|
/// r is the residual.
|
|
void solveJacobianSystem(BVector& x, BVector& xw) const
|
|
{
|
|
const auto& ebosJac = ebosSimulator_.model().linearizer().matrix();
|
|
auto& ebosResid = ebosSimulator_.model().linearizer().residual();
|
|
|
|
typedef OverlappingWellModelMatrixAdapter<Mat,BVector,BVector, ThisType> Operator;
|
|
Operator opA(ebosJac, const_cast< ThisType& > (*this), istlSolver().parallelInformation() );
|
|
|
|
// apply well residual to the residual.
|
|
wellModel().apply(ebosResid);
|
|
|
|
// set initial guess
|
|
x = 0.0;
|
|
|
|
typedef typename Operator :: communication_type Comm;
|
|
Comm* comm = opA.comm();
|
|
// Solve system.
|
|
if( comm )
|
|
{
|
|
istlSolver().solve( opA, x, ebosResid, *comm );
|
|
}
|
|
else
|
|
{
|
|
typedef WellModelMatrixAdapter<Mat,BVector,BVector, ThisType> SequentialOperator;
|
|
SequentialOperator& sOpA = static_cast< SequentialOperator& > (opA);
|
|
istlSolver().solve( sOpA, x, ebosResid );
|
|
}
|
|
|
|
// recover wells.
|
|
xw = 0.0;
|
|
wellModel().recoverVariable(x, xw);
|
|
}
|
|
|
|
//=====================================================================
|
|
// Implementation for ISTL-matrix based operator
|
|
//=====================================================================
|
|
|
|
/*!
|
|
\brief Adapter to turn a matrix into a linear operator.
|
|
|
|
Adapts a matrix to the assembled linear operator interface
|
|
*/
|
|
template<class M, class X, class Y, class WellModel>
|
|
class WellModelMatrixAdapter : public Dune::AssembledLinearOperator<M,X,Y>
|
|
{
|
|
typedef Dune::AssembledLinearOperator<M,X,Y> BaseType;
|
|
|
|
public:
|
|
typedef M matrix_type;
|
|
typedef X domain_type;
|
|
typedef Y range_type;
|
|
typedef typename X::field_type field_type;
|
|
|
|
#if HAVE_MPI
|
|
typedef Dune::OwnerOverlapCopyCommunication<int,int> communication_type;
|
|
#else
|
|
typedef Dune::CollectiveCommunication<int> communication_type;
|
|
#endif
|
|
|
|
enum {
|
|
//! \brief The solver category.
|
|
category=Dune::SolverCategory::sequential
|
|
};
|
|
|
|
//! constructor: just store a reference to a matrix
|
|
WellModelMatrixAdapter (const M& A, WellModel& wellMod, const boost::any& parallelInformation )
|
|
: A_( A ), wellMod_( wellMod ), comm_()
|
|
{
|
|
#if HAVE_MPI
|
|
if( parallelInformation.type() == typeid(ParallelISTLInformation) )
|
|
{
|
|
const ParallelISTLInformation& info =
|
|
boost::any_cast<const ParallelISTLInformation&>( parallelInformation);
|
|
comm_.reset( new communication_type( info.communicator() ) );
|
|
}
|
|
#endif
|
|
}
|
|
|
|
virtual void apply( const X& x, Y& y ) const
|
|
{
|
|
A_.mv( x, y );
|
|
wellMod_.applyWellModel(x, y );
|
|
|
|
#if HAVE_MPI
|
|
if( comm_ )
|
|
comm_->project( y );
|
|
#endif
|
|
}
|
|
|
|
virtual void applyscaleadd (field_type alpha, const X& x, Y& y) const
|
|
{
|
|
A_.usmv(alpha,x,y);
|
|
wellMod_.applyWellModel(x, y );
|
|
|
|
#if HAVE_MPI
|
|
if( comm_ )
|
|
comm_->project( y );
|
|
#endif
|
|
}
|
|
|
|
virtual const matrix_type& getmat() const { return A_; }
|
|
|
|
communication_type* comm()
|
|
{
|
|
return comm_.operator->();
|
|
}
|
|
|
|
protected:
|
|
const matrix_type& A_ ;
|
|
WellModel& wellMod_;
|
|
std::unique_ptr< communication_type > comm_;
|
|
};
|
|
|
|
template<class M, class X, class Y, class WellModel>
|
|
class OverlappingWellModelMatrixAdapter : public WellModelMatrixAdapter<M,X,Y,WellModel>
|
|
{
|
|
public:
|
|
typedef WellModelMatrixAdapter< M,X,Y,WellModel > BaseType;
|
|
|
|
enum {
|
|
//! \brief The solver category.
|
|
category=Dune::SolverCategory::overlapping
|
|
};
|
|
|
|
//! constructor: just store a reference to a matrix
|
|
OverlappingWellModelMatrixAdapter(const M& A, WellModel& wellMod, const boost::any& parallelInformation )
|
|
: BaseType( A, wellMod, parallelInformation )
|
|
{}
|
|
};
|
|
|
|
|
|
/// Apply an update to the primary variables, chopped if appropriate.
|
|
/// \param[in] dx updates to apply to primary variables
|
|
/// \param[in, out] reservoir_state reservoir state variables
|
|
/// \param[in, out] well_state well state variables
|
|
void updateState(const BVector& dx,
|
|
ReservoirState& reservoir_state)
|
|
{
|
|
using namespace Opm::AutoDiffGrid;
|
|
const int np = fluid_.numPhases();
|
|
const int nc = numCells(grid_);
|
|
|
|
for (int cell_idx = 0; cell_idx < nc; ++cell_idx) {
|
|
const double& dp = dx[cell_idx][flowPhaseToEbosCompIdx(0)];
|
|
//reservoir_state.pressure()[cell_idx] -= dp;
|
|
double& p = reservoir_state.pressure()[cell_idx];
|
|
const double& dp_rel_max = dpMaxRel();
|
|
const int sign_dp = dp > 0 ? 1: -1;
|
|
p -= sign_dp * std::min(std::abs(dp), std::abs(p)*dp_rel_max);
|
|
p = std::max(p, 0.0);
|
|
|
|
// Saturation updates.
|
|
const double dsw = active_[Water] ? dx[cell_idx][flowPhaseToEbosCompIdx(1)] : 0.0;
|
|
const int xvar_ind = active_[Water] ? 2 : 1;
|
|
const double dxvar = active_[Gas] ? dx[cell_idx][flowPhaseToEbosCompIdx(xvar_ind)] : 0.0;
|
|
|
|
double dso = 0.0;
|
|
double dsg = 0.0;
|
|
double drs = 0.0;
|
|
double drv = 0.0;
|
|
|
|
double maxVal = 0.0;
|
|
// water phase
|
|
maxVal = std::max(std::abs(dsw),maxVal);
|
|
dso -= dsw;
|
|
// gas phase
|
|
switch (reservoir_state.hydroCarbonState()[cell_idx]) {
|
|
case HydroCarbonState::GasAndOil:
|
|
dsg = dxvar;
|
|
break;
|
|
case HydroCarbonState::OilOnly:
|
|
drs = dxvar;
|
|
break;
|
|
case HydroCarbonState::GasOnly:
|
|
dsg -= dsw;
|
|
drv = dxvar;
|
|
break;
|
|
default:
|
|
OPM_THROW(std::logic_error, "Unknown primary variable enum value in cell " << cell_idx << ": " << reservoir_state.hydroCarbonState()[cell_idx]);
|
|
}
|
|
dso -= dsg;
|
|
|
|
// Appleyard chop process.
|
|
maxVal = std::max(std::abs(dsg),maxVal);
|
|
double step = dsMax()/maxVal;
|
|
step = std::min(step, 1.0);
|
|
|
|
|
|
const Opm::PhaseUsage& pu = fluid_.phaseUsage();
|
|
if (active_[Water]) {
|
|
double& sw = reservoir_state.saturation()[cell_idx*np + pu.phase_pos[ Water ]];
|
|
sw -= step * dsw;
|
|
}
|
|
if (active_[Gas]) {
|
|
double& sg = reservoir_state.saturation()[cell_idx*np + pu.phase_pos[ Gas ]];
|
|
sg -= step * dsg;
|
|
}
|
|
double& so = reservoir_state.saturation()[cell_idx*np + pu.phase_pos[ Oil ]];
|
|
so -= step * dso;
|
|
|
|
// const double drmaxrel = drMaxRel();
|
|
// Update rs and rv
|
|
if (has_disgas_) {
|
|
double& rs = reservoir_state.gasoilratio()[cell_idx];
|
|
rs -= drs;
|
|
rs = std::max(rs, 0.0);
|
|
|
|
}
|
|
if (has_vapoil_) {
|
|
double& rv = reservoir_state.rv()[cell_idx];
|
|
rv -= drv;
|
|
rv = std::max(rv, 0.0);
|
|
}
|
|
|
|
// Sg is used as primal variable for water only cells.
|
|
const double epsilon = 1e-4; //std::sqrt(std::numeric_limits<double>::epsilon());
|
|
double& sw = reservoir_state.saturation()[cell_idx*np + pu.phase_pos[ Water ]];
|
|
double& sg = reservoir_state.saturation()[cell_idx*np + pu.phase_pos[ Gas ]];
|
|
double& rs = reservoir_state.gasoilratio()[cell_idx];
|
|
double& rv = reservoir_state.rv()[cell_idx];
|
|
|
|
|
|
// phase translation sg <-> rs
|
|
const HydroCarbonState hydroCarbonState = reservoir_state.hydroCarbonState()[cell_idx];
|
|
const auto& intQuants = *(ebosSimulator_.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/0));
|
|
const auto& fs = intQuants.fluidState();
|
|
switch (hydroCarbonState) {
|
|
case HydroCarbonState::GasAndOil: {
|
|
|
|
if (sw > (1.0 - epsilon)) // water only i.e. do nothing
|
|
break;
|
|
|
|
if (sg <= 0.0 && has_disgas_) {
|
|
reservoir_state.hydroCarbonState()[cell_idx] = HydroCarbonState::OilOnly; // sg --> rs
|
|
sg = 0;
|
|
so = 1.0 - sw - sg;
|
|
const double& rsSat = FluidSystem::oilPvt().saturatedGasDissolutionFactor(fs.pvtRegionIndex(), reservoir_state.temperature()[cell_idx], reservoir_state.pressure()[cell_idx]);
|
|
double& rs = reservoir_state.gasoilratio()[cell_idx];
|
|
rs = rsSat*(1-epsilon);
|
|
} else if (so <= 0.0 && has_vapoil_) {
|
|
reservoir_state.hydroCarbonState()[cell_idx] = HydroCarbonState::GasOnly; // sg --> rv
|
|
so = 0;
|
|
sg = 1.0 - sw - so;
|
|
double& rv = reservoir_state.rv()[cell_idx];
|
|
// use gas pressure?
|
|
const double& rvSat = FluidSystem::gasPvt().saturatedOilVaporizationFactor(fs.pvtRegionIndex(), reservoir_state.temperature()[cell_idx], reservoir_state.pressure()[cell_idx]);
|
|
rv = rvSat*(1-epsilon);
|
|
}
|
|
break;
|
|
}
|
|
case HydroCarbonState::OilOnly: {
|
|
if (sw > (1.0 - epsilon)) {
|
|
// water only change to Sg
|
|
rs = 0;
|
|
rv = 0;
|
|
reservoir_state.hydroCarbonState()[cell_idx] = HydroCarbonState::GasAndOil;
|
|
//std::cout << "watonly rv -> sg" << cell_idx << std::endl;
|
|
break;
|
|
}
|
|
|
|
|
|
|
|
|
|
const double& rsSat = FluidSystem::oilPvt().saturatedGasDissolutionFactor(fs.pvtRegionIndex(), reservoir_state.temperature()[cell_idx], reservoir_state.pressure()[cell_idx]);
|
|
if (rs > ( rsSat * (1+epsilon) ) ) {
|
|
reservoir_state.hydroCarbonState()[cell_idx] = HydroCarbonState::GasAndOil;
|
|
sg = epsilon;
|
|
so -= epsilon;
|
|
rs = rsSat;
|
|
}
|
|
break;
|
|
}
|
|
case HydroCarbonState::GasOnly: {
|
|
if (sw > (1.0 - epsilon)) {
|
|
// water only change to Sg
|
|
rs = 0;
|
|
rv = 0;
|
|
reservoir_state.hydroCarbonState()[cell_idx] = HydroCarbonState::GasAndOil;
|
|
//std::cout << "watonly rv -> sg" << cell_idx << std::endl;
|
|
break;
|
|
}
|
|
const double& rvSat = FluidSystem::gasPvt().saturatedOilVaporizationFactor(fs.pvtRegionIndex(), reservoir_state.temperature()[cell_idx], reservoir_state.pressure()[cell_idx]);
|
|
if (rv > rvSat * (1+epsilon) ) {
|
|
reservoir_state.hydroCarbonState()[cell_idx] = HydroCarbonState::GasAndOil;
|
|
so = epsilon;
|
|
rv = rvSat;
|
|
sg -= epsilon;
|
|
}
|
|
break;
|
|
}
|
|
|
|
default:
|
|
OPM_THROW(std::logic_error, "Unknown primary variable enum value in cell " << cell_idx << ": " << hydroCarbonState);
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
|
|
/// Return true if output to cout is wanted.
|
|
bool terminalOutputEnabled() const
|
|
{
|
|
return terminal_output_;
|
|
}
|
|
|
|
template <class CollectiveCommunication>
|
|
double convergenceReduction(const CollectiveCommunication& comm,
|
|
const long int ncGlobal,
|
|
const int np,
|
|
const std::vector< std::vector< Scalar > >& B,
|
|
const std::vector< std::vector< Scalar > >& tempV,
|
|
const std::vector< std::vector< Scalar > >& R,
|
|
const std::vector< Scalar >& pv,
|
|
const std::vector< Scalar >& residual_well,
|
|
std::vector< Scalar >& R_sum,
|
|
std::vector< Scalar >& maxCoeff,
|
|
std::vector< Scalar >& B_avg,
|
|
std::vector< Scalar >& maxNormWell )
|
|
{
|
|
const int nw = residual_well.size() / np;
|
|
assert(nw * np == int(residual_well.size()));
|
|
|
|
// Do the global reductions
|
|
B_avg.resize(np);
|
|
maxCoeff.resize(np);
|
|
R_sum.resize(np);
|
|
maxNormWell.resize(np);
|
|
|
|
// computation
|
|
for ( int idx = 0; idx < np; ++idx )
|
|
{
|
|
B_avg[idx] = std::accumulate( B[ idx ].begin(), B[ idx ].end(), 0.0 ) / double(ncGlobal);
|
|
R_sum[idx] = std::accumulate( R[ idx ].begin(), R[ idx ].end(), 0.0 );
|
|
maxCoeff[idx] = *(std::max_element( tempV[ idx ].begin(), tempV[ idx ].end() ));
|
|
|
|
assert(np >= np);
|
|
if (idx < np) {
|
|
maxNormWell[idx] = 0.0;
|
|
for ( int w = 0; w < nw; ++w ) {
|
|
maxNormWell[idx] = std::max(maxNormWell[idx], std::abs(residual_well[nw*idx + w]));
|
|
}
|
|
}
|
|
}
|
|
|
|
// Compute total pore volume
|
|
double pvSum = std::accumulate(pv.begin(), pv.end(), 0.0);
|
|
|
|
if( comm.size() > 1 )
|
|
{
|
|
// global reduction
|
|
std::vector< Scalar > sumBuffer;
|
|
std::vector< Scalar > maxBuffer;
|
|
sumBuffer.reserve( B_avg.size() + R_sum.size() + 1 );
|
|
maxBuffer.reserve( maxCoeff.size() + maxNormWell.size() );
|
|
for( int idx = 0; idx < np; ++idx )
|
|
{
|
|
sumBuffer.push_back( B_avg[ idx ] );
|
|
sumBuffer.push_back( R_sum[ idx ] );
|
|
maxBuffer.push_back( maxCoeff[ idx ] );
|
|
maxBuffer.push_back( maxNormWell[ idx ] );
|
|
}
|
|
|
|
// Compute total pore volume
|
|
sumBuffer.push_back( pvSum );
|
|
|
|
// compute global sum
|
|
comm.sum( sumBuffer.data(), sumBuffer.size() );
|
|
|
|
// compute global max
|
|
comm.max( maxBuffer.data(), maxBuffer.size() );
|
|
|
|
// restore values to local variables
|
|
for( int idx = 0, buffIdx = 0; idx < np; ++idx, ++buffIdx )
|
|
{
|
|
B_avg[ idx ] = sumBuffer[ buffIdx ];
|
|
maxCoeff[ idx ] = maxBuffer[ buffIdx ];
|
|
++buffIdx;
|
|
|
|
R_sum[ idx ] = sumBuffer[ buffIdx ];
|
|
maxNormWell[ idx ] = maxBuffer[ buffIdx ];
|
|
}
|
|
|
|
// restore global pore volume
|
|
pvSum = sumBuffer.back();
|
|
}
|
|
|
|
// return global pore volume
|
|
return pvSum;
|
|
}
|
|
|
|
/// Compute convergence based on total mass balance (tol_mb) and maximum
|
|
/// residual mass balance (tol_cnv).
|
|
/// \param[in] timer simulation timer
|
|
/// \param[in] dt timestep length
|
|
/// \param[in] iteration current iteration number
|
|
bool getConvergence(const SimulatorTimerInterface& timer, const int iteration, std::vector<double>& residual_norms)
|
|
{
|
|
typedef std::vector< double > Vector;
|
|
|
|
const double dt = timer.currentStepLength();
|
|
const double tol_mb = param_.tolerance_mb_;
|
|
const double tol_cnv = param_.tolerance_cnv_;
|
|
const double tol_wells = param_.tolerance_wells_;
|
|
|
|
const int nc = Opm::AutoDiffGrid::numCells(grid_);
|
|
const int np = numPhases();
|
|
|
|
const auto& pv = geo_.poreVolume();
|
|
|
|
Vector R_sum(np);
|
|
Vector B_avg(np);
|
|
Vector maxCoeff(np);
|
|
Vector maxNormWell(np);
|
|
|
|
std::vector< Vector > B( np, Vector( nc ) );
|
|
std::vector< Vector > R( np, Vector( nc ) );
|
|
std::vector< Vector > R2( np, Vector( nc ) );
|
|
std::vector< Vector > tempV( np, Vector( nc ) );
|
|
|
|
const auto& ebosResid = ebosSimulator_.model().linearizer().residual();
|
|
|
|
for ( int idx = 0; idx < np; ++idx )
|
|
{
|
|
Vector& R2_idx = R2[ idx ];
|
|
Vector& B_idx = B[ idx ];
|
|
const int ebosPhaseIdx = flowPhaseToEbosPhaseIdx(idx);
|
|
const int ebosCompIdx = flowPhaseToEbosCompIdx(idx);
|
|
|
|
for (int cell_idx = 0; cell_idx < nc; ++cell_idx) {
|
|
const auto& intQuants = *(ebosSimulator_.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/0));
|
|
const auto& fs = intQuants.fluidState();
|
|
|
|
B_idx [cell_idx] = 1 / fs.invB(ebosPhaseIdx).value();
|
|
R2_idx[cell_idx] = ebosResid[cell_idx][ebosCompIdx];
|
|
}
|
|
}
|
|
|
|
for ( int idx = 0; idx < np; ++idx )
|
|
{
|
|
//tempV.col(idx) = R2.col(idx).abs()/pv;
|
|
Vector& tempV_idx = tempV[ idx ];
|
|
Vector& R2_idx = R2[ idx ];
|
|
for( int cell_idx = 0; cell_idx < nc; ++cell_idx )
|
|
{
|
|
tempV_idx[ cell_idx ] = std::abs( R2_idx[ cell_idx ] ) / pv[ cell_idx ];
|
|
}
|
|
}
|
|
|
|
Vector pv_vector (geo_.poreVolume().data(), geo_.poreVolume().data() + geo_.poreVolume().size());
|
|
Vector wellResidual = wellModel().residual();
|
|
|
|
const double pvSum = convergenceReduction(grid_.comm(), global_nc_, np,
|
|
B, tempV, R2, pv_vector, wellResidual,
|
|
R_sum, maxCoeff, B_avg, maxNormWell );
|
|
|
|
Vector CNV(np);
|
|
Vector mass_balance_residual(np);
|
|
Vector well_flux_residual(np);
|
|
|
|
bool converged_MB = true;
|
|
bool converged_CNV = true;
|
|
bool converged_Well = true;
|
|
// Finish computation
|
|
for ( int idx = 0; idx < np; ++idx )
|
|
{
|
|
CNV[idx] = B_avg[idx] * dt * maxCoeff[idx];
|
|
mass_balance_residual[idx] = std::abs(B_avg[idx]*R_sum[idx]) * dt / pvSum;
|
|
converged_MB = converged_MB && (mass_balance_residual[idx] < tol_mb);
|
|
converged_CNV = converged_CNV && (CNV[idx] < tol_cnv);
|
|
// Well flux convergence is only for fluid phases, not other materials
|
|
// in our current implementation.
|
|
assert(np >= np);
|
|
if (idx < np) {
|
|
well_flux_residual[idx] = B_avg[idx] * maxNormWell[idx];
|
|
converged_Well = converged_Well && (well_flux_residual[idx] < tol_wells);
|
|
}
|
|
residual_norms.push_back(CNV[idx]);
|
|
}
|
|
|
|
const bool converged = converged_MB && converged_CNV && converged_Well;
|
|
|
|
if ( terminal_output_ )
|
|
{
|
|
// Only rank 0 does print to std::cout
|
|
if (iteration == 0) {
|
|
std::string msg = "Iter";
|
|
|
|
std::vector< std::string > key( np );
|
|
for (int phaseIdx = 0; phaseIdx < np; ++phaseIdx) {
|
|
const std::string& phaseName = FluidSystem::phaseName(flowPhaseToEbosPhaseIdx(phaseIdx));
|
|
key[ phaseIdx ] = std::toupper( phaseName.front() );
|
|
}
|
|
|
|
for (int phaseIdx = 0; phaseIdx < np; ++phaseIdx) {
|
|
msg += " MB(" + key[ phaseIdx ] + ") ";
|
|
}
|
|
for (int phaseIdx = 0; phaseIdx < np; ++phaseIdx) {
|
|
msg += " CNV(" + key[ phaseIdx ] + ") ";
|
|
}
|
|
for (int phaseIdx = 0; phaseIdx < np; ++phaseIdx) {
|
|
msg += " W-FLUX(" + key[ phaseIdx ] + ")";
|
|
}
|
|
OpmLog::note(msg);
|
|
}
|
|
std::ostringstream ss;
|
|
const std::streamsize oprec = ss.precision(3);
|
|
const std::ios::fmtflags oflags = ss.setf(std::ios::scientific);
|
|
ss << std::setw(4) << iteration;
|
|
for (int idx = 0; idx < np; ++idx) {
|
|
ss << std::setw(11) << mass_balance_residual[idx];
|
|
}
|
|
for (int idx = 0; idx < np; ++idx) {
|
|
ss << std::setw(11) << CNV[idx];
|
|
}
|
|
for (int idx = 0; idx < np; ++idx) {
|
|
ss << std::setw(11) << well_flux_residual[idx];
|
|
}
|
|
ss.precision(oprec);
|
|
ss.flags(oflags);
|
|
OpmLog::note(ss.str());
|
|
}
|
|
|
|
for (int phaseIdx = 0; phaseIdx < np; ++phaseIdx) {
|
|
const auto& phaseName = FluidSystem::phaseName(flowPhaseToEbosPhaseIdx(phaseIdx));
|
|
|
|
if (std::isnan(mass_balance_residual[phaseIdx])
|
|
|| std::isnan(CNV[phaseIdx])
|
|
|| (phaseIdx < np && std::isnan(well_flux_residual[phaseIdx]))) {
|
|
isRestart_ = true;
|
|
OPM_THROW(Opm::NumericalProblem, "NaN residual for phase " << phaseName);
|
|
}
|
|
if (mass_balance_residual[phaseIdx] > maxResidualAllowed()
|
|
|| CNV[phaseIdx] > maxResidualAllowed()
|
|
|| (phaseIdx < np && well_flux_residual[phaseIdx] > maxResidualAllowed())) {
|
|
isRestart_ = true;
|
|
OPM_THROW(Opm::NumericalProblem, "Too large residual for phase " << phaseName);
|
|
}
|
|
}
|
|
|
|
return converged;
|
|
}
|
|
|
|
|
|
/// The number of active fluid phases in the model.
|
|
int numPhases() const
|
|
{
|
|
return fluid_.numPhases();
|
|
}
|
|
|
|
std::vector<std::vector<double> >
|
|
computeFluidInPlace(const std::vector<int>& fipnum) const
|
|
{
|
|
using namespace Opm::AutoDiffGrid;
|
|
const int nc = numCells(grid_);
|
|
//const ADB pv_mult = poroMult(pressure);
|
|
const auto& pv = geo_.poreVolume();
|
|
const int maxnp = Opm::BlackoilPhases::MaxNumPhases;
|
|
|
|
for (int i = 0; i<7; i++) {
|
|
fip_.fip[i].resize(nc,0.0);
|
|
}
|
|
|
|
for (int c = 0; c < nc; ++c) {
|
|
const auto& intQuants = *ebosSimulator_.model().cachedIntensiveQuantities(c, /*timeIdx=*/0);
|
|
const auto& fs = intQuants.fluidState();
|
|
|
|
for (int phase = 0; phase < maxnp; ++phase) {
|
|
const double& b = fs.invB(flowPhaseToEbosPhaseIdx(phase)).value();
|
|
const double& s = fs.saturation(flowPhaseToEbosPhaseIdx(phase)).value();
|
|
const double pv_mult = 1.0; //todo
|
|
fip_.fip[phase][c] = pv_mult * b * s * pv[c];
|
|
}
|
|
|
|
if (active_[ Oil ] && active_[ Gas ]) {
|
|
// Account for gas dissolved in oil and vaporized oil
|
|
fip_.fip[FIPData::FIP_DISSOLVED_GAS][c] = fs.Rs().value() * fip_.fip[FIPData::FIP_LIQUID][c];
|
|
fip_.fip[FIPData::FIP_VAPORIZED_OIL][c] = fs.Rv().value() * fip_.fip[FIPData::FIP_VAPOUR][c];
|
|
}
|
|
}
|
|
|
|
// For a parallel run this is just a local maximum and needs to be updated later
|
|
int dims = *std::max_element(fipnum.begin(), fipnum.end());
|
|
std::vector<std::vector<double>> values(dims, std::vector<double>(7,0.0));
|
|
|
|
std::vector<double> hcpv(dims, 0.0);
|
|
std::vector<double> pres(dims, 0.0);
|
|
|
|
if ( !isParallel() )
|
|
{
|
|
//Accumulate phases for each region
|
|
for (int phase = 0; phase < maxnp; ++phase) {
|
|
if (active_[ phase ]) {
|
|
for (int c = 0; c < nc; ++c) {
|
|
const int region = fipnum[c] - 1;
|
|
if (region != -1) {
|
|
values[region][phase] += fip_.fip[phase][c];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//Accumulate RS and RV-volumes for each region
|
|
if (active_[ Oil ] && active_[ Gas ]) {
|
|
for (int c = 0; c < nc; ++c) {
|
|
const int region = fipnum[c] - 1;
|
|
if (region != -1) {
|
|
values[region][FIPData::FIP_DISSOLVED_GAS] += fip_.fip[FIPData::FIP_DISSOLVED_GAS][c];
|
|
values[region][FIPData::FIP_VAPORIZED_OIL] += fip_.fip[FIPData::FIP_VAPORIZED_OIL][c];
|
|
}
|
|
}
|
|
}
|
|
|
|
for (int c = 0; c < nc; ++c) {
|
|
const int region = fipnum[c] - 1;
|
|
if (region != -1) {
|
|
const auto& intQuants = *ebosSimulator_.model().cachedIntensiveQuantities(c, /*timeIdx=*/0);
|
|
const auto& fs = intQuants.fluidState();
|
|
const double hydrocarbon = fs.saturation(FluidSystem::oilPhaseIdx).value() + fs.saturation(FluidSystem::gasPhaseIdx).value();
|
|
hcpv[region] += pv[c] * hydrocarbon;
|
|
pres[region] += pv[c] * fs.pressure(FluidSystem::oilPhaseIdx).value();
|
|
}
|
|
}
|
|
for (int c = 0; c < nc; ++c) {
|
|
const int region = fipnum[c] - 1;
|
|
if (region != -1) {
|
|
|
|
fip_.fip[FIPData::FIP_PV][c] = pv[c];
|
|
const auto& intQuants = *ebosSimulator_.model().cachedIntensiveQuantities(c, /*timeIdx=*/0);
|
|
const auto& fs = intQuants.fluidState();
|
|
const double hydrocarbon = fs.saturation(FluidSystem::oilPhaseIdx).value() + fs.saturation(FluidSystem::gasPhaseIdx).value();
|
|
|
|
//Compute hydrocarbon pore volume weighted average pressure.
|
|
//If we have no hydrocarbon in region, use pore volume weighted average pressure instead
|
|
if (hcpv[region] != 0) {
|
|
fip_.fip[FIPData::FIP_WEIGHTED_PRESSURE][c] = pv[c] * fs.pressure(FluidSystem::oilPhaseIdx).value() * hydrocarbon / hcpv[region];
|
|
} else {
|
|
fip_.fip[FIPData::FIP_WEIGHTED_PRESSURE][c] = pres[region] / pv[c];
|
|
}
|
|
|
|
values[region][FIPData::FIP_PV] += fip_.fip[FIPData::FIP_PV][c];
|
|
values[region][FIPData::FIP_WEIGHTED_PRESSURE] += fip_.fip[FIPData::FIP_WEIGHTED_PRESSURE][c];
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
#if HAVE_MPI
|
|
// mask[c] is 1 if we need to compute something in parallel
|
|
const auto & pinfo =
|
|
boost::any_cast<const ParallelISTLInformation&>(istlSolver().parallelInformation());
|
|
const auto& mask = pinfo.getOwnerMask();
|
|
auto comm = pinfo.communicator();
|
|
// Compute the global dims value and resize values accordingly.
|
|
dims = comm.max(dims);
|
|
values.resize(dims, std::vector<double>(7,0.0));
|
|
|
|
//Accumulate phases for each region
|
|
for (int phase = 0; phase < maxnp; ++phase) {
|
|
for (int c = 0; c < nc; ++c) {
|
|
const int region = fipnum[c] - 1;
|
|
if (region != -1 && mask[c]) {
|
|
values[region][phase] += fip_.fip[phase][c];
|
|
}
|
|
}
|
|
}
|
|
|
|
//Accumulate RS and RV-volumes for each region
|
|
if (active_[ Oil ] && active_[ Gas ]) {
|
|
for (int c = 0; c < nc; ++c) {
|
|
const int region = fipnum[c] - 1;
|
|
if (region != -1 && mask[c]) {
|
|
values[region][FIPData::FIP_DISSOLVED_GAS] += fip_.fip[FIPData::FIP_DISSOLVED_GAS][c];
|
|
values[region][FIPData::FIP_VAPORIZED_OIL] += fip_.fip[FIPData::FIP_VAPORIZED_OIL][c];
|
|
}
|
|
}
|
|
}
|
|
|
|
hcpv = std::vector<double>(dims, 0.0);
|
|
pres = std::vector<double>(dims, 0.0);
|
|
|
|
for (int c = 0; c < nc; ++c) {
|
|
const int region = fipnum[c] - 1;
|
|
if (region != -1 && mask[c]) {
|
|
const auto& intQuants = *ebosSimulator_.model().cachedIntensiveQuantities(c, /*timeIdx=*/0);
|
|
const auto& fs = intQuants.fluidState();
|
|
const double hydrocarbon = fs.saturation(FluidSystem::oilPhaseIdx).value() + fs.saturation(FluidSystem::gasPhaseIdx).value();
|
|
hcpv[region] += pv[c] * hydrocarbon;
|
|
pres[region] += pv[c] * fs.pressure(FluidSystem::oilPhaseIdx).value();
|
|
}
|
|
}
|
|
|
|
comm.sum(hcpv.data(), hcpv.size());
|
|
comm.sum(pres.data(), pres.size());
|
|
|
|
for (int c = 0; c < nc; ++c) {
|
|
const int region = fipnum[c] - 1;
|
|
if (region != -1 && mask[c]) {
|
|
fip_.fip[FIPData::FIP_PV][c] = pv[c];
|
|
const auto& intQuants = *ebosSimulator_.model().cachedIntensiveQuantities(c, /*timeIdx=*/0);
|
|
const auto& fs = intQuants.fluidState();
|
|
const double hydrocarbon = fs.saturation(FluidSystem::oilPhaseIdx).value() + fs.saturation(FluidSystem::gasPhaseIdx).value();
|
|
|
|
if (hcpv[region] != 0) {
|
|
fip_.fip[FIPData::FIP_WEIGHTED_PRESSURE][c] = pv[c] * fs.pressure(FluidSystem::oilPhaseIdx).value() * hydrocarbon / hcpv[region];
|
|
} else {
|
|
fip_.fip[FIPData::FIP_WEIGHTED_PRESSURE][c] = pres[region] / pv[c];
|
|
}
|
|
|
|
values[region][FIPData::FIP_PV] += fip_.fip[FIPData::FIP_PV][c];
|
|
values[region][FIPData::FIP_WEIGHTED_PRESSURE] += fip_.fip[FIPData::FIP_WEIGHTED_PRESSURE][c];
|
|
}
|
|
}
|
|
|
|
// For the frankenstein branch we hopefully can turn values into a vanilla
|
|
// std::vector<double>, use some index magic above, use one communication
|
|
// to sum up the vector entries instead of looping over the regions.
|
|
for(int reg=0; reg < dims; ++reg)
|
|
{
|
|
comm.sum(values[reg].data(), values[reg].size());
|
|
}
|
|
#else
|
|
// This should never happen!
|
|
OPM_THROW(std::logic_error, "HAVE_MPI should be defined if we are running in parallel");
|
|
#endif
|
|
}
|
|
|
|
return values;
|
|
}
|
|
|
|
const FIPData& getFIPData() const {
|
|
return fip_;
|
|
}
|
|
|
|
|
|
|
|
const Simulator& ebosSimulator() const
|
|
{ return ebosSimulator_; }
|
|
|
|
protected:
|
|
const ISTLSolverType& istlSolver() const
|
|
{
|
|
assert( istlSolver_ );
|
|
return *istlSolver_;
|
|
}
|
|
|
|
|
|
// --------- Data members ---------
|
|
|
|
Simulator& ebosSimulator_;
|
|
const Grid& grid_;
|
|
const ISTLSolverType* istlSolver_;
|
|
const BlackoilPropsAdInterface& fluid_;
|
|
const DerivedGeology& geo_;
|
|
VFPProperties vfp_properties_;
|
|
// For each canonical phase -> true if active
|
|
const std::vector<bool> active_;
|
|
// Size = # active phases. Maps active -> canonical phase indices.
|
|
const std::vector<int> cells_; // All grid cells
|
|
const bool has_disgas_;
|
|
const bool has_vapoil_;
|
|
|
|
ModelParameters param_;
|
|
|
|
// Well Model
|
|
StandardWellsDense<FluidSystem, BlackoilIndices> well_model_;
|
|
|
|
/// \brief Whether we print something to std::cout
|
|
bool terminal_output_;
|
|
/// \brief The number of cells of the global grid.
|
|
long int global_nc_;
|
|
|
|
std::vector<std::vector<double>> residual_norms_history_;
|
|
double current_relaxation_;
|
|
BVector dx_old_;
|
|
mutable FIPData fip_;
|
|
|
|
|
|
|
|
// --------- Protected methods ---------
|
|
|
|
public:
|
|
|
|
/// return the StandardWells object
|
|
StandardWellsDense<FluidSystem, BlackoilIndices>& wellModel() { return well_model_; }
|
|
const StandardWellsDense<FluidSystem, BlackoilIndices>& wellModel() const { return well_model_; }
|
|
|
|
/// return the Well struct in the StandardWells
|
|
const Wells& wells() const { return well_model_.wells(); }
|
|
|
|
/// return true if wells are available in the reservoir
|
|
bool wellsActive() const { return well_model_.wellsActive(); }
|
|
|
|
/// return true if wells are available on this process
|
|
bool localWellsActive() const { return well_model_.localWellsActive(); }
|
|
|
|
|
|
void convertInput( const int iterationIdx,
|
|
const ReservoirState& reservoirState,
|
|
Simulator& simulator ) const
|
|
{
|
|
SolutionVector& solution = simulator.model().solution( 0 /* timeIdx */ );
|
|
const Opm::PhaseUsage pu = fluid_.phaseUsage();
|
|
|
|
const int numCells = reservoirState.numCells();
|
|
const int numPhases = fluid_.numPhases();
|
|
const auto& oilPressure = reservoirState.pressure();
|
|
const auto& saturations = reservoirState.saturation();
|
|
const auto& rs = reservoirState.gasoilratio();
|
|
const auto& rv = reservoirState.rv();
|
|
for( int cellIdx = 0; cellIdx<numCells; ++cellIdx )
|
|
{
|
|
// set non-switching primary variables
|
|
PrimaryVariables& cellPv = solution[ cellIdx ];
|
|
// set water saturation
|
|
cellPv[BlackoilIndices::waterSaturationIdx] = saturations[cellIdx*numPhases + pu.phase_pos[Water]];
|
|
|
|
// set switching variable and interpretation
|
|
if( reservoirState.hydroCarbonState()[cellIdx] == HydroCarbonState::OilOnly && has_disgas_ )
|
|
{
|
|
cellPv[BlackoilIndices::compositionSwitchIdx] = rs[cellIdx];
|
|
cellPv[BlackoilIndices::pressureSwitchIdx] = oilPressure[cellIdx];
|
|
cellPv.setPrimaryVarsMeaning( PrimaryVariables::Sw_po_Rs );
|
|
}
|
|
else if( reservoirState.hydroCarbonState()[cellIdx] == HydroCarbonState::GasOnly && has_vapoil_ )
|
|
{
|
|
// this case (-> gas only with vaporized oil in the gas) is
|
|
// relatively expensive as it requires to compute the capillary
|
|
// pressure in order to get the gas phase pressure. (the reason why
|
|
// ebos uses the gas pressure here is that it makes the common case
|
|
// of the primary variable switching code fast because to determine
|
|
// whether the oil phase appears one needs to compute the Rv value
|
|
// for the saturated gas phase and if this is not available as a
|
|
// primary variable, it needs to be computed.) luckily for here, the
|
|
// gas-only case is not too common, so the performance impact of this
|
|
// is limited.
|
|
typedef Opm::SimpleModularFluidState<double,
|
|
/*numPhases=*/3,
|
|
/*numComponents=*/3,
|
|
FluidSystem,
|
|
/*storePressure=*/false,
|
|
/*storeTemperature=*/false,
|
|
/*storeComposition=*/false,
|
|
/*storeFugacity=*/false,
|
|
/*storeSaturation=*/true,
|
|
/*storeDensity=*/false,
|
|
/*storeViscosity=*/false,
|
|
/*storeEnthalpy=*/false> SatOnlyFluidState;
|
|
SatOnlyFluidState fluidState;
|
|
fluidState.setSaturation(FluidSystem::waterPhaseIdx, saturations[cellIdx*numPhases + pu.phase_pos[Water]]);
|
|
fluidState.setSaturation(FluidSystem::oilPhaseIdx, saturations[cellIdx*numPhases + pu.phase_pos[Oil]]);
|
|
fluidState.setSaturation(FluidSystem::gasPhaseIdx, saturations[cellIdx*numPhases + pu.phase_pos[Gas]]);
|
|
|
|
double pC[/*numPhases=*/3] = { 0.0, 0.0, 0.0 };
|
|
const MaterialLawParams& matParams = simulator.problem().materialLawParams(cellIdx);
|
|
MaterialLaw::capillaryPressures(pC, matParams, fluidState);
|
|
double pg = oilPressure[cellIdx] + (pC[FluidSystem::gasPhaseIdx] - pC[FluidSystem::oilPhaseIdx]);
|
|
|
|
cellPv[BlackoilIndices::compositionSwitchIdx] = rv[cellIdx];
|
|
cellPv[BlackoilIndices::pressureSwitchIdx] = pg;
|
|
cellPv.setPrimaryVarsMeaning( PrimaryVariables::Sw_pg_Rv );
|
|
}
|
|
else
|
|
{
|
|
assert( reservoirState.hydroCarbonState()[cellIdx] == HydroCarbonState::GasAndOil);
|
|
cellPv[BlackoilIndices::compositionSwitchIdx] = saturations[cellIdx*numPhases + pu.phase_pos[Gas]];
|
|
cellPv[BlackoilIndices::pressureSwitchIdx] = oilPressure[ cellIdx ];
|
|
cellPv.setPrimaryVarsMeaning( PrimaryVariables::Sw_po_Sg );
|
|
}
|
|
}
|
|
|
|
if( iterationIdx == 0 )
|
|
{
|
|
simulator.model().solution( 1 /* timeIdx */ ) = solution;
|
|
}
|
|
}
|
|
|
|
public:
|
|
int ebosCompToFlowPhaseIdx( const int compIdx ) const
|
|
{
|
|
const int compToPhase[ 3 ] = { Oil, Water, Gas };
|
|
return compToPhase[ compIdx ];
|
|
}
|
|
|
|
int flowToEbosPvIdx( const int flowPv ) const
|
|
{
|
|
const int flowToEbos[ 3 ] = {
|
|
BlackoilIndices::pressureSwitchIdx,
|
|
BlackoilIndices::waterSaturationIdx,
|
|
BlackoilIndices::compositionSwitchIdx
|
|
};
|
|
return flowToEbos[ flowPv ];
|
|
}
|
|
|
|
int flowPhaseToEbosCompIdx( const int phaseIdx ) const
|
|
{
|
|
const int phaseToComp[ 3 ] = { FluidSystem::waterCompIdx, FluidSystem::oilCompIdx, FluidSystem::gasCompIdx };
|
|
return phaseToComp[ phaseIdx ];
|
|
}
|
|
|
|
|
|
|
|
|
|
private:
|
|
|
|
void convertResults(BVector& ebosResid, Mat& ebosJac) const
|
|
{
|
|
const int numPhases = wells().number_of_phases;
|
|
const int numCells = ebosJac.N();
|
|
assert( numCells == static_cast<int>(ebosJac.M()) );
|
|
|
|
// write the right-hand-side values from the ebosJac into the objects
|
|
// allocated above.
|
|
const auto endrow = ebosJac.end();
|
|
for( int cellIdx = 0; cellIdx < numCells; ++cellIdx )
|
|
{
|
|
const double cellVolume = ebosSimulator_.model().dofTotalVolume(cellIdx);
|
|
auto& cellRes = ebosResid[ cellIdx ];
|
|
|
|
for( int flowPhaseIdx = 0; flowPhaseIdx < numPhases; ++flowPhaseIdx )
|
|
{
|
|
const double refDens = FluidSystem::referenceDensity( flowPhaseToEbosPhaseIdx( flowPhaseIdx ), 0 );
|
|
cellRes[ flowPhaseToEbosCompIdx( flowPhaseIdx ) ] /= refDens;
|
|
cellRes[ flowPhaseToEbosCompIdx( flowPhaseIdx ) ] *= cellVolume;
|
|
}
|
|
}
|
|
|
|
for( auto row = ebosJac.begin(); row != endrow; ++row )
|
|
{
|
|
const int rowIdx = row.index();
|
|
const double cellVolume = ebosSimulator_.model().dofTotalVolume(rowIdx);
|
|
|
|
|
|
// translate the Jacobian of the residual from the format used by ebos to
|
|
// the one expected by flow
|
|
const auto endcol = row->end();
|
|
for( auto col = row->begin(); col != endcol; ++col )
|
|
{
|
|
for( int flowPhaseIdx = 0; flowPhaseIdx < numPhases; ++flowPhaseIdx )
|
|
{
|
|
const double refDens = FluidSystem::referenceDensity( flowPhaseToEbosPhaseIdx( flowPhaseIdx ), 0 );
|
|
for( int pvIdx=0; pvIdx<numPhases; ++pvIdx )
|
|
{
|
|
(*col)[flowPhaseToEbosCompIdx(flowPhaseIdx)][flowToEbosPvIdx(pvIdx)] /= refDens;
|
|
(*col)[flowPhaseToEbosCompIdx(flowPhaseIdx)][flowToEbosPvIdx(pvIdx)] *= cellVolume;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
int flowPhaseToEbosPhaseIdx( const int phaseIdx ) const
|
|
{
|
|
const int flowToEbos[ 3 ] = { FluidSystem::waterPhaseIdx, FluidSystem::oilPhaseIdx, FluidSystem::gasPhaseIdx };
|
|
return flowToEbos[ phaseIdx ];
|
|
}
|
|
|
|
|
|
public:
|
|
void beginReportStep()
|
|
{
|
|
isBeginReportStep_ = true;
|
|
}
|
|
|
|
void endReportStep()
|
|
{
|
|
ebosSimulator_.problem().endEpisode();
|
|
}
|
|
|
|
private:
|
|
void assembleMassBalanceEq(const SimulatorTimerInterface& timer,
|
|
const int iterationIdx,
|
|
const ReservoirState& reservoirState)
|
|
{
|
|
convertInput( iterationIdx, reservoirState, ebosSimulator_ );
|
|
|
|
ebosSimulator_.startNextEpisode( timer.currentStepLength() );
|
|
ebosSimulator_.setEpisodeIndex( timer.reportStepNum() );
|
|
ebosSimulator_.setTimeStepIndex( timer.reportStepNum() );
|
|
ebosSimulator_.model().newtonMethod().setIterationIndex(iterationIdx);
|
|
|
|
static int prevEpisodeIdx = 10000;
|
|
|
|
// notify ebos about the end of the previous episode and time step if applicable
|
|
if (isBeginReportStep_) {
|
|
isBeginReportStep_ = false;
|
|
ebosSimulator_.problem().beginEpisode();
|
|
}
|
|
|
|
// doing the notifactions here is conceptually wrong and also causes the
|
|
// endTimeStep() and endEpisode() methods to be not called for the
|
|
// simulation's last time step and episode.
|
|
if (ebosSimulator_.model().newtonMethod().numIterations() == 0
|
|
&& prevEpisodeIdx < timer.reportStepNum())
|
|
{
|
|
ebosSimulator_.problem().endTimeStep();
|
|
}
|
|
|
|
ebosSimulator_.setTimeStepSize( timer.currentStepLength() );
|
|
if (ebosSimulator_.model().newtonMethod().numIterations() == 0)
|
|
{
|
|
ebosSimulator_.problem().beginTimeStep();
|
|
}
|
|
// if the last step failed we want to recalculate the IntesiveQuantities.
|
|
if (isRestart_) {
|
|
ebosSimulator_.model().invalidateIntensiveQuantitiesCache(/*timeIdx=*/0);
|
|
}
|
|
|
|
ebosSimulator_.problem().beginIteration();
|
|
ebosSimulator_.model().linearizer().linearize();
|
|
ebosSimulator_.problem().endIteration();
|
|
|
|
prevEpisodeIdx = ebosSimulator_.episodeIndex();
|
|
|
|
auto& ebosJac = ebosSimulator_.model().linearizer().matrix();
|
|
auto& ebosResid = ebosSimulator_.model().linearizer().residual();
|
|
convertResults(ebosResid, ebosJac);
|
|
|
|
if (param_.update_equations_scaling_) {
|
|
std::cout << "equation scaling not suported yet" << std::endl;
|
|
//updateEquationsScaling();
|
|
}
|
|
|
|
}
|
|
|
|
|
|
double dpMaxRel() const { return param_.dp_max_rel_; }
|
|
double dsMax() const { return param_.ds_max_; }
|
|
double drMaxRel() const { return param_.dr_max_rel_; }
|
|
double maxResidualAllowed() const { return param_.max_residual_allowed_; }
|
|
|
|
public:
|
|
bool isBeginReportStep_;
|
|
bool isRestart_;
|
|
|
|
};
|
|
} // namespace Opm
|
|
|
|
#endif // OPM_BLACKOILMODELBASE_IMPL_HEADER_INCLUDED
|