opm-simulators/opm/autodiff/BlackoilModelEbos.hpp
Andreas Lauser 293f7ca1c7 Merge pull request #916 from totto82/frankenstein_fix_appleyard2
Improvments in convergence for flow_ebos
2016-11-14 15:02:00 +01:00

1463 lines
63 KiB
C++

/*
Copyright 2013, 2015 SINTEF ICT, Applied Mathematics.
Copyright 2014, 2015 Dr. Blatt - HPC-Simulation-Software & Services
Copyright 2014, 2015 Statoil ASA.
Copyright 2015 NTNU
Copyright 2015 IRIS AS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_BLACKOILMODELEBOS_HEADER_INCLUDED
#define OPM_BLACKOILMODELEBOS_HEADER_INCLUDED
#include <ebos/eclproblem.hh>
#include <ewoms/common/start.hh>
#include <opm/autodiff/BlackoilModelParameters.hpp>
#include <opm/autodiff/StandardWellsDense.hpp>
#include <opm/autodiff/AutoDiffBlock.hpp>
#include <opm/autodiff/AutoDiffHelpers.hpp>
#include <opm/autodiff/GridHelpers.hpp>
#include <opm/autodiff/WellHelpers.hpp>
#include <opm/autodiff/BlackoilPropsAdInterface.hpp>
#include <opm/autodiff/GeoProps.hpp>
#include <opm/autodiff/WellDensitySegmented.hpp>
#include <opm/autodiff/VFPProperties.hpp>
#include <opm/autodiff/VFPProdProperties.hpp>
#include <opm/autodiff/VFPInjProperties.hpp>
#include <opm/autodiff/DefaultBlackoilSolutionState.hpp>
#include <opm/autodiff/BlackoilDetails.hpp>
#include <opm/autodiff/BlackoilModelEnums.hpp>
#include <opm/autodiff/NewtonIterationBlackoilInterface.hpp>
#include <opm/core/grid.h>
#include <opm/core/linalg/LinearSolverInterface.hpp>
#include <opm/core/linalg/ParallelIstlInformation.hpp>
#include <opm/core/props/rock/RockCompressibility.hpp>
#include <opm/common/ErrorMacros.hpp>
#include <opm/common/Exceptions.hpp>
#include <opm/common/OpmLog/OpmLog.hpp>
#include <opm/parser/eclipse/Units/Units.hpp>
#include <opm/core/well_controls.h>
#include <opm/core/simulator/SimulatorReport.hpp>
#include <opm/core/simulator/SimulatorTimer.hpp>
#include <opm/core/utility/parameters/ParameterGroup.hpp>
#include <opm/parser/eclipse/EclipseState/EclipseState.hpp>
#include <opm/parser/eclipse/EclipseState/Tables/TableManager.hpp>
#include <opm/autodiff/ISTLSolver.hpp>
#include <opm/common/data/SimulationDataContainer.hpp>
#include <dune/istl/owneroverlapcopy.hh>
#include <dune/common/parallel/collectivecommunication.hh>
#include <cassert>
#include <cmath>
#include <iostream>
#include <iomanip>
#include <limits>
#include <vector>
#include <algorithm>
//#include <fstream>
namespace Ewoms {
namespace Properties {
NEW_TYPE_TAG(EclFlowProblem, INHERITS_FROM(BlackOilModel, EclBaseProblem));
SET_BOOL_PROP(EclFlowProblem, DisableWells, true);
SET_BOOL_PROP(EclFlowProblem, EnableDebuggingChecks, false);
}}
namespace Opm {
namespace parameter { class ParameterGroup; }
class DerivedGeology;
class RockCompressibility;
class NewtonIterationBlackoilInterface;
class VFPProperties;
class SimulationDataContainer;
/// A model implementation for three-phase black oil.
///
/// The simulator is capable of handling three-phase problems
/// where gas can be dissolved in oil and vice versa. It
/// uses an industry-standard TPFA discretization with per-phase
/// upwind weighting of mobilities.
class BlackoilModelEbos
{
typedef BlackoilModelEbos ThisType;
public:
// --------- Types and enums ---------
typedef BlackoilState ReservoirState;
typedef WellStateFullyImplicitBlackoilDense WellState;
typedef BlackoilModelParameters ModelParameters;
typedef DefaultBlackoilSolutionState SolutionState;
typedef typename TTAG(EclFlowProblem) TypeTag;
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator ;
typedef typename GET_PROP_TYPE(TypeTag, Grid) Grid;
typedef typename GET_PROP_TYPE(TypeTag, SolutionVector) SolutionVector ;
typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) PrimaryVariables ;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef typename GET_PROP_TYPE(TypeTag, Indices) BlackoilIndices;
typedef typename GET_PROP_TYPE(TypeTag, MaterialLaw) MaterialLaw;
typedef typename GET_PROP_TYPE(TypeTag, MaterialLawParams) MaterialLawParams;
typedef double Scalar;
typedef Dune::FieldVector<Scalar, 3 > VectorBlockType;
typedef Dune::FieldMatrix<Scalar, 3, 3 > MatrixBlockType;
typedef Dune::BCRSMatrix <MatrixBlockType> Mat;
typedef Dune::BlockVector<VectorBlockType> BVector;
typedef ISTLSolver< MatrixBlockType, VectorBlockType > ISTLSolverType;
//typedef typename SolutionVector :: value_type PrimaryVariables ;
struct FIPData {
enum FipId {
FIP_AQUA = Opm::Water,
FIP_LIQUID = Opm::Oil,
FIP_VAPOUR = Opm::Gas,
FIP_DISSOLVED_GAS = 3,
FIP_VAPORIZED_OIL = 4,
FIP_PV = 5, //< Pore volume
FIP_WEIGHTED_PRESSURE = 6
};
std::array<std::vector<double>, 7> fip;
};
// --------- Public methods ---------
/// Construct the model. It will retain references to the
/// arguments of this functions, and they are expected to
/// remain in scope for the lifetime of the solver.
/// \param[in] param parameters
/// \param[in] grid grid data structure
/// \param[in] fluid fluid properties
/// \param[in] geo rock properties
/// \param[in] rock_comp_props if non-null, rock compressibility properties
/// \param[in] wells well structure
/// \param[in] vfp_properties Vertical flow performance tables
/// \param[in] linsolver linear solver
/// \param[in] eclState eclipse state
/// \param[in] terminal_output request output to cout/cerr
BlackoilModelEbos(Simulator& ebosSimulator,
const ModelParameters& param,
const BlackoilPropsAdInterface& fluid,
const DerivedGeology& geo ,
const RockCompressibility* rock_comp_props,
const StandardWellsDense<FluidSystem, BlackoilIndices>& well_model,
const NewtonIterationBlackoilInterface& linsolver,
const bool terminal_output)
: ebosSimulator_(ebosSimulator)
, grid_(ebosSimulator_.gridManager().grid())
, istlSolver_( dynamic_cast< const ISTLSolverType* > (&linsolver) )
, fluid_ (fluid)
, geo_ (geo)
, vfp_properties_(
eclState().getTableManager().getVFPInjTables(),
eclState().getTableManager().getVFPProdTables())
, active_(detail::activePhases(fluid.phaseUsage()))
, has_disgas_(FluidSystem::enableDissolvedGas())
, has_vapoil_(FluidSystem::enableVaporizedOil())
, param_( param )
, well_model_ (well_model)
, terminal_output_ (terminal_output)
, current_relaxation_(1.0)
, dx_old_(AutoDiffGrid::numCells(grid_))
, isBeginReportStep_(false)
, isRestart_(false)
{
const double gravity = detail::getGravity(geo_.gravity(), UgGridHelpers::dimensions(grid_));
const std::vector<double> pv(geo_.poreVolume().data(), geo_.poreVolume().data() + geo_.poreVolume().size());
const std::vector<double> depth(geo_.z().data(), geo_.z().data() + geo_.z().size());
well_model_.init(&fluid_, &active_, &vfp_properties_, gravity, depth, pv);
wellModel().setWellsActive( localWellsActive() );
global_nc_ = Opm::AutoDiffGrid::numCells(grid_);
// compute global sum of number of cells
global_nc_ = grid_.comm().sum( global_nc_ );
if (!istlSolver_)
{
OPM_THROW(std::logic_error,"solver down cast to ISTLSolver failed");
}
}
bool
isParallel() const
{
#if HAVE_MPI
if ( istlSolver().parallelInformation().type() !=
typeid(ParallelISTLInformation) )
{
return false;
}
else
{
const auto& comm =boost::any_cast<const ParallelISTLInformation&>(istlSolver().parallelInformation()).communicator();
return comm.size() > 1;
}
#else
return false;
#endif
}
const EclipseState& eclState() const
{ return *ebosSimulator_.gridManager().eclState(); }
/// Called once before each time step.
/// \param[in] timer simulation timer
/// \param[in, out] reservoir_state reservoir state variables
/// \param[in, out] well_state well state variables
void prepareStep(const SimulatorTimerInterface& /*timer*/,
const ReservoirState& /*reservoir_state*/,
const WellState& /* well_state */)
{
}
/// Called once per nonlinear iteration.
/// This model will perform a Newton-Raphson update, changing reservoir_state
/// and well_state. It will also use the nonlinear_solver to do relaxation of
/// updates if necessary.
/// \param[in] iteration should be 0 for the first call of a new timestep
/// \param[in] timer simulation timer
/// \param[in] nonlinear_solver nonlinear solver used (for oscillation/relaxation control)
/// \param[in, out] reservoir_state reservoir state variables
/// \param[in, out] well_state well state variables
template <class NonlinearSolverType>
IterationReport nonlinearIteration(const int iteration,
const SimulatorTimerInterface& timer,
NonlinearSolverType& nonlinear_solver,
ReservoirState& reservoir_state,
WellState& well_state)
{
if (iteration == 0) {
// For each iteration we store in a vector the norms of the residual of
// the mass balance for each active phase, the well flux and the well equations.
residual_norms_history_.clear();
current_relaxation_ = 1.0;
dx_old_ = 0.0;
}
IterationReport iter_report = assemble(timer, iteration, reservoir_state, well_state);
std::vector<double> residual_norms;
const bool converged = getConvergence(timer, iteration,residual_norms);
residual_norms_history_.push_back(residual_norms);
bool must_solve = (iteration < nonlinear_solver.minIter()) || (!converged);
// is first set to true if a linear solve is needed, but then it is set to false if the solver succeed.
isRestart_ = must_solve && (iteration == nonlinear_solver.maxIter());
// don't solve if we have reached the maximum number of iteration.
must_solve = must_solve && (iteration < nonlinear_solver.maxIter());
if (must_solve) {
// enable single precision for solvers when dt is smaller then 20 days
//residual_.singlePrecision = (unit::convert::to(dt, unit::day) < 20.) ;
// Compute the nonlinear update.
const int nc = AutoDiffGrid::numCells(grid_);
const int nw = wellModel().wells().number_of_wells;
BVector x(nc);
BVector xw(nw);
solveJacobianSystem(x, xw);
// Stabilize the nonlinear update.
bool isOscillate = false;
bool isStagnate = false;
nonlinear_solver.detectOscillations(residual_norms_history_, iteration, isOscillate, isStagnate);
if (isOscillate) {
current_relaxation_ -= nonlinear_solver.relaxIncrement();
current_relaxation_ = std::max(current_relaxation_, nonlinear_solver.relaxMax());
if (terminalOutputEnabled()) {
std::string msg = " Oscillating behavior detected: Relaxation set to "
+ std::to_string(current_relaxation_);
OpmLog::info(msg);
}
}
nonlinear_solver.stabilizeNonlinearUpdate(x, dx_old_, current_relaxation_);
// Apply the update, applying model-dependent
// limitations and chopping of the update.
updateState(x,reservoir_state);
wellModel().updateWellState(xw, well_state);
// since the solution was changed, the cache for the intensive quantities
// are invalid
ebosSimulator_.model().invalidateIntensiveQuantitiesCache(/*timeIdx=*/0);
// solver has succeed i.e. no need for restart.
isRestart_ = false;
}
const bool failed = false; // Not needed in this model.
const int linear_iters = must_solve ? linearIterationsLastSolve() : 0;
return IterationReport{ failed, converged, linear_iters, iter_report.well_iterations };
}
void printIf(int c, double x, double y, double eps, std::string type) {
if (std::abs(x-y) > eps) {
std::cout << type << " " <<c << ": "<<x << " " << y << std::endl;
}
}
/// Called once after each time step.
/// In this class, this function does nothing.
/// \param[in] timer simulation timer
/// \param[in, out] reservoir_state reservoir state variables
/// \param[in, out] well_state well state variables
void afterStep(const SimulatorTimerInterface& timer,
const ReservoirState& reservoir_state,
WellState& well_state)
{
}
/// Assemble the residual and Jacobian of the nonlinear system.
/// \param[in] reservoir_state reservoir state variables
/// \param[in, out] well_state well state variables
/// \param[in] initial_assembly pass true if this is the first call to assemble() in this timestep
IterationReport assemble(const SimulatorTimerInterface& timer,
const int iterationIdx,
const ReservoirState& reservoir_state,
WellState& well_state)
{
using namespace Opm::AutoDiffGrid;
// -------- Mass balance equations --------
assembleMassBalanceEq(timer, iterationIdx, reservoir_state);
// -------- Well equations ----------
double dt = timer.currentStepLength();
IterationReport iter_report;
try
{
iter_report = wellModel().assemble(ebosSimulator_, iterationIdx, dt, well_state);
}
catch ( const Dune::FMatrixError& e )
{
isRestart_ = true;
OPM_THROW(Opm::NumericalProblem,"Well equation did not converge");
}
return iter_report;
}
/// \brief compute the relative change between to simulation states
// \return || u^n+1 - u^n || / || u^n+1 ||
double relativeChange( const SimulationDataContainer& previous, const SimulationDataContainer& current ) const
{
std::vector< double > p0 ( previous.pressure() );
std::vector< double > sat0( previous.saturation() );
const std::size_t pSize = p0.size();
const std::size_t satSize = sat0.size();
// compute u^n - u^n+1
for( std::size_t i=0; i<pSize; ++i ) {
p0[ i ] -= current.pressure()[ i ];
}
for( std::size_t i=0; i<satSize; ++i ) {
sat0[ i ] -= current.saturation()[ i ];
}
// compute || u^n - u^n+1 ||
const double stateOld = detail::euclidianNormSquared( p0.begin(), p0.end(), 1, istlSolver().parallelInformation() ) +
detail::euclidianNormSquared( sat0.begin(), sat0.end(),
current.numPhases(),
istlSolver().parallelInformation() );
// compute || u^n+1 ||
const double stateNew = detail::euclidianNormSquared( current.pressure().begin(), current.pressure().end(), 1, istlSolver().parallelInformation() ) +
detail::euclidianNormSquared( current.saturation().begin(), current.saturation().end(),
current.numPhases(),
istlSolver().parallelInformation() );
if( stateNew > 0.0 ) {
return stateOld / stateNew ;
}
else {
return 0.0;
}
}
/// The size (number of unknowns) of the nonlinear system of equations.
int sizeNonLinear() const
{
const int nc = Opm::AutoDiffGrid::numCells(grid_);
const int nw = wellModel().wells().number_of_wells;
return numPhases() * (nc + nw);
}
/// Number of linear iterations used in last call to solveJacobianSystem().
int linearIterationsLastSolve() const
{
return istlSolver().iterations();
}
template <class X, class Y>
void applyWellModel(const X& x, Y& y )
{
wellModel().apply(x, y);
}
/// Solve the Jacobian system Jx = r where J is the Jacobian and
/// r is the residual.
void solveJacobianSystem(BVector& x, BVector& xw) const
{
const auto& ebosJac = ebosSimulator_.model().linearizer().matrix();
auto& ebosResid = ebosSimulator_.model().linearizer().residual();
typedef OverlappingWellModelMatrixAdapter<Mat,BVector,BVector, ThisType> Operator;
Operator opA(ebosJac, const_cast< ThisType& > (*this), istlSolver().parallelInformation() );
// apply well residual to the residual.
wellModel().apply(ebosResid);
// set initial guess
x = 0.0;
typedef typename Operator :: communication_type Comm;
Comm* comm = opA.comm();
// Solve system.
if( comm )
{
istlSolver().solve( opA, x, ebosResid, *comm );
}
else
{
typedef WellModelMatrixAdapter<Mat,BVector,BVector, ThisType> SequentialOperator;
SequentialOperator& sOpA = static_cast< SequentialOperator& > (opA);
istlSolver().solve( sOpA, x, ebosResid );
}
// recover wells.
xw = 0.0;
wellModel().recoverVariable(x, xw);
}
//=====================================================================
// Implementation for ISTL-matrix based operator
//=====================================================================
/*!
\brief Adapter to turn a matrix into a linear operator.
Adapts a matrix to the assembled linear operator interface
*/
template<class M, class X, class Y, class WellModel>
class WellModelMatrixAdapter : public Dune::AssembledLinearOperator<M,X,Y>
{
typedef Dune::AssembledLinearOperator<M,X,Y> BaseType;
public:
typedef M matrix_type;
typedef X domain_type;
typedef Y range_type;
typedef typename X::field_type field_type;
#if HAVE_MPI
typedef Dune::OwnerOverlapCopyCommunication<int,int> communication_type;
#else
typedef Dune::CollectiveCommunication<int> communication_type;
#endif
enum {
//! \brief The solver category.
category=Dune::SolverCategory::sequential
};
//! constructor: just store a reference to a matrix
WellModelMatrixAdapter (const M& A, WellModel& wellMod, const boost::any& parallelInformation )
: A_( A ), wellMod_( wellMod ), comm_()
{
#if HAVE_MPI
if( parallelInformation.type() == typeid(ParallelISTLInformation) )
{
const ParallelISTLInformation& info =
boost::any_cast<const ParallelISTLInformation&>( parallelInformation);
comm_.reset( new communication_type( info.communicator() ) );
}
#endif
}
virtual void apply( const X& x, Y& y ) const
{
A_.mv( x, y );
wellMod_.applyWellModel(x, y );
#if HAVE_MPI
if( comm_ )
comm_->project( y );
#endif
}
virtual void applyscaleadd (field_type alpha, const X& x, Y& y) const
{
A_.usmv(alpha,x,y);
wellMod_.applyWellModel(x, y );
#if HAVE_MPI
if( comm_ )
comm_->project( y );
#endif
}
virtual const matrix_type& getmat() const { return A_; }
communication_type* comm()
{
return comm_.operator->();
}
protected:
const matrix_type& A_ ;
WellModel& wellMod_;
std::unique_ptr< communication_type > comm_;
};
template<class M, class X, class Y, class WellModel>
class OverlappingWellModelMatrixAdapter : public WellModelMatrixAdapter<M,X,Y,WellModel>
{
public:
typedef WellModelMatrixAdapter< M,X,Y,WellModel > BaseType;
enum {
//! \brief The solver category.
category=Dune::SolverCategory::overlapping
};
//! constructor: just store a reference to a matrix
OverlappingWellModelMatrixAdapter(const M& A, WellModel& wellMod, const boost::any& parallelInformation )
: BaseType( A, wellMod, parallelInformation )
{}
};
/// Apply an update to the primary variables, chopped if appropriate.
/// \param[in] dx updates to apply to primary variables
/// \param[in, out] reservoir_state reservoir state variables
/// \param[in, out] well_state well state variables
void updateState(const BVector& dx,
ReservoirState& reservoir_state)
{
using namespace Opm::AutoDiffGrid;
const int np = fluid_.numPhases();
const int nc = numCells(grid_);
for (int cell_idx = 0; cell_idx < nc; ++cell_idx) {
const double& dp = dx[cell_idx][flowPhaseToEbosCompIdx(0)];
//reservoir_state.pressure()[cell_idx] -= dp;
double& p = reservoir_state.pressure()[cell_idx];
const double& dp_rel_max = dpMaxRel();
const int sign_dp = dp > 0 ? 1: -1;
p -= sign_dp * std::min(std::abs(dp), std::abs(p)*dp_rel_max);
p = std::max(p, 0.0);
// Saturation updates.
const double dsw = active_[Water] ? dx[cell_idx][flowPhaseToEbosCompIdx(1)] : 0.0;
const int xvar_ind = active_[Water] ? 2 : 1;
const double dxvar = active_[Gas] ? dx[cell_idx][flowPhaseToEbosCompIdx(xvar_ind)] : 0.0;
double dso = 0.0;
double dsg = 0.0;
double drs = 0.0;
double drv = 0.0;
double maxVal = 0.0;
// water phase
maxVal = std::max(std::abs(dsw),maxVal);
dso -= dsw;
// gas phase
switch (reservoir_state.hydroCarbonState()[cell_idx]) {
case HydroCarbonState::GasAndOil:
dsg = dxvar;
break;
case HydroCarbonState::OilOnly:
drs = dxvar;
break;
case HydroCarbonState::GasOnly:
dsg -= dsw;
drv = dxvar;
break;
default:
OPM_THROW(std::logic_error, "Unknown primary variable enum value in cell " << cell_idx << ": " << reservoir_state.hydroCarbonState()[cell_idx]);
}
dso -= dsg;
// Appleyard chop process.
maxVal = std::max(std::abs(dsg),maxVal);
double step = dsMax()/maxVal;
step = std::min(step, 1.0);
const Opm::PhaseUsage& pu = fluid_.phaseUsage();
if (active_[Water]) {
double& sw = reservoir_state.saturation()[cell_idx*np + pu.phase_pos[ Water ]];
sw -= step * dsw;
}
if (active_[Gas]) {
double& sg = reservoir_state.saturation()[cell_idx*np + pu.phase_pos[ Gas ]];
sg -= step * dsg;
}
double& so = reservoir_state.saturation()[cell_idx*np + pu.phase_pos[ Oil ]];
so -= step * dso;
// const double drmaxrel = drMaxRel();
// Update rs and rv
if (has_disgas_) {
double& rs = reservoir_state.gasoilratio()[cell_idx];
rs -= drs;
rs = std::max(rs, 0.0);
}
if (has_vapoil_) {
double& rv = reservoir_state.rv()[cell_idx];
rv -= drv;
rv = std::max(rv, 0.0);
}
// Sg is used as primal variable for water only cells.
const double epsilon = 1e-4; //std::sqrt(std::numeric_limits<double>::epsilon());
double& sw = reservoir_state.saturation()[cell_idx*np + pu.phase_pos[ Water ]];
double& sg = reservoir_state.saturation()[cell_idx*np + pu.phase_pos[ Gas ]];
double& rs = reservoir_state.gasoilratio()[cell_idx];
double& rv = reservoir_state.rv()[cell_idx];
// phase translation sg <-> rs
const HydroCarbonState hydroCarbonState = reservoir_state.hydroCarbonState()[cell_idx];
const auto& intQuants = *(ebosSimulator_.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/0));
const auto& fs = intQuants.fluidState();
switch (hydroCarbonState) {
case HydroCarbonState::GasAndOil: {
if (sw > (1.0 - epsilon)) // water only i.e. do nothing
break;
if (sg <= 0.0 && has_disgas_) {
reservoir_state.hydroCarbonState()[cell_idx] = HydroCarbonState::OilOnly; // sg --> rs
sg = 0;
so = 1.0 - sw - sg;
const double& rsSat = FluidSystem::oilPvt().saturatedGasDissolutionFactor(fs.pvtRegionIndex(), reservoir_state.temperature()[cell_idx], reservoir_state.pressure()[cell_idx]);
double& rs = reservoir_state.gasoilratio()[cell_idx];
rs = rsSat*(1-epsilon);
} else if (so <= 0.0 && has_vapoil_) {
reservoir_state.hydroCarbonState()[cell_idx] = HydroCarbonState::GasOnly; // sg --> rv
so = 0;
sg = 1.0 - sw - so;
double& rv = reservoir_state.rv()[cell_idx];
// use gas pressure?
const double& rvSat = FluidSystem::gasPvt().saturatedOilVaporizationFactor(fs.pvtRegionIndex(), reservoir_state.temperature()[cell_idx], reservoir_state.pressure()[cell_idx]);
rv = rvSat*(1-epsilon);
}
break;
}
case HydroCarbonState::OilOnly: {
if (sw > (1.0 - epsilon)) {
// water only change to Sg
rs = 0;
rv = 0;
reservoir_state.hydroCarbonState()[cell_idx] = HydroCarbonState::GasAndOil;
//std::cout << "watonly rv -> sg" << cell_idx << std::endl;
break;
}
const double& rsSat = FluidSystem::oilPvt().saturatedGasDissolutionFactor(fs.pvtRegionIndex(), reservoir_state.temperature()[cell_idx], reservoir_state.pressure()[cell_idx]);
if (rs > ( rsSat * (1+epsilon) ) ) {
reservoir_state.hydroCarbonState()[cell_idx] = HydroCarbonState::GasAndOil;
sg = epsilon;
so -= epsilon;
rs = rsSat;
}
break;
}
case HydroCarbonState::GasOnly: {
if (sw > (1.0 - epsilon)) {
// water only change to Sg
rs = 0;
rv = 0;
reservoir_state.hydroCarbonState()[cell_idx] = HydroCarbonState::GasAndOil;
//std::cout << "watonly rv -> sg" << cell_idx << std::endl;
break;
}
const double& rvSat = FluidSystem::gasPvt().saturatedOilVaporizationFactor(fs.pvtRegionIndex(), reservoir_state.temperature()[cell_idx], reservoir_state.pressure()[cell_idx]);
if (rv > rvSat * (1+epsilon) ) {
reservoir_state.hydroCarbonState()[cell_idx] = HydroCarbonState::GasAndOil;
so = epsilon;
rv = rvSat;
sg -= epsilon;
}
break;
}
default:
OPM_THROW(std::logic_error, "Unknown primary variable enum value in cell " << cell_idx << ": " << hydroCarbonState);
}
}
}
/// Return true if output to cout is wanted.
bool terminalOutputEnabled() const
{
return terminal_output_;
}
template <class CollectiveCommunication>
double convergenceReduction(const CollectiveCommunication& comm,
const long int ncGlobal,
const int np,
const std::vector< std::vector< Scalar > >& B,
const std::vector< std::vector< Scalar > >& tempV,
const std::vector< std::vector< Scalar > >& R,
const std::vector< Scalar >& pv,
const std::vector< Scalar >& residual_well,
std::vector< Scalar >& R_sum,
std::vector< Scalar >& maxCoeff,
std::vector< Scalar >& B_avg,
std::vector< Scalar >& maxNormWell )
{
const int nw = residual_well.size() / np;
assert(nw * np == int(residual_well.size()));
// Do the global reductions
B_avg.resize(np);
maxCoeff.resize(np);
R_sum.resize(np);
maxNormWell.resize(np);
// computation
for ( int idx = 0; idx < np; ++idx )
{
B_avg[idx] = std::accumulate( B[ idx ].begin(), B[ idx ].end(), 0.0 ) / double(ncGlobal);
R_sum[idx] = std::accumulate( R[ idx ].begin(), R[ idx ].end(), 0.0 );
maxCoeff[idx] = *(std::max_element( tempV[ idx ].begin(), tempV[ idx ].end() ));
assert(np >= np);
if (idx < np) {
maxNormWell[idx] = 0.0;
for ( int w = 0; w < nw; ++w ) {
maxNormWell[idx] = std::max(maxNormWell[idx], std::abs(residual_well[nw*idx + w]));
}
}
}
// Compute total pore volume
double pvSum = std::accumulate(pv.begin(), pv.end(), 0.0);
if( comm.size() > 1 )
{
// global reduction
std::vector< Scalar > sumBuffer;
std::vector< Scalar > maxBuffer;
sumBuffer.reserve( B_avg.size() + R_sum.size() + 1 );
maxBuffer.reserve( maxCoeff.size() + maxNormWell.size() );
for( int idx = 0; idx < np; ++idx )
{
sumBuffer.push_back( B_avg[ idx ] );
sumBuffer.push_back( R_sum[ idx ] );
maxBuffer.push_back( maxCoeff[ idx ] );
maxBuffer.push_back( maxNormWell[ idx ] );
}
// Compute total pore volume
sumBuffer.push_back( pvSum );
// compute global sum
comm.sum( sumBuffer.data(), sumBuffer.size() );
// compute global max
comm.max( maxBuffer.data(), maxBuffer.size() );
// restore values to local variables
for( int idx = 0, buffIdx = 0; idx < np; ++idx, ++buffIdx )
{
B_avg[ idx ] = sumBuffer[ buffIdx ];
maxCoeff[ idx ] = maxBuffer[ buffIdx ];
++buffIdx;
R_sum[ idx ] = sumBuffer[ buffIdx ];
maxNormWell[ idx ] = maxBuffer[ buffIdx ];
}
// restore global pore volume
pvSum = sumBuffer.back();
}
// return global pore volume
return pvSum;
}
/// Compute convergence based on total mass balance (tol_mb) and maximum
/// residual mass balance (tol_cnv).
/// \param[in] timer simulation timer
/// \param[in] dt timestep length
/// \param[in] iteration current iteration number
bool getConvergence(const SimulatorTimerInterface& timer, const int iteration, std::vector<double>& residual_norms)
{
typedef std::vector< double > Vector;
const double dt = timer.currentStepLength();
const double tol_mb = param_.tolerance_mb_;
const double tol_cnv = param_.tolerance_cnv_;
const double tol_wells = param_.tolerance_wells_;
const int nc = Opm::AutoDiffGrid::numCells(grid_);
const int np = numPhases();
const auto& pv = geo_.poreVolume();
Vector R_sum(np);
Vector B_avg(np);
Vector maxCoeff(np);
Vector maxNormWell(np);
std::vector< Vector > B( np, Vector( nc ) );
std::vector< Vector > R( np, Vector( nc ) );
std::vector< Vector > R2( np, Vector( nc ) );
std::vector< Vector > tempV( np, Vector( nc ) );
const auto& ebosResid = ebosSimulator_.model().linearizer().residual();
for ( int idx = 0; idx < np; ++idx )
{
Vector& R2_idx = R2[ idx ];
Vector& B_idx = B[ idx ];
const int ebosPhaseIdx = flowPhaseToEbosPhaseIdx(idx);
const int ebosCompIdx = flowPhaseToEbosCompIdx(idx);
for (int cell_idx = 0; cell_idx < nc; ++cell_idx) {
const auto& intQuants = *(ebosSimulator_.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/0));
const auto& fs = intQuants.fluidState();
B_idx [cell_idx] = 1 / fs.invB(ebosPhaseIdx).value();
R2_idx[cell_idx] = ebosResid[cell_idx][ebosCompIdx];
}
}
for ( int idx = 0; idx < np; ++idx )
{
//tempV.col(idx) = R2.col(idx).abs()/pv;
Vector& tempV_idx = tempV[ idx ];
Vector& R2_idx = R2[ idx ];
for( int cell_idx = 0; cell_idx < nc; ++cell_idx )
{
tempV_idx[ cell_idx ] = std::abs( R2_idx[ cell_idx ] ) / pv[ cell_idx ];
}
}
Vector pv_vector (geo_.poreVolume().data(), geo_.poreVolume().data() + geo_.poreVolume().size());
Vector wellResidual = wellModel().residual();
const double pvSum = convergenceReduction(grid_.comm(), global_nc_, np,
B, tempV, R2, pv_vector, wellResidual,
R_sum, maxCoeff, B_avg, maxNormWell );
Vector CNV(np);
Vector mass_balance_residual(np);
Vector well_flux_residual(np);
bool converged_MB = true;
bool converged_CNV = true;
bool converged_Well = true;
// Finish computation
for ( int idx = 0; idx < np; ++idx )
{
CNV[idx] = B_avg[idx] * dt * maxCoeff[idx];
mass_balance_residual[idx] = std::abs(B_avg[idx]*R_sum[idx]) * dt / pvSum;
converged_MB = converged_MB && (mass_balance_residual[idx] < tol_mb);
converged_CNV = converged_CNV && (CNV[idx] < tol_cnv);
// Well flux convergence is only for fluid phases, not other materials
// in our current implementation.
assert(np >= np);
if (idx < np) {
well_flux_residual[idx] = B_avg[idx] * maxNormWell[idx];
converged_Well = converged_Well && (well_flux_residual[idx] < tol_wells);
}
residual_norms.push_back(CNV[idx]);
}
const bool converged = converged_MB && converged_CNV && converged_Well;
if ( terminal_output_ )
{
// Only rank 0 does print to std::cout
if (iteration == 0) {
std::string msg = "Iter";
std::vector< std::string > key( np );
for (int phaseIdx = 0; phaseIdx < np; ++phaseIdx) {
const std::string& phaseName = FluidSystem::phaseName(flowPhaseToEbosPhaseIdx(phaseIdx));
key[ phaseIdx ] = std::toupper( phaseName.front() );
}
for (int phaseIdx = 0; phaseIdx < np; ++phaseIdx) {
msg += " MB(" + key[ phaseIdx ] + ") ";
}
for (int phaseIdx = 0; phaseIdx < np; ++phaseIdx) {
msg += " CNV(" + key[ phaseIdx ] + ") ";
}
for (int phaseIdx = 0; phaseIdx < np; ++phaseIdx) {
msg += " W-FLUX(" + key[ phaseIdx ] + ")";
}
OpmLog::note(msg);
}
std::ostringstream ss;
const std::streamsize oprec = ss.precision(3);
const std::ios::fmtflags oflags = ss.setf(std::ios::scientific);
ss << std::setw(4) << iteration;
for (int idx = 0; idx < np; ++idx) {
ss << std::setw(11) << mass_balance_residual[idx];
}
for (int idx = 0; idx < np; ++idx) {
ss << std::setw(11) << CNV[idx];
}
for (int idx = 0; idx < np; ++idx) {
ss << std::setw(11) << well_flux_residual[idx];
}
ss.precision(oprec);
ss.flags(oflags);
OpmLog::note(ss.str());
}
for (int phaseIdx = 0; phaseIdx < np; ++phaseIdx) {
const auto& phaseName = FluidSystem::phaseName(flowPhaseToEbosPhaseIdx(phaseIdx));
if (std::isnan(mass_balance_residual[phaseIdx])
|| std::isnan(CNV[phaseIdx])
|| (phaseIdx < np && std::isnan(well_flux_residual[phaseIdx]))) {
isRestart_ = true;
OPM_THROW(Opm::NumericalProblem, "NaN residual for phase " << phaseName);
}
if (mass_balance_residual[phaseIdx] > maxResidualAllowed()
|| CNV[phaseIdx] > maxResidualAllowed()
|| (phaseIdx < np && well_flux_residual[phaseIdx] > maxResidualAllowed())) {
isRestart_ = true;
OPM_THROW(Opm::NumericalProblem, "Too large residual for phase " << phaseName);
}
}
return converged;
}
/// The number of active fluid phases in the model.
int numPhases() const
{
return fluid_.numPhases();
}
std::vector<std::vector<double> >
computeFluidInPlace(const std::vector<int>& fipnum) const
{
using namespace Opm::AutoDiffGrid;
const int nc = numCells(grid_);
//const ADB pv_mult = poroMult(pressure);
const auto& pv = geo_.poreVolume();
const int maxnp = Opm::BlackoilPhases::MaxNumPhases;
for (int i = 0; i<7; i++) {
fip_.fip[i].resize(nc,0.0);
}
for (int c = 0; c < nc; ++c) {
const auto& intQuants = *ebosSimulator_.model().cachedIntensiveQuantities(c, /*timeIdx=*/0);
const auto& fs = intQuants.fluidState();
for (int phase = 0; phase < maxnp; ++phase) {
const double& b = fs.invB(flowPhaseToEbosPhaseIdx(phase)).value();
const double& s = fs.saturation(flowPhaseToEbosPhaseIdx(phase)).value();
const double pv_mult = 1.0; //todo
fip_.fip[phase][c] = pv_mult * b * s * pv[c];
}
if (active_[ Oil ] && active_[ Gas ]) {
// Account for gas dissolved in oil and vaporized oil
fip_.fip[FIPData::FIP_DISSOLVED_GAS][c] = fs.Rs().value() * fip_.fip[FIPData::FIP_LIQUID][c];
fip_.fip[FIPData::FIP_VAPORIZED_OIL][c] = fs.Rv().value() * fip_.fip[FIPData::FIP_VAPOUR][c];
}
}
// For a parallel run this is just a local maximum and needs to be updated later
int dims = *std::max_element(fipnum.begin(), fipnum.end());
std::vector<std::vector<double>> values(dims, std::vector<double>(7,0.0));
std::vector<double> hcpv(dims, 0.0);
std::vector<double> pres(dims, 0.0);
if ( !isParallel() )
{
//Accumulate phases for each region
for (int phase = 0; phase < maxnp; ++phase) {
if (active_[ phase ]) {
for (int c = 0; c < nc; ++c) {
const int region = fipnum[c] - 1;
if (region != -1) {
values[region][phase] += fip_.fip[phase][c];
}
}
}
}
//Accumulate RS and RV-volumes for each region
if (active_[ Oil ] && active_[ Gas ]) {
for (int c = 0; c < nc; ++c) {
const int region = fipnum[c] - 1;
if (region != -1) {
values[region][FIPData::FIP_DISSOLVED_GAS] += fip_.fip[FIPData::FIP_DISSOLVED_GAS][c];
values[region][FIPData::FIP_VAPORIZED_OIL] += fip_.fip[FIPData::FIP_VAPORIZED_OIL][c];
}
}
}
for (int c = 0; c < nc; ++c) {
const int region = fipnum[c] - 1;
if (region != -1) {
const auto& intQuants = *ebosSimulator_.model().cachedIntensiveQuantities(c, /*timeIdx=*/0);
const auto& fs = intQuants.fluidState();
const double hydrocarbon = fs.saturation(FluidSystem::oilPhaseIdx).value() + fs.saturation(FluidSystem::gasPhaseIdx).value();
hcpv[region] += pv[c] * hydrocarbon;
pres[region] += pv[c] * fs.pressure(FluidSystem::oilPhaseIdx).value();
}
}
for (int c = 0; c < nc; ++c) {
const int region = fipnum[c] - 1;
if (region != -1) {
fip_.fip[FIPData::FIP_PV][c] = pv[c];
const auto& intQuants = *ebosSimulator_.model().cachedIntensiveQuantities(c, /*timeIdx=*/0);
const auto& fs = intQuants.fluidState();
const double hydrocarbon = fs.saturation(FluidSystem::oilPhaseIdx).value() + fs.saturation(FluidSystem::gasPhaseIdx).value();
//Compute hydrocarbon pore volume weighted average pressure.
//If we have no hydrocarbon in region, use pore volume weighted average pressure instead
if (hcpv[region] != 0) {
fip_.fip[FIPData::FIP_WEIGHTED_PRESSURE][c] = pv[c] * fs.pressure(FluidSystem::oilPhaseIdx).value() * hydrocarbon / hcpv[region];
} else {
fip_.fip[FIPData::FIP_WEIGHTED_PRESSURE][c] = pres[region] / pv[c];
}
values[region][FIPData::FIP_PV] += fip_.fip[FIPData::FIP_PV][c];
values[region][FIPData::FIP_WEIGHTED_PRESSURE] += fip_.fip[FIPData::FIP_WEIGHTED_PRESSURE][c];
}
}
}
else
{
#if HAVE_MPI
// mask[c] is 1 if we need to compute something in parallel
const auto & pinfo =
boost::any_cast<const ParallelISTLInformation&>(istlSolver().parallelInformation());
const auto& mask = pinfo.getOwnerMask();
auto comm = pinfo.communicator();
// Compute the global dims value and resize values accordingly.
dims = comm.max(dims);
values.resize(dims, std::vector<double>(7,0.0));
//Accumulate phases for each region
for (int phase = 0; phase < maxnp; ++phase) {
for (int c = 0; c < nc; ++c) {
const int region = fipnum[c] - 1;
if (region != -1 && mask[c]) {
values[region][phase] += fip_.fip[phase][c];
}
}
}
//Accumulate RS and RV-volumes for each region
if (active_[ Oil ] && active_[ Gas ]) {
for (int c = 0; c < nc; ++c) {
const int region = fipnum[c] - 1;
if (region != -1 && mask[c]) {
values[region][FIPData::FIP_DISSOLVED_GAS] += fip_.fip[FIPData::FIP_DISSOLVED_GAS][c];
values[region][FIPData::FIP_VAPORIZED_OIL] += fip_.fip[FIPData::FIP_VAPORIZED_OIL][c];
}
}
}
hcpv = std::vector<double>(dims, 0.0);
pres = std::vector<double>(dims, 0.0);
for (int c = 0; c < nc; ++c) {
const int region = fipnum[c] - 1;
if (region != -1 && mask[c]) {
const auto& intQuants = *ebosSimulator_.model().cachedIntensiveQuantities(c, /*timeIdx=*/0);
const auto& fs = intQuants.fluidState();
const double hydrocarbon = fs.saturation(FluidSystem::oilPhaseIdx).value() + fs.saturation(FluidSystem::gasPhaseIdx).value();
hcpv[region] += pv[c] * hydrocarbon;
pres[region] += pv[c] * fs.pressure(FluidSystem::oilPhaseIdx).value();
}
}
comm.sum(hcpv.data(), hcpv.size());
comm.sum(pres.data(), pres.size());
for (int c = 0; c < nc; ++c) {
const int region = fipnum[c] - 1;
if (region != -1 && mask[c]) {
fip_.fip[FIPData::FIP_PV][c] = pv[c];
const auto& intQuants = *ebosSimulator_.model().cachedIntensiveQuantities(c, /*timeIdx=*/0);
const auto& fs = intQuants.fluidState();
const double hydrocarbon = fs.saturation(FluidSystem::oilPhaseIdx).value() + fs.saturation(FluidSystem::gasPhaseIdx).value();
if (hcpv[region] != 0) {
fip_.fip[FIPData::FIP_WEIGHTED_PRESSURE][c] = pv[c] * fs.pressure(FluidSystem::oilPhaseIdx).value() * hydrocarbon / hcpv[region];
} else {
fip_.fip[FIPData::FIP_WEIGHTED_PRESSURE][c] = pres[region] / pv[c];
}
values[region][FIPData::FIP_PV] += fip_.fip[FIPData::FIP_PV][c];
values[region][FIPData::FIP_WEIGHTED_PRESSURE] += fip_.fip[FIPData::FIP_WEIGHTED_PRESSURE][c];
}
}
// For the frankenstein branch we hopefully can turn values into a vanilla
// std::vector<double>, use some index magic above, use one communication
// to sum up the vector entries instead of looping over the regions.
for(int reg=0; reg < dims; ++reg)
{
comm.sum(values[reg].data(), values[reg].size());
}
#else
// This should never happen!
OPM_THROW(std::logic_error, "HAVE_MPI should be defined if we are running in parallel");
#endif
}
return values;
}
const FIPData& getFIPData() const {
return fip_;
}
const Simulator& ebosSimulator() const
{ return ebosSimulator_; }
protected:
const ISTLSolverType& istlSolver() const
{
assert( istlSolver_ );
return *istlSolver_;
}
// --------- Data members ---------
Simulator& ebosSimulator_;
const Grid& grid_;
const ISTLSolverType* istlSolver_;
const BlackoilPropsAdInterface& fluid_;
const DerivedGeology& geo_;
VFPProperties vfp_properties_;
// For each canonical phase -> true if active
const std::vector<bool> active_;
// Size = # active phases. Maps active -> canonical phase indices.
const std::vector<int> cells_; // All grid cells
const bool has_disgas_;
const bool has_vapoil_;
ModelParameters param_;
// Well Model
StandardWellsDense<FluidSystem, BlackoilIndices> well_model_;
/// \brief Whether we print something to std::cout
bool terminal_output_;
/// \brief The number of cells of the global grid.
long int global_nc_;
std::vector<std::vector<double>> residual_norms_history_;
double current_relaxation_;
BVector dx_old_;
mutable FIPData fip_;
// --------- Protected methods ---------
public:
/// return the StandardWells object
StandardWellsDense<FluidSystem, BlackoilIndices>& wellModel() { return well_model_; }
const StandardWellsDense<FluidSystem, BlackoilIndices>& wellModel() const { return well_model_; }
/// return the Well struct in the StandardWells
const Wells& wells() const { return well_model_.wells(); }
/// return true if wells are available in the reservoir
bool wellsActive() const { return well_model_.wellsActive(); }
/// return true if wells are available on this process
bool localWellsActive() const { return well_model_.localWellsActive(); }
void convertInput( const int iterationIdx,
const ReservoirState& reservoirState,
Simulator& simulator ) const
{
SolutionVector& solution = simulator.model().solution( 0 /* timeIdx */ );
const Opm::PhaseUsage pu = fluid_.phaseUsage();
const int numCells = reservoirState.numCells();
const int numPhases = fluid_.numPhases();
const auto& oilPressure = reservoirState.pressure();
const auto& saturations = reservoirState.saturation();
const auto& rs = reservoirState.gasoilratio();
const auto& rv = reservoirState.rv();
for( int cellIdx = 0; cellIdx<numCells; ++cellIdx )
{
// set non-switching primary variables
PrimaryVariables& cellPv = solution[ cellIdx ];
// set water saturation
cellPv[BlackoilIndices::waterSaturationIdx] = saturations[cellIdx*numPhases + pu.phase_pos[Water]];
// set switching variable and interpretation
if( reservoirState.hydroCarbonState()[cellIdx] == HydroCarbonState::OilOnly && has_disgas_ )
{
cellPv[BlackoilIndices::compositionSwitchIdx] = rs[cellIdx];
cellPv[BlackoilIndices::pressureSwitchIdx] = oilPressure[cellIdx];
cellPv.setPrimaryVarsMeaning( PrimaryVariables::Sw_po_Rs );
}
else if( reservoirState.hydroCarbonState()[cellIdx] == HydroCarbonState::GasOnly && has_vapoil_ )
{
// this case (-> gas only with vaporized oil in the gas) is
// relatively expensive as it requires to compute the capillary
// pressure in order to get the gas phase pressure. (the reason why
// ebos uses the gas pressure here is that it makes the common case
// of the primary variable switching code fast because to determine
// whether the oil phase appears one needs to compute the Rv value
// for the saturated gas phase and if this is not available as a
// primary variable, it needs to be computed.) luckily for here, the
// gas-only case is not too common, so the performance impact of this
// is limited.
typedef Opm::SimpleModularFluidState<double,
/*numPhases=*/3,
/*numComponents=*/3,
FluidSystem,
/*storePressure=*/false,
/*storeTemperature=*/false,
/*storeComposition=*/false,
/*storeFugacity=*/false,
/*storeSaturation=*/true,
/*storeDensity=*/false,
/*storeViscosity=*/false,
/*storeEnthalpy=*/false> SatOnlyFluidState;
SatOnlyFluidState fluidState;
fluidState.setSaturation(FluidSystem::waterPhaseIdx, saturations[cellIdx*numPhases + pu.phase_pos[Water]]);
fluidState.setSaturation(FluidSystem::oilPhaseIdx, saturations[cellIdx*numPhases + pu.phase_pos[Oil]]);
fluidState.setSaturation(FluidSystem::gasPhaseIdx, saturations[cellIdx*numPhases + pu.phase_pos[Gas]]);
double pC[/*numPhases=*/3] = { 0.0, 0.0, 0.0 };
const MaterialLawParams& matParams = simulator.problem().materialLawParams(cellIdx);
MaterialLaw::capillaryPressures(pC, matParams, fluidState);
double pg = oilPressure[cellIdx] + (pC[FluidSystem::gasPhaseIdx] - pC[FluidSystem::oilPhaseIdx]);
cellPv[BlackoilIndices::compositionSwitchIdx] = rv[cellIdx];
cellPv[BlackoilIndices::pressureSwitchIdx] = pg;
cellPv.setPrimaryVarsMeaning( PrimaryVariables::Sw_pg_Rv );
}
else
{
assert( reservoirState.hydroCarbonState()[cellIdx] == HydroCarbonState::GasAndOil);
cellPv[BlackoilIndices::compositionSwitchIdx] = saturations[cellIdx*numPhases + pu.phase_pos[Gas]];
cellPv[BlackoilIndices::pressureSwitchIdx] = oilPressure[ cellIdx ];
cellPv.setPrimaryVarsMeaning( PrimaryVariables::Sw_po_Sg );
}
}
if( iterationIdx == 0 )
{
simulator.model().solution( 1 /* timeIdx */ ) = solution;
}
}
public:
int ebosCompToFlowPhaseIdx( const int compIdx ) const
{
const int compToPhase[ 3 ] = { Oil, Water, Gas };
return compToPhase[ compIdx ];
}
int flowToEbosPvIdx( const int flowPv ) const
{
const int flowToEbos[ 3 ] = {
BlackoilIndices::pressureSwitchIdx,
BlackoilIndices::waterSaturationIdx,
BlackoilIndices::compositionSwitchIdx
};
return flowToEbos[ flowPv ];
}
int flowPhaseToEbosCompIdx( const int phaseIdx ) const
{
const int phaseToComp[ 3 ] = { FluidSystem::waterCompIdx, FluidSystem::oilCompIdx, FluidSystem::gasCompIdx };
return phaseToComp[ phaseIdx ];
}
private:
void convertResults(BVector& ebosResid, Mat& ebosJac) const
{
const int numPhases = wells().number_of_phases;
const int numCells = ebosJac.N();
assert( numCells == static_cast<int>(ebosJac.M()) );
// write the right-hand-side values from the ebosJac into the objects
// allocated above.
const auto endrow = ebosJac.end();
for( int cellIdx = 0; cellIdx < numCells; ++cellIdx )
{
const double cellVolume = ebosSimulator_.model().dofTotalVolume(cellIdx);
auto& cellRes = ebosResid[ cellIdx ];
for( int flowPhaseIdx = 0; flowPhaseIdx < numPhases; ++flowPhaseIdx )
{
const double refDens = FluidSystem::referenceDensity( flowPhaseToEbosPhaseIdx( flowPhaseIdx ), 0 );
cellRes[ flowPhaseToEbosCompIdx( flowPhaseIdx ) ] /= refDens;
cellRes[ flowPhaseToEbosCompIdx( flowPhaseIdx ) ] *= cellVolume;
}
}
for( auto row = ebosJac.begin(); row != endrow; ++row )
{
const int rowIdx = row.index();
const double cellVolume = ebosSimulator_.model().dofTotalVolume(rowIdx);
// translate the Jacobian of the residual from the format used by ebos to
// the one expected by flow
const auto endcol = row->end();
for( auto col = row->begin(); col != endcol; ++col )
{
for( int flowPhaseIdx = 0; flowPhaseIdx < numPhases; ++flowPhaseIdx )
{
const double refDens = FluidSystem::referenceDensity( flowPhaseToEbosPhaseIdx( flowPhaseIdx ), 0 );
for( int pvIdx=0; pvIdx<numPhases; ++pvIdx )
{
(*col)[flowPhaseToEbosCompIdx(flowPhaseIdx)][flowToEbosPvIdx(pvIdx)] /= refDens;
(*col)[flowPhaseToEbosCompIdx(flowPhaseIdx)][flowToEbosPvIdx(pvIdx)] *= cellVolume;
}
}
}
}
}
int flowPhaseToEbosPhaseIdx( const int phaseIdx ) const
{
const int flowToEbos[ 3 ] = { FluidSystem::waterPhaseIdx, FluidSystem::oilPhaseIdx, FluidSystem::gasPhaseIdx };
return flowToEbos[ phaseIdx ];
}
public:
void beginReportStep()
{
isBeginReportStep_ = true;
}
void endReportStep()
{
ebosSimulator_.problem().endEpisode();
}
private:
void assembleMassBalanceEq(const SimulatorTimerInterface& timer,
const int iterationIdx,
const ReservoirState& reservoirState)
{
convertInput( iterationIdx, reservoirState, ebosSimulator_ );
ebosSimulator_.startNextEpisode( timer.currentStepLength() );
ebosSimulator_.setEpisodeIndex( timer.reportStepNum() );
ebosSimulator_.setTimeStepIndex( timer.reportStepNum() );
ebosSimulator_.model().newtonMethod().setIterationIndex(iterationIdx);
static int prevEpisodeIdx = 10000;
// notify ebos about the end of the previous episode and time step if applicable
if (isBeginReportStep_) {
isBeginReportStep_ = false;
ebosSimulator_.problem().beginEpisode();
}
// doing the notifactions here is conceptually wrong and also causes the
// endTimeStep() and endEpisode() methods to be not called for the
// simulation's last time step and episode.
if (ebosSimulator_.model().newtonMethod().numIterations() == 0
&& prevEpisodeIdx < timer.reportStepNum())
{
ebosSimulator_.problem().endTimeStep();
}
ebosSimulator_.setTimeStepSize( timer.currentStepLength() );
if (ebosSimulator_.model().newtonMethod().numIterations() == 0)
{
ebosSimulator_.problem().beginTimeStep();
}
// if the last step failed we want to recalculate the IntesiveQuantities.
if (isRestart_) {
ebosSimulator_.model().invalidateIntensiveQuantitiesCache(/*timeIdx=*/0);
}
ebosSimulator_.problem().beginIteration();
ebosSimulator_.model().linearizer().linearize();
ebosSimulator_.problem().endIteration();
prevEpisodeIdx = ebosSimulator_.episodeIndex();
auto& ebosJac = ebosSimulator_.model().linearizer().matrix();
auto& ebosResid = ebosSimulator_.model().linearizer().residual();
convertResults(ebosResid, ebosJac);
if (param_.update_equations_scaling_) {
std::cout << "equation scaling not suported yet" << std::endl;
//updateEquationsScaling();
}
}
double dpMaxRel() const { return param_.dp_max_rel_; }
double dsMax() const { return param_.ds_max_; }
double drMaxRel() const { return param_.dr_max_rel_; }
double maxResidualAllowed() const { return param_.max_residual_allowed_; }
public:
bool isBeginReportStep_;
bool isRestart_;
};
} // namespace Opm
#endif // OPM_BLACKOILMODELBASE_IMPL_HEADER_INCLUDED