opm-simulators/opm/autodiff/BlackoilDetails.hpp

204 lines
6.9 KiB
C++

/*
Copyright 2013, 2015 SINTEF ICT, Applied Mathematics.
Copyright 2014, 2015 Dr. Blatt - HPC-Simulation-Software & Services
Copyright 2014, 2015 Statoil ASA.
Copyright 2015 NTNU
Copyright 2015 IRIS AS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_BLACKOILDETAILS_HEADER_INCLUDED
#define OPM_BLACKOILDETAILS_HEADER_INCLUDED
#include <opm/core/linalg/ParallelIstlInformation.hpp>
namespace Opm {
namespace detail {
inline
std::vector<int>
buildAllCells(const int nc)
{
std::vector<int> all_cells(nc);
for (int c = 0; c < nc; ++c) { all_cells[c] = c; }
return all_cells;
}
template <class PU>
std::vector<bool>
activePhases(const PU& pu)
{
const int maxnp = Opm::BlackoilPhases::MaxNumPhases;
std::vector<bool> active(maxnp, false);
for (int p = 0; p < pu.MaxNumPhases; ++p) {
active[ p ] = pu.phase_used[ p ] != 0;
}
return active;
}
template <class PU>
std::vector<int>
active2Canonical(const PU& pu)
{
const int maxnp = Opm::BlackoilPhases::MaxNumPhases;
std::vector<int> act2can(maxnp, -1);
for (int phase = 0; phase < maxnp; ++phase) {
if (pu.phase_used[ phase ]) {
act2can[ pu.phase_pos[ phase ] ] = phase;
}
}
return act2can;
}
inline
double getGravity(const double* g, const int dim) {
double grav = 0.0;
if (g) {
// Guard against gravity in anything but last dimension.
for (int dd = 0; dd < dim - 1; ++dd) {
assert(g[dd] == 0.0);
}
grav = g[dim - 1];
}
return grav;
}
/// \brief Compute the Euclidian norm of a vector
/// \warning In the case that num_components is greater than 1
/// an interleaved ordering is assumed. E.g. for each cell
/// all phases of that cell are stored consecutively. First
/// the ones for cell 0, then the ones for cell 1, ... .
/// \param it begin iterator for the given vector
/// \param end end iterator for the given vector
/// \param num_components number of components (i.e. phases) in the vector
/// \param pinfo In a parallel this holds the information about the data distribution.
template <class Iterator>
inline
double euclidianNormSquared( Iterator it, const Iterator end, int num_components, const boost::any& pinfo = boost::any() )
{
static_cast<void>(num_components); // Suppress warning in the serial case.
static_cast<void>(pinfo); // Suppress warning in non-MPI case.
#if HAVE_MPI
if ( pinfo.type() == typeid(ParallelISTLInformation) )
{
const ParallelISTLInformation& info =
boost::any_cast<const ParallelISTLInformation&>(pinfo);
typedef typename Iterator::value_type Scalar;
Scalar product = 0.0;
int size_per_component = (end - it);
size_per_component /= num_components; // two lines to supresse unused warning.
assert((end - it) == num_components * size_per_component);
if( num_components == 1 )
{
auto component_container =
boost::make_iterator_range(it, end);
info.computeReduction(component_container,
Opm::Reduction::makeInnerProductFunctor<double>(),
product);
}
else
{
auto& maskContainer = info.getOwnerMask();
auto mask = maskContainer.begin();
assert(static_cast<int>(maskContainer.size()) == size_per_component);
for(int cell = 0; cell < size_per_component; ++cell, ++mask)
{
Scalar cell_product = (*it) * (*it);
++it;
for(int component=1; component < num_components;
++component, ++it)
{
cell_product += (*it) * (*it);
}
product += cell_product * (*mask);
}
}
return info.communicator().sum(product);
}
else
#endif
{
double product = 0.0 ;
for( ; it != end; ++it ) {
product += ( *it * *it );
}
return product;
}
}
/// \brief Get the number of local interior cells in a grid.
/// \tparam The type of the DUNE grid.
/// \param grid The grid which cells we count
/// \return The number of interior cell in the partition of the
/// grid stored on this process.
template<class Grid>
std::size_t countLocalInteriorCells(const Grid& grid)
{
if ( grid.comm().size() == 1)
{
return grid.size(0);
}
std::size_t count = 0;
const auto& gridView = grid.leafGridView();
for(auto cell = gridView.template begin<0, Dune::Interior_Partition>(),
endCell = gridView.template end<0, Dune::Interior_Partition>();
cell != endCell; ++cell)
{
++count;
}
return count;
}
/// \brief Get the number of cells of a global grid.
///
/// In a parallel run this is the number of cells that a grid would
/// have if the whole grid was stored on one process only.
/// \tparam The type of the DUNE grid.
/// \param grid The grid which cells we count
/// \return The global number of cells.
template<class Grid>
std::size_t countGlobalCells(const Grid& grid)
{
if ( grid.comm().size() == 1)
{
return grid.size(0);
}
std::size_t count = countLocalInteriorCells(grid);
return grid.comm().sum(count);
}
} // namespace detail
} // namespace Opm
#endif // OPM_BLACKOILDETAILS_HEADER_INCLUDED