mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-02-16 20:24:48 -06:00
the goal is to make it faster on computers with many cores: The easiest way to do this is to ensure that the longest running tests are not taking too much time and that they need about the same time. Thus this patch contains the following changes which limits the CPU time taken by each test to about two minutes in debug mode on my machine: - the water-air problem using the non-isothermal primary variable switching model now uses an 16x16 instead of a 32x32 grid. as a compensation it now runs for a year instead of 5000 seconds and the global grid refinement is now tested. - the end time of the lens problem ctests is now 3000 instead of 30000 seconds. The binary itself does not change at all. - sort the tests in the CMakeLists.txt roughly in the order of their required time. (this will cause ctest not having to wait for long running test which were started late for too long.)
483 lines
15 KiB
C++
483 lines
15 KiB
C++
/*
|
|
Copyright (C) 2008-2013 by Andreas Lauser
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
/*!
|
|
* \file
|
|
*
|
|
* \copydoc Ewoms::FingerProblem
|
|
*/
|
|
#ifndef EWOMS_FINGER_PROBLEM_HH
|
|
#define EWOMS_FINGER_PROBLEM_HH
|
|
|
|
#include "fingergridmanager.hh"
|
|
|
|
#include <opm/material/fluidmatrixinteractions/RegularizedVanGenuchten.hpp>
|
|
#include <opm/material/fluidmatrixinteractions/LinearMaterial.hpp>
|
|
#include <opm/material/fluidmatrixinteractions/EffToAbsLaw.hpp>
|
|
#include <opm/material/fluidmatrixinteractions/ParkerLenhard.hpp>
|
|
#include <opm/material/fluidmatrixinteractions/MaterialTraits.hpp>
|
|
|
|
#include <opm/material/fluidsystems/TwoPhaseImmiscibleFluidSystem.hpp>
|
|
#include <opm/material/fluidstates/ImmiscibleFluidState.hpp>
|
|
#include <opm/material/components/SimpleH2O.hpp>
|
|
#include <opm/material/components/Air.hpp>
|
|
|
|
#include <ewoms/models/immiscible/immiscibleproperties.hh>
|
|
|
|
#include <dune/common/version.hh>
|
|
#include <dune/common/fvector.hh>
|
|
#include <dune/common/fmatrix.hh>
|
|
|
|
#include <vector>
|
|
#include <string>
|
|
|
|
namespace Ewoms {
|
|
template <class TypeTag>
|
|
class FingerProblem;
|
|
}
|
|
|
|
namespace Opm {
|
|
namespace Properties {
|
|
NEW_TYPE_TAG(FingerBaseProblem, INHERITS_FROM(FingerGridManager));
|
|
|
|
// declare the properties used by the finger problem
|
|
NEW_PROP_TAG(InitialWaterSaturation);
|
|
|
|
// Set the problem property
|
|
SET_TYPE_PROP(FingerBaseProblem, Problem, Ewoms::FingerProblem<TypeTag>);
|
|
|
|
// Set the wetting phase
|
|
SET_PROP(FingerBaseProblem, WettingPhase)
|
|
{
|
|
private:
|
|
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
|
|
|
|
public:
|
|
typedef Opm::LiquidPhase<Scalar, Opm::SimpleH2O<Scalar> > type;
|
|
};
|
|
|
|
// Set the non-wetting phase
|
|
SET_PROP(FingerBaseProblem, NonwettingPhase)
|
|
{
|
|
private:
|
|
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
|
|
|
|
public:
|
|
typedef Opm::GasPhase<Scalar, Opm::Air<Scalar> > type;
|
|
};
|
|
|
|
// Set the material Law
|
|
SET_PROP(FingerBaseProblem, MaterialLaw)
|
|
{
|
|
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
|
|
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
|
|
typedef Opm::TwoPhaseMaterialTraits<Scalar,
|
|
/*wettingPhaseIdx=*/FluidSystem::wettingPhaseIdx,
|
|
/*nonWettingPhaseIdx=*/FluidSystem::nonWettingPhaseIdx> Traits;
|
|
|
|
// use the parker-lenhard hysteresis law
|
|
typedef Opm::ParkerLenhard<Traits> ParkerLenhard;
|
|
typedef ParkerLenhard type;
|
|
};
|
|
|
|
// Write the solutions of individual newton iterations?
|
|
SET_BOOL_PROP(FingerBaseProblem, NewtonWriteConvergence, false);
|
|
|
|
// Use forward differences instead of central differences
|
|
SET_INT_PROP(FingerBaseProblem, NumericDifferenceMethod, +1);
|
|
|
|
// Enable constraints
|
|
SET_INT_PROP(FingerBaseProblem, EnableConstraints, true);
|
|
|
|
// Enable gravity
|
|
SET_BOOL_PROP(FingerBaseProblem, EnableGravity, true);
|
|
|
|
// define the properties specific for the finger problem
|
|
SET_SCALAR_PROP(FingerBaseProblem, DomainSizeX, 0.1);
|
|
SET_SCALAR_PROP(FingerBaseProblem, DomainSizeY, 0.3);
|
|
SET_SCALAR_PROP(FingerBaseProblem, DomainSizeZ, 0.1);
|
|
|
|
SET_SCALAR_PROP(FingerBaseProblem, InitialWaterSaturation, 0.01);
|
|
|
|
SET_INT_PROP(FingerBaseProblem, CellsX, 20);
|
|
SET_INT_PROP(FingerBaseProblem, CellsY, 70);
|
|
SET_INT_PROP(FingerBaseProblem, CellsZ, 1);
|
|
|
|
// The default for the end time of the simulation
|
|
SET_SCALAR_PROP(FingerBaseProblem, EndTime, 215);
|
|
|
|
// The default for the initial time step size of the simulation
|
|
SET_SCALAR_PROP(FingerBaseProblem, InitialTimeStepSize, 10);
|
|
}} // namespace Opm, Properties
|
|
|
|
namespace Ewoms {
|
|
/*!
|
|
* \ingroup TestProblems
|
|
*
|
|
* \brief Two-phase problem featuring some gravity-driven saturation
|
|
* fingers.
|
|
*
|
|
* The domain of this problem is sized 10cm times 1m and is initially
|
|
* dry. Water is then injected at three locations on the top of the
|
|
* domain which leads to gravity fingering. The boundary conditions
|
|
* used are no-flow for the left and right and top of the domain and
|
|
* free-flow at the bottom. This problem uses the Parker-Lenhard
|
|
* hystersis model which might lead to non-monotonic saturation in the
|
|
* fingers if the right material parameters is chosen and the spatial
|
|
* discretization is fine enough.
|
|
*/
|
|
template <class TypeTag>
|
|
class FingerProblem : public GET_PROP_TYPE(TypeTag, BaseProblem)
|
|
{
|
|
//!\cond SKIP_THIS
|
|
typedef typename GET_PROP_TYPE(TypeTag, BaseProblem) ParentType;
|
|
|
|
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
|
|
typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
|
|
typedef typename GET_PROP_TYPE(TypeTag, Indices) Indices;
|
|
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
|
|
typedef typename GET_PROP_TYPE(TypeTag, WettingPhase) WettingPhase;
|
|
typedef typename GET_PROP_TYPE(TypeTag, NonwettingPhase) NonwettingPhase;
|
|
typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) PrimaryVariables;
|
|
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
|
|
typedef typename GET_PROP_TYPE(TypeTag, Constraints) Constraints;
|
|
typedef typename GET_PROP_TYPE(TypeTag, Model) Model;
|
|
|
|
enum {
|
|
// number of phases
|
|
|
|
// phase indices
|
|
wettingPhaseIdx = FluidSystem::wettingPhaseIdx,
|
|
nonWettingPhaseIdx = FluidSystem::nonWettingPhaseIdx,
|
|
|
|
// equation indices
|
|
contiWettingEqIdx = Indices::conti0EqIdx + wettingPhaseIdx,
|
|
|
|
// Grid and world dimension
|
|
dim = GridView::dimension,
|
|
dimWorld = GridView::dimensionworld
|
|
};
|
|
|
|
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
|
|
typedef typename GET_PROP_TYPE(TypeTag, EqVector) EqVector;
|
|
typedef typename GET_PROP_TYPE(TypeTag, RateVector) RateVector;
|
|
typedef typename GET_PROP_TYPE(TypeTag, BoundaryRateVector) BoundaryRateVector;
|
|
|
|
typedef typename GET_PROP(TypeTag, MaterialLaw)::ParkerLenhard ParkerLenhard;
|
|
typedef typename GET_PROP_TYPE(TypeTag, MaterialLaw) MaterialLaw;
|
|
typedef typename GET_PROP_TYPE(TypeTag, MaterialLawParams) MaterialLawParams;
|
|
|
|
typedef typename GridView::ctype CoordScalar;
|
|
typedef Dune::FieldVector<CoordScalar, dimWorld> GlobalPosition;
|
|
typedef Dune::FieldMatrix<Scalar, dimWorld, dimWorld> DimMatrix;
|
|
//!\endcond
|
|
|
|
public:
|
|
/*!
|
|
* \copydoc Doxygen::defaultProblemConstructor
|
|
*/
|
|
FingerProblem(Simulator &simulator)
|
|
: ParentType(simulator)
|
|
{ }
|
|
|
|
/*!
|
|
* \name Auxiliary methods
|
|
*/
|
|
//! \{
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::name
|
|
*/
|
|
std::string name() const
|
|
{ return std::string("finger_") + Model::name(); }
|
|
|
|
/*!
|
|
* \copydoc FvBaseMultiPhaseProblem::registerParameters
|
|
*/
|
|
static void registerParameters()
|
|
{
|
|
ParentType::registerParameters();
|
|
|
|
EWOMS_REGISTER_PARAM(TypeTag, Scalar, InitialWaterSaturation,
|
|
"The initial saturation in the domain [] of the "
|
|
"wetting phase");
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::finishInit()
|
|
*/
|
|
void finishInit()
|
|
{
|
|
ParentType::finishInit();
|
|
|
|
eps_ = 3e-6;
|
|
|
|
temperature_ = 273.15 + 20; // -> 20°C
|
|
|
|
FluidSystem::init();
|
|
|
|
// parameters for the Van Genuchten law of the main imbibition
|
|
// and the main drainage curves.
|
|
micParams_.setVgAlpha(0.0037);
|
|
micParams_.setVgN(4.7);
|
|
micParams_.finalize();
|
|
|
|
mdcParams_.setVgAlpha(0.0037);
|
|
mdcParams_.setVgN(4.7);
|
|
mdcParams_.finalize();
|
|
|
|
// initialize the material parameter objects of the individual
|
|
// finite volumes
|
|
int n = this->model().numDof();
|
|
materialParams_.resize(n);
|
|
for (int i = 0; i < n; ++i) {
|
|
materialParams_[i].setMicParams(&micParams_);
|
|
materialParams_[i].setMdcParams(&mdcParams_);
|
|
materialParams_[i].setSwr(0.0);
|
|
materialParams_[i].setSnr(0.1);
|
|
materialParams_[i].finalize();
|
|
ParkerLenhard::reset(materialParams_[i]);
|
|
}
|
|
|
|
K_ = this->toDimMatrix_(4.6e-10);
|
|
|
|
setupInitialFluidState_();
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::endTimeStep
|
|
*/
|
|
void endTimeStep()
|
|
{
|
|
#ifndef NDEBUG
|
|
// checkConservativeness() does not include the effect of constraints, so we
|
|
// disable it for this problem...
|
|
//this->model().checkConservativeness();
|
|
|
|
// Calculate storage terms
|
|
EqVector storage;
|
|
this->model().globalStorage(storage);
|
|
|
|
// Write mass balance information for rank 0
|
|
if (this->gridView().comm().rank() == 0) {
|
|
std::cout << "Storage: " << storage << std::endl << std::flush;
|
|
}
|
|
#endif // NDEBUG
|
|
|
|
// update the history of the hysteresis law
|
|
ElementContext elemCtx(this->simulator());
|
|
|
|
auto elemIt = this->gridView().template begin<0>();
|
|
const auto &elemEndIt = this->gridView().template end<0>();
|
|
for (; elemIt != elemEndIt; ++elemIt) {
|
|
elemCtx.updateAll(*elemIt);
|
|
for (int scvIdx = 0; scvIdx < elemCtx.numDof(/*timeIdx=*/0); ++scvIdx) {
|
|
int globalIdx = elemCtx.globalSpaceIndex(scvIdx, /*timeIdx=*/0);
|
|
const auto &fs = elemCtx.intensiveQuantities(scvIdx, /*timeIdx=*/0).fluidState();
|
|
ParkerLenhard::update(materialParams_[globalIdx], fs);
|
|
}
|
|
}
|
|
}
|
|
|
|
//! \}
|
|
|
|
/*!
|
|
* \name Soil parameters
|
|
*/
|
|
//! \{
|
|
|
|
/*!
|
|
* \copydoc FvBaseMultiPhaseProblem::temperature
|
|
*/
|
|
template <class Context>
|
|
Scalar temperature(const Context &context, int spaceIdx, int timeIdx) const
|
|
{ return temperature_; }
|
|
|
|
/*!
|
|
* \copydoc FvBaseMultiPhaseProblem::intrinsicPermeability
|
|
*/
|
|
template <class Context>
|
|
const DimMatrix &intrinsicPermeability(const Context &context, int spaceIdx,
|
|
int timeIdx) const
|
|
{ return K_; }
|
|
|
|
/*!
|
|
* \copydoc FvBaseMultiPhaseProblem::porosity
|
|
*/
|
|
template <class Context>
|
|
Scalar porosity(const Context &context, int spaceIdx, int timeIdx) const
|
|
{ return 0.4; }
|
|
|
|
/*!
|
|
* \copydoc FvBaseMultiPhaseProblem::materialLawParams
|
|
*/
|
|
template <class Context>
|
|
const MaterialLawParams &materialLawParams(const Context &context,
|
|
int spaceIdx, int timeIdx) const
|
|
{
|
|
int globalSpaceIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
|
|
return materialParams_[globalSpaceIdx];
|
|
}
|
|
|
|
//! \}
|
|
|
|
/*!
|
|
* \name Boundary conditions
|
|
*/
|
|
//! \{
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::boundary
|
|
*/
|
|
template <class Context>
|
|
void boundary(BoundaryRateVector &values, const Context &context,
|
|
int spaceIdx, int timeIdx) const
|
|
{
|
|
const GlobalPosition &pos = context.cvCenter(spaceIdx, timeIdx);
|
|
|
|
if (onLeftBoundary_(pos) || onRightBoundary_(pos)
|
|
|| onLowerBoundary_(pos)) {
|
|
values.setNoFlow();
|
|
}
|
|
else {
|
|
assert(onUpperBoundary_(pos));
|
|
|
|
values.setFreeFlow(context, spaceIdx, timeIdx, initialFluidState_);
|
|
}
|
|
|
|
// override the value for the liquid phase by forced
|
|
// imbibition of water on inlet boundary segments
|
|
if (onInlet_(pos)) {
|
|
values[contiWettingEqIdx] = -0.001; // [kg/(m^2 s)]
|
|
}
|
|
}
|
|
|
|
//! \}
|
|
|
|
/*!
|
|
* \name Volumetric terms
|
|
*/
|
|
//! \{
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::initial
|
|
*/
|
|
template <class Context>
|
|
void initial(PrimaryVariables &values, const Context &context, int spaceIdx,
|
|
int timeIdx) const
|
|
{
|
|
// assign the primary variables
|
|
values.assignNaive(initialFluidState_);
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::constraints
|
|
*/
|
|
template <class Context>
|
|
void constraints(Constraints &constraints, const Context &context,
|
|
int spaceIdx, int timeIdx) const
|
|
{
|
|
const GlobalPosition &pos = context.pos(spaceIdx, timeIdx);
|
|
|
|
if (onUpperBoundary_(pos) && !onInlet_(pos)) {
|
|
constraints.setAllConstraint();
|
|
constraints.assignNaive(initialFluidState_);
|
|
}
|
|
else if (onLowerBoundary_(pos)) {
|
|
constraints.setAllConstraint();
|
|
constraints.assignNaive(initialFluidState_);
|
|
}
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::source
|
|
*
|
|
* For this problem, the source term of all components is 0
|
|
* everywhere.
|
|
*/
|
|
template <class Context>
|
|
void source(RateVector &rate, const Context &context, int spaceIdx,
|
|
int timeIdx) const
|
|
{ rate = Scalar(0.0); }
|
|
//! \}
|
|
|
|
private:
|
|
bool onLeftBoundary_(const GlobalPosition &pos) const
|
|
{ return pos[0] < this->boundingBoxMin()[0] + eps_; }
|
|
|
|
bool onRightBoundary_(const GlobalPosition &pos) const
|
|
{ return pos[0] > this->boundingBoxMax()[0] - eps_; }
|
|
|
|
bool onLowerBoundary_(const GlobalPosition &pos) const
|
|
{ return pos[1] < this->boundingBoxMin()[1] + eps_; }
|
|
|
|
bool onUpperBoundary_(const GlobalPosition &pos) const
|
|
{ return pos[1] > this->boundingBoxMax()[1] - eps_; }
|
|
|
|
bool onInlet_(const GlobalPosition &pos) const
|
|
{
|
|
Scalar width = this->boundingBoxMax()[0] - this->boundingBoxMin()[0];
|
|
Scalar lambda = (this->boundingBoxMax()[0] - pos[0]) / width;
|
|
|
|
if (!onUpperBoundary_(pos))
|
|
return false;
|
|
|
|
Scalar xInject[] = { 0.25, 0.75 };
|
|
Scalar injectLen[] = { 0.1, 0.1 };
|
|
for (unsigned i = 0; i < sizeof(xInject) / sizeof(Scalar); ++i) {
|
|
if (xInject[i] - injectLen[i] / 2 < lambda
|
|
&& lambda < xInject[i] + injectLen[i] / 2)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void setupInitialFluidState_()
|
|
{
|
|
auto &fs = initialFluidState_;
|
|
fs.setPressure(wettingPhaseIdx, /*pressure=*/1e5);
|
|
|
|
Scalar Sw = EWOMS_GET_PARAM(TypeTag, Scalar, InitialWaterSaturation);
|
|
fs.setSaturation(wettingPhaseIdx, Sw);
|
|
fs.setSaturation(nonWettingPhaseIdx, 1 - Sw);
|
|
|
|
fs.setTemperature(temperature_);
|
|
|
|
// set the absolute pressures
|
|
Scalar pn = 1e5;
|
|
fs.setPressure(nonWettingPhaseIdx, pn);
|
|
fs.setPressure(wettingPhaseIdx, pn);
|
|
}
|
|
|
|
DimMatrix K_;
|
|
|
|
typename MaterialLawParams::VanGenuchtenParams micParams_;
|
|
typename MaterialLawParams::VanGenuchtenParams mdcParams_;
|
|
|
|
std::vector<MaterialLawParams> materialParams_;
|
|
|
|
Opm::ImmiscibleFluidState<Scalar, FluidSystem> initialFluidState_;
|
|
|
|
Scalar temperature_;
|
|
Scalar eps_;
|
|
};
|
|
|
|
} // namespace Ewoms
|
|
|
|
#endif
|