opm-simulators/examples/problems/outflowproblem.hh

400 lines
12 KiB
C++

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
* \copydoc Opm::OutflowProblem
*/
#ifndef EWOMS_OUTFLOW_PROBLEM_HH
#define EWOMS_OUTFLOW_PROBLEM_HH
#include <opm/models/pvs/pvsproperties.hh>
#include <opm/material/fluidstates/CompositionalFluidState.hpp>
#include <opm/material/fluidsystems/H2ON2LiquidPhaseFluidSystem.hpp>
#include <dune/grid/yaspgrid.hh>
#include <dune/grid/io/file/dgfparser/dgfyasp.hh>
#include <dune/common/version.hh>
#include <dune/common/fvector.hh>
#include <dune/common/fmatrix.hh>
namespace Opm {
template <class TypeTag>
class OutflowProblem;
}
namespace Opm::Properties {
namespace TTag {
struct OutflowBaseProblem {};
} // namespace TTag
// Set the grid type
template<class TypeTag>
struct Grid<TypeTag, TTag::OutflowBaseProblem> { using type = Dune::YaspGrid<2>; };
// Set the problem property
template<class TypeTag>
struct Problem<TypeTag, TTag::OutflowBaseProblem> { using type = Opm::OutflowProblem<TypeTag>; };
// Set fluid system
template<class TypeTag>
struct FluidSystem<TypeTag, TTag::OutflowBaseProblem>
{
private:
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
public:
// Two-component single phase fluid system
using type = Opm::H2ON2LiquidPhaseFluidSystem<Scalar>;
};
// Disable gravity
template<class TypeTag>
struct EnableGravity<TypeTag, TTag::OutflowBaseProblem> { static constexpr bool value = false; };
} // namespace Opm::Properties
namespace Opm::Parameters {
// The default for the end time of the simulation
template<class TypeTag>
struct EndTime<TypeTag, Properties::TTag::OutflowBaseProblem>
{
using type = GetPropType<TypeTag, Properties::Scalar>;
static constexpr type value = 100;
};
// The default DGF file to load
template<class TypeTag>
struct GridFile<TypeTag, Properties::TTag::OutflowBaseProblem>
{ static constexpr auto value = "./data/outflow.dgf"; };
// The default for the initial time step size of the simulation
template<class TypeTag>
struct InitialTimeStepSize<TypeTag, Properties::TTag::OutflowBaseProblem>
{
using type = GetPropType<TypeTag, Properties::Scalar>;
static constexpr type value = 1;
};
// Also write mass fractions to the output
template<class TypeTag>
struct VtkWriteMassFractions<TypeTag, Properties::TTag::OutflowBaseProblem>
{ static constexpr bool value = true; };
} // namespac Opm::Parameters
namespace Opm {
/*!
* \ingroup TestProblems
*
* \brief Problem where dissolved nitrogen is transported with the water
* phase from the left side to the right.
*
* The model domain is 1m times 1m and exhibits homogeneous soil
* properties (\f$ \mathrm{K=10e-10, \Phi=0.4}\f$). Initially the
* domain is fully saturated by water without any nitrogen dissolved.
*
* At the left side, a free-flow condition defines a nitrogen mole
* fraction of 0.02%. The water phase flows from the left side to the
* right due to the imposed pressure gradient of \f$1e5\,Pa/m\f$. The
* nitrogen is transported with the water flow and leaves the domain
* at the right boundary where an outflow boundary condition is
* used.
*/
template <class TypeTag>
class OutflowProblem : public GetPropType<TypeTag, Properties::BaseProblem>
{
using ParentType = GetPropType<TypeTag, Properties::BaseProblem>;
using GridView = GetPropType<TypeTag, Properties::GridView>;
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>;
using EqVector = GetPropType<TypeTag, Properties::EqVector>;
using RateVector = GetPropType<TypeTag, Properties::RateVector>;
using BoundaryRateVector = GetPropType<TypeTag, Properties::BoundaryRateVector>;
using Simulator = GetPropType<TypeTag, Properties::Simulator>;
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
using MaterialLawParams = GetPropType<TypeTag, Properties::MaterialLawParams>;
// copy some indices for convenience
enum {
// Grid and world dimension
dim = GridView::dimension,
dimWorld = GridView::dimensionworld,
numPhases = FluidSystem::numPhases,
// component indices
H2OIdx = FluidSystem::H2OIdx,
N2Idx = FluidSystem::N2Idx
};
using CoordScalar = typename GridView::ctype;
using GlobalPosition = Dune::FieldVector<CoordScalar, dimWorld>;
using DimMatrix = Dune::FieldMatrix<Scalar, dimWorld, dimWorld>;
public:
/*!
* \copydoc Doxygen::defaultProblemConstructor
*/
OutflowProblem(Simulator& simulator)
: ParentType(simulator)
, eps_(1e-6)
{ }
/*!
* \copydoc FvBaseProblem::finishInit
*/
void finishInit()
{
ParentType::finishInit();
temperature_ = 273.15 + 20;
FluidSystem::init(/*minT=*/temperature_ - 1, /*maxT=*/temperature_ + 2,
/*numT=*/3,
/*minp=*/0.8e5, /*maxp=*/2.5e5, /*nump=*/500);
// set parameters of porous medium
perm_ = this->toDimMatrix_(1e-10);
porosity_ = 0.4;
tortuosity_ = 0.28;
}
/*!
* \name Problem parameters
*/
//! \{
/*!
* \copydoc FvBaseProblem::name
*/
std::string name() const
{ return "outflow"; }
/*!
* \copydoc FvBaseProblem::endTimeStep
*/
void endTimeStep()
{
#ifndef NDEBUG
this->model().checkConservativeness();
// Calculate storage terms
EqVector storage;
this->model().globalStorage(storage);
// Write mass balance information for rank 0
if (this->gridView().comm().rank() == 0) {
std::cout << "Storage: " << storage << std::endl << std::flush;
}
#endif // NDEBUG
}
/*!
* \copydoc FvBaseMultiPhaseProblem::temperature
*
* This problem assumes a temperature.
*/
template <class Context>
Scalar temperature(const Context& /*context*/,
unsigned /*spaceIdx*/,
unsigned /*timeIdx*/) const
{ return temperature_; } // in [K]
/*!
* \copydoc FvBaseMultiPhaseProblem::intrinsicPermeability
*
* This problem uses a constant intrinsic permeability.
*/
template <class Context>
const DimMatrix& intrinsicPermeability(const Context& /*context*/,
unsigned /*spaceIdx*/,
unsigned /*timeIdx*/) const
{ return perm_; }
/*!
* \copydoc FvBaseMultiPhaseProblem::porosity
*
* This problem uses a constant porosity.
*/
template <class Context>
Scalar porosity(const Context& /*context*/,
unsigned /*spaceIdx*/,
unsigned /*timeIdx*/) const
{ return porosity_; }
#if 0
/*!
* \brief Define the tortuosity \f$[?]\f$.
*
*/
template <class Context>
Scalar tortuosity(const Context& context, unsigned spaceIdx, unsigned timeIdx) const
{ return tortuosity_; }
/*!
* \brief Define the dispersivity \f$[?]\f$.
*
*/
template <class Context>
Scalar dispersivity(const Context& context,
unsigned spaceIdx, unsigned timeIdx) const
{ return 0; }
#endif
//! \}
/*!
* \name Boundary conditions
*/
//! \{
/*!
* \copydoc FvBaseProblem::boundary
*/
template <class Context>
void boundary(BoundaryRateVector& values, const Context& context,
unsigned spaceIdx, unsigned timeIdx) const
{
const GlobalPosition& globalPos = context.pos(spaceIdx, timeIdx);
if (onLeftBoundary_(globalPos)) {
Opm::CompositionalFluidState<Scalar, FluidSystem,
/*storeEnthalpy=*/false> fs;
initialFluidState_(fs, context, spaceIdx, timeIdx);
fs.setPressure(/*phaseIdx=*/0, fs.pressure(/*phaseIdx=*/0) + 1e5);
Scalar xlN2 = 2e-4;
fs.setMoleFraction(/*phaseIdx=*/0, N2Idx, xlN2);
fs.setMoleFraction(/*phaseIdx=*/0, H2OIdx, 1 - xlN2);
typename FluidSystem::template ParameterCache<Scalar> paramCache;
paramCache.updateAll(fs);
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) {
fs.setDensity(phaseIdx, FluidSystem::density(fs, paramCache, phaseIdx));
fs.setViscosity(phaseIdx, FluidSystem::viscosity(fs, paramCache, phaseIdx));
}
// impose an freeflow boundary condition
values.setFreeFlow(context, spaceIdx, timeIdx, fs);
}
else if (onRightBoundary_(globalPos)) {
Opm::CompositionalFluidState<Scalar, FluidSystem,
/*storeEnthalpy=*/false> fs;
initialFluidState_(fs, context, spaceIdx, timeIdx);
// impose an outflow boundary condition
values.setOutFlow(context, spaceIdx, timeIdx, fs);
}
else
// no flow on top and bottom
values.setNoFlow();
}
//! \}
/*!
* \name Volumetric terms
*/
//! \{
/*!
* \copydoc FvBaseProblem::initial
*/
template <class Context>
void initial(PrimaryVariables& values,
const Context& context,
unsigned spaceIdx,
unsigned timeIdx) const
{
Opm::CompositionalFluidState<Scalar, FluidSystem, /*storeEnthalpy=*/false> fs;
initialFluidState_(fs, context, spaceIdx, timeIdx);
values.assignNaive(fs);
}
/*!
* \copydoc FvBaseProblem::source
*
* For this problem, the source term of all components is 0
* everywhere.
*/
template <class Context>
void source(RateVector& rate,
const Context& /*context*/,
unsigned /*spaceIdx*/,
unsigned /*timeIdx*/) const
{ rate = Scalar(0.0); }
//! \}
private:
bool onLeftBoundary_(const GlobalPosition& pos) const
{ return pos[0] < eps_; }
bool onRightBoundary_(const GlobalPosition& pos) const
{ return pos[0] > this->boundingBoxMax()[0] - eps_; }
template <class FluidState, class Context>
void initialFluidState_(FluidState& fs, const Context& context,
unsigned spaceIdx, unsigned timeIdx) const
{
Scalar T = temperature(context, spaceIdx, timeIdx);
// Scalar rho = FluidSystem::H2O::liquidDensity(T, /*pressure=*/1.5e5);
// Scalar z = context.pos(spaceIdx, timeIdx)[dim - 1] -
// this->boundingBoxMax()[dim - 1];
// Scalar z = context.pos(spaceIdx, timeIdx)[dim - 1] -
// this->boundingBoxMax()[dim - 1];
fs.setSaturation(/*phaseIdx=*/0, 1.0);
fs.setPressure(/*phaseIdx=*/0, 1e5 /* + rho*z */);
fs.setMoleFraction(/*phaseIdx=*/0, H2OIdx, 1.0);
fs.setMoleFraction(/*phaseIdx=*/0, N2Idx, 0);
fs.setTemperature(T);
typename FluidSystem::template ParameterCache<Scalar> paramCache;
paramCache.updateAll(fs);
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) {
fs.setDensity(phaseIdx, FluidSystem::density(fs, paramCache, phaseIdx));
fs.setViscosity(phaseIdx, FluidSystem::viscosity(fs, paramCache, phaseIdx));
}
}
const Scalar eps_;
MaterialLawParams materialParams_;
DimMatrix perm_;
Scalar temperature_;
Scalar porosity_;
Scalar tortuosity_;
};
} // namespace Opm
#endif