opm-simulators/opm/simulators/wells/WellInterfaceFluidSystem.cpp
Arne Morten Kvarving 3aa2b38832 changed: split out FluidSystem only dependent code from WellInterface
this allows using explicit template instantation to only build
this code once for each FluidSystem
2021-05-27 14:22:14 +02:00

907 lines
37 KiB
C++

/*
Copyright 2017 SINTEF Digital, Mathematics and Cybernetics.
Copyright 2017 Statoil ASA.
Copyright 2018 IRIS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#include <opm/simulators/wells/WellInterfaceFluidSystem.hpp>
#include <opm/material/fluidsystems/BlackOilFluidSystem.hpp>
#include <opm/parser/eclipse/EclipseState/Schedule/Well/WellTestState.hpp>
#include <opm/simulators/utils/DeferredLogger.hpp>
#include <opm/simulators/wells/RateConverter.hpp>
#include <opm/simulators/wells/ParallelWellInfo.hpp>
#include <opm/simulators/wells/WellGroupHelpers.hpp>
#include <opm/simulators/wells/WellState.hpp>
#include <ebos/eclalternativeblackoilindices.hh>
#include <cassert>
#include <cmath>
namespace Opm
{
template<class FluidSystem>
WellInterfaceFluidSystem<FluidSystem>::
WellInterfaceFluidSystem(const Well& well,
const ParallelWellInfo& parallel_well_info,
const int time_step,
const RateConverterType& rate_converter,
const int pvtRegionIdx,
const int num_components,
const int num_phases,
const int index_of_well,
const int first_perf_index,
const std::vector<PerforationData>& perf_data)
: WellInterfaceGeneric(well, parallel_well_info, time_step,
pvtRegionIdx, num_components, num_phases,
index_of_well, first_perf_index, perf_data)
, rateConverter_(rate_converter)
{
}
template<typename FluidSystem>
void
WellInterfaceFluidSystem<FluidSystem>::
calculateReservoirRates(WellState& well_state) const
{
const int fipreg = 0; // not considering the region for now
const int np = number_of_phases_;
std::vector<double> surface_rates(np, 0.0);
for (int p = 0; p < np; ++p) {
surface_rates[p] = well_state.wellRates(index_of_well_)[p];
}
std::vector<double> voidage_rates(np, 0.0);
rateConverter_.calcReservoirVoidageRates(fipreg, pvtRegionIdx_, surface_rates, voidage_rates);
for (int p = 0; p < np; ++p) {
well_state.wellReservoirRates(index_of_well_)[p] = voidage_rates[p];
}
}
template <typename FluidSystem>
bool
WellInterfaceFluidSystem<FluidSystem>::
checkIndividualConstraints(WellState& well_state,
const SummaryState& summaryState) const
{
const auto& well = well_ecl_;
const PhaseUsage& pu = phaseUsage();
const int well_index = index_of_well_;
if (well.isInjector()) {
const auto controls = well.injectionControls(summaryState);
auto currentControl = well_state.currentInjectionControl(well_index);
if (controls.hasControl(Well::InjectorCMode::BHP) && currentControl != Well::InjectorCMode::BHP)
{
const auto& bhp = controls.bhp_limit;
double current_bhp = well_state.bhp(well_index);
if (bhp < current_bhp) {
well_state.currentInjectionControl(well_index, Well::InjectorCMode::BHP);
return true;
}
}
if (controls.hasControl(Well::InjectorCMode::RATE) && currentControl != Well::InjectorCMode::RATE)
{
InjectorType injectorType = controls.injector_type;
double current_rate = 0.0;
switch (injectorType) {
case InjectorType::WATER:
{
current_rate = well_state.wellRates(well_index)[ pu.phase_pos[BlackoilPhases::Aqua] ];
break;
}
case InjectorType::OIL:
{
current_rate = well_state.wellRates(well_index)[ pu.phase_pos[BlackoilPhases::Liquid] ];
break;
}
case InjectorType::GAS:
{
current_rate = well_state.wellRates(well_index)[ pu.phase_pos[BlackoilPhases::Vapour] ];
break;
}
default:
throw("Expected WATER, OIL or GAS as type for injectors " + well.name());
}
if (controls.surface_rate < current_rate) {
well_state.currentInjectionControl(well_index, Well::InjectorCMode::RATE);
return true;
}
}
if (controls.hasControl(Well::InjectorCMode::RESV) && currentControl != Well::InjectorCMode::RESV)
{
double current_rate = 0.0;
if( pu.phase_used[BlackoilPhases::Aqua] )
current_rate += well_state.wellReservoirRates(well_index)[ pu.phase_pos[BlackoilPhases::Aqua] ];
if( pu.phase_used[BlackoilPhases::Liquid] )
current_rate += well_state.wellReservoirRates(well_index)[ pu.phase_pos[BlackoilPhases::Liquid] ];
if( pu.phase_used[BlackoilPhases::Vapour] )
current_rate += well_state.wellReservoirRates(well_index)[ pu.phase_pos[BlackoilPhases::Vapour] ];
if (controls.reservoir_rate < current_rate) {
currentControl = Well::InjectorCMode::RESV;
return true;
}
}
if (controls.hasControl(Well::InjectorCMode::THP) && currentControl != Well::InjectorCMode::THP)
{
const auto& thp = getTHPConstraint(summaryState);
double current_thp = well_state.thp(well_index);
if (thp < current_thp) {
currentControl = Well::InjectorCMode::THP;
return true;
}
}
}
if (well.isProducer( )) {
const auto controls = well.productionControls(summaryState);
auto currentControl = well_state.currentProductionControl(well_index);
if (controls.hasControl(Well::ProducerCMode::BHP) && currentControl != Well::ProducerCMode::BHP )
{
const double bhp = controls.bhp_limit;
double current_bhp = well_state.bhp(well_index);
if (bhp > current_bhp) {
well_state.currentProductionControl(well_index, Well::ProducerCMode::BHP);
return true;
}
}
if (controls.hasControl(Well::ProducerCMode::ORAT) && currentControl != Well::ProducerCMode::ORAT) {
double current_rate = -well_state.wellRates(well_index)[ pu.phase_pos[BlackoilPhases::Liquid] ];
if (controls.oil_rate < current_rate ) {
well_state.currentProductionControl(well_index, Well::ProducerCMode::ORAT);
return true;
}
}
if (controls.hasControl(Well::ProducerCMode::WRAT) && currentControl != Well::ProducerCMode::WRAT ) {
double current_rate = -well_state.wellRates(well_index)[ pu.phase_pos[BlackoilPhases::Aqua] ];
if (controls.water_rate < current_rate ) {
well_state.currentProductionControl(well_index, Well::ProducerCMode::WRAT);
return true;
}
}
if (controls.hasControl(Well::ProducerCMode::GRAT) && currentControl != Well::ProducerCMode::GRAT ) {
double current_rate = -well_state.wellRates(well_index)[ pu.phase_pos[BlackoilPhases::Vapour] ];
if (controls.gas_rate < current_rate ) {
well_state.currentProductionControl(well_index, Well::ProducerCMode::GRAT);
return true;
}
}
if (controls.hasControl(Well::ProducerCMode::LRAT) && currentControl != Well::ProducerCMode::LRAT) {
double current_rate = -well_state.wellRates(well_index)[ pu.phase_pos[BlackoilPhases::Liquid] ];
current_rate -= well_state.wellRates(well_index)[ pu.phase_pos[BlackoilPhases::Aqua] ];
if (controls.liquid_rate < current_rate ) {
well_state.currentProductionControl(well_index, Well::ProducerCMode::LRAT);
return true;
}
}
if (controls.hasControl(Well::ProducerCMode::RESV) && currentControl != Well::ProducerCMode::RESV ) {
double current_rate = 0.0;
if( pu.phase_used[BlackoilPhases::Aqua] )
current_rate -= well_state.wellReservoirRates(well_index)[ pu.phase_pos[BlackoilPhases::Aqua] ];
if( pu.phase_used[BlackoilPhases::Liquid] )
current_rate -= well_state.wellReservoirRates(well_index)[ pu.phase_pos[BlackoilPhases::Liquid] ];
if( pu.phase_used[BlackoilPhases::Vapour] )
current_rate -= well_state.wellReservoirRates(well_index)[ pu.phase_pos[BlackoilPhases::Vapour] ];
if (controls.prediction_mode && controls.resv_rate < current_rate) {
well_state.currentProductionControl(well_index, Well::ProducerCMode::RESV);
return true;
}
if (!controls.prediction_mode) {
const int fipreg = 0; // not considering the region for now
const int np = number_of_phases_;
std::vector<double> surface_rates(np, 0.0);
if( pu.phase_used[BlackoilPhases::Aqua] )
surface_rates[pu.phase_pos[BlackoilPhases::Aqua]] = controls.water_rate;
if( pu.phase_used[BlackoilPhases::Liquid] )
surface_rates[pu.phase_pos[BlackoilPhases::Liquid]] = controls.oil_rate;
if( pu.phase_used[BlackoilPhases::Vapour] )
surface_rates[pu.phase_pos[BlackoilPhases::Vapour]] = controls.gas_rate;
std::vector<double> voidage_rates(np, 0.0);
rateConverter_.calcReservoirVoidageRates(fipreg, pvtRegionIdx_, surface_rates, voidage_rates);
double resv_rate = 0.0;
for (int p = 0; p < np; ++p) {
resv_rate += voidage_rates[p];
}
if (resv_rate < current_rate) {
well_state.currentProductionControl(well_index, Well::ProducerCMode::RESV);
return true;
}
}
}
if (controls.hasControl(Well::ProducerCMode::THP) && currentControl != Well::ProducerCMode::THP)
{
const auto& thp = getTHPConstraint(summaryState);
double current_thp = well_state.thp(well_index);
if (thp > current_thp) {
well_state.currentProductionControl(well_index, Well::ProducerCMode::THP);
return true;
}
}
}
return false;
}
template <typename FluidSystem>
std::pair<bool, double>
WellInterfaceFluidSystem<FluidSystem>::
checkGroupConstraintsInj(const Group& group,
const WellState& well_state,
const GroupState& group_state,
const double efficiencyFactor,
const Schedule& schedule,
const SummaryState& summaryState,
DeferredLogger& deferred_logger) const
{
// Translate injector type from control to Phase.
const auto& well_controls = this->well_ecl_.injectionControls(summaryState);
auto injectorType = well_controls.injector_type;
Phase injectionPhase;
switch (injectorType) {
case InjectorType::WATER:
{
injectionPhase = Phase::WATER;
break;
}
case InjectorType::OIL:
{
injectionPhase = Phase::OIL;
break;
}
case InjectorType::GAS:
{
injectionPhase = Phase::GAS;
break;
}
default:
throw("Expected WATER, OIL or GAS as type for injector " + name());
}
// Make conversion factors for RESV <-> surface rates.
std::vector<double> resv_coeff(phaseUsage().num_phases, 1.0);
rateConverter_.calcCoeff(0, pvtRegionIdx_, resv_coeff); // FIPNUM region 0 here, should use FIPNUM from WELSPECS.
// Call check for the well's injection phase.
return WellGroupHelpers::checkGroupConstraintsInj(name(),
well_ecl_.groupName(),
group,
well_state,
group_state,
current_step_,
guide_rate_,
well_state.wellRates(index_of_well_).data(),
injectionPhase,
phaseUsage(),
efficiencyFactor,
schedule,
summaryState,
resv_coeff,
deferred_logger);
}
template <typename FluidSystem>
std::pair<bool, double>
WellInterfaceFluidSystem<FluidSystem>::
checkGroupConstraintsProd(const Group& group,
const WellState& well_state,
const GroupState& group_state,
const double efficiencyFactor,
const Schedule& schedule,
const SummaryState& summaryState,
DeferredLogger& deferred_logger) const
{
// Make conversion factors for RESV <-> surface rates.
std::vector<double> resv_coeff(this->phaseUsage().num_phases, 1.0);
rateConverter_.calcCoeff(0, pvtRegionIdx_, resv_coeff); // FIPNUM region 0 here, should use FIPNUM from WELSPECS.
return WellGroupHelpers::checkGroupConstraintsProd(name(),
well_ecl_.groupName(),
group,
well_state,
group_state,
current_step_,
guide_rate_,
well_state.wellRates(index_of_well_).data(),
phaseUsage(),
efficiencyFactor,
schedule,
summaryState,
resv_coeff,
deferred_logger);
}
template <typename FluidSystem>
bool
WellInterfaceFluidSystem<FluidSystem>::
checkGroupConstraints(WellState& well_state,
const GroupState& group_state,
const Schedule& schedule,
const SummaryState& summaryState,
DeferredLogger& deferred_logger) const
{
const auto& well = well_ecl_;
const int well_index = index_of_well_;
if (well.isInjector()) {
auto currentControl = well_state.currentInjectionControl(well_index);
if (currentControl != Well::InjectorCMode::GRUP) {
// This checks only the first encountered group limit,
// in theory there could be several, and then we should
// test all but the one currently applied. At that point,
// this if-statement should be removed and we should always
// check, skipping over only the single group parent whose
// control is the active one for the well (if any).
const auto& group = schedule.getGroup( well.groupName(), current_step_ );
const double efficiencyFactor = well.getEfficiencyFactor();
const std::pair<bool, double> group_constraint =
checkGroupConstraintsInj(group, well_state, group_state, efficiencyFactor,
schedule, summaryState, deferred_logger);
// If a group constraint was broken, we set the current well control to
// be GRUP.
if (group_constraint.first) {
well_state.currentInjectionControl(index_of_well_, Well::InjectorCMode::GRUP);
const int np = well_state.numPhases();
for (int p = 0; p<np; ++p) {
well_state.wellRates(index_of_well_)[p] *= group_constraint.second;
}
}
return group_constraint.first;
}
}
if (well.isProducer( )) {
auto currentControl = well_state.currentProductionControl(well_index);
if (currentControl != Well::ProducerCMode::GRUP) {
// This checks only the first encountered group limit,
// in theory there could be several, and then we should
// test all but the one currently applied. At that point,
// this if-statement should be removed and we should always
// check, skipping over only the single group parent whose
// control is the active one for the well (if any).
const auto& group = schedule.getGroup( well.groupName(), current_step_ );
const double efficiencyFactor = well.getEfficiencyFactor();
const std::pair<bool, double> group_constraint =
checkGroupConstraintsProd(group, well_state, group_state, efficiencyFactor,
schedule, summaryState, deferred_logger);
// If a group constraint was broken, we set the current well control to
// be GRUP.
if (group_constraint.first) {
well_state.currentProductionControl(index_of_well_, Well::ProducerCMode::GRUP);
const int np = well_state.numPhases();
for (int p = 0; p<np; ++p) {
well_state.wellRates(index_of_well_)[p] *= group_constraint.second;
}
}
return group_constraint.first;
}
}
return false;
}
template <typename FluidSystem>
bool
WellInterfaceFluidSystem<FluidSystem>::
checkConstraints(WellState& well_state,
const GroupState& group_state,
const Schedule& schedule,
const SummaryState& summaryState,
DeferredLogger& deferred_logger) const
{
const bool ind_broken = checkIndividualConstraints(well_state, summaryState);
if (ind_broken) {
return true;
} else {
return checkGroupConstraints(well_state, group_state, schedule, summaryState, deferred_logger);
}
}
template<typename FluidSystem>
bool
WellInterfaceFluidSystem<FluidSystem>::
checkRateEconLimits(const WellEconProductionLimits& econ_production_limits,
const double* rates_or_potentials,
DeferredLogger& deferred_logger) const
{
const PhaseUsage& pu = phaseUsage();
if (econ_production_limits.onMinOilRate()) {
assert(FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx));
const double oil_rate = rates_or_potentials[pu.phase_pos[ Oil ] ];
const double min_oil_rate = econ_production_limits.minOilRate();
if (std::abs(oil_rate) < min_oil_rate) {
return true;
}
}
if (econ_production_limits.onMinGasRate() ) {
assert(FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx));
const double gas_rate = rates_or_potentials[pu.phase_pos[ Gas ] ];
const double min_gas_rate = econ_production_limits.minGasRate();
if (std::abs(gas_rate) < min_gas_rate) {
return true;
}
}
if (econ_production_limits.onMinLiquidRate() ) {
assert(FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx));
assert(FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx));
const double oil_rate = rates_or_potentials[pu.phase_pos[ Oil ] ];
const double water_rate = rates_or_potentials[pu.phase_pos[ Water ] ];
const double liquid_rate = oil_rate + water_rate;
const double min_liquid_rate = econ_production_limits.minLiquidRate();
if (std::abs(liquid_rate) < min_liquid_rate) {
return true;
}
}
if (econ_production_limits.onMinReservoirFluidRate()) {
deferred_logger.warning("NOT_SUPPORTING_MIN_RESERVOIR_FLUID_RATE", "Minimum reservoir fluid production rate limit is not supported yet");
}
return false;
}
template<typename FluidSystem>
void
WellInterfaceFluidSystem<FluidSystem>::
checkMaxWaterCutLimit(const WellEconProductionLimits& econ_production_limits,
const WellState& well_state,
RatioLimitCheckReport& report) const
{
assert(FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx));
assert(FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx));
// function to calculate water cut based on rates
auto waterCut = [](const std::vector<double>& rates,
const PhaseUsage& pu) {
const double oil_rate = rates[pu.phase_pos[Oil]];
const double water_rate = rates[pu.phase_pos[Water]];
// both rate should be in the same direction
assert(oil_rate * water_rate >= 0.);
const double liquid_rate = oil_rate + water_rate;
if (liquid_rate != 0.) {
return (water_rate / liquid_rate);
} else {
return 0.;
}
};
const double max_water_cut_limit = econ_production_limits.maxWaterCut();
assert(max_water_cut_limit > 0.);
const bool watercut_limit_violated = checkMaxRatioLimitWell(well_state, max_water_cut_limit, waterCut);
if (watercut_limit_violated) {
report.ratio_limit_violated = true;
checkMaxRatioLimitCompletions(well_state, max_water_cut_limit, waterCut, report);
}
}
template<typename FluidSystem>
void
WellInterfaceFluidSystem<FluidSystem>::
checkMaxGORLimit(const WellEconProductionLimits& econ_production_limits,
const WellState& well_state,
RatioLimitCheckReport& report) const
{
assert(FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx));
assert(FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx));
// function to calculate gor based on rates
auto gor = [](const std::vector<double>& rates,
const PhaseUsage& pu) {
const double oil_rate = rates[pu.phase_pos[Oil]];
const double gas_rate = rates[pu.phase_pos[Gas]];
// both rate should be in the same direction
assert(oil_rate * gas_rate >= 0.);
double gas_oil_ratio = 0.;
if (oil_rate != 0.) {
gas_oil_ratio = gas_rate / oil_rate;
} else {
if (gas_rate != 0.) {
gas_oil_ratio = 1.e100; // big value to mark it as violated
} else {
gas_oil_ratio = 0.0;
}
}
return gas_oil_ratio;
};
const double max_gor_limit = econ_production_limits.maxGasOilRatio();
assert(max_gor_limit > 0.);
const bool gor_limit_violated = checkMaxRatioLimitWell(well_state, max_gor_limit, gor);
if (gor_limit_violated) {
report.ratio_limit_violated = true;
checkMaxRatioLimitCompletions(well_state, max_gor_limit, gor, report);
}
}
template<typename FluidSystem>
void
WellInterfaceFluidSystem<FluidSystem>::
checkMaxWGRLimit(const WellEconProductionLimits& econ_production_limits,
const WellState& well_state,
RatioLimitCheckReport& report) const
{
assert(FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx));
assert(FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx));
// function to calculate wgr based on rates
auto wgr = [](const std::vector<double>& rates,
const PhaseUsage& pu) {
const double water_rate = rates[pu.phase_pos[Water]];
const double gas_rate = rates[pu.phase_pos[Gas]];
// both rate should be in the same direction
assert(water_rate * gas_rate >= 0.);
double water_gas_ratio = 0.;
if (gas_rate != 0.) {
water_gas_ratio = water_rate / gas_rate;
} else {
if (water_rate != 0.) {
water_gas_ratio = 1.e100; // big value to mark it as violated
} else {
water_gas_ratio = 0.0;
}
}
return water_gas_ratio;
};
const double max_wgr_limit = econ_production_limits.maxWaterGasRatio();
assert(max_wgr_limit > 0.);
const bool wgr_limit_violated = checkMaxRatioLimitWell(well_state, max_wgr_limit, wgr);
if (wgr_limit_violated) {
report.ratio_limit_violated = true;
checkMaxRatioLimitCompletions(well_state, max_wgr_limit, wgr, report);
}
}
template<typename FluidSystem>
void
WellInterfaceFluidSystem<FluidSystem>::
checkRatioEconLimits(const WellEconProductionLimits& econ_production_limits,
const WellState& well_state,
RatioLimitCheckReport& report,
DeferredLogger& deferred_logger) const
{
// TODO: not sure how to define the worst-offending completion when more than one
// ratio related limit is violated.
// The defintion used here is that we define the violation extent based on the
// ratio between the value and the corresponding limit.
// For each violated limit, we decide the worst-offending completion separately.
// Among the worst-offending completions, we use the one has the biggest violation
// extent.
if (econ_production_limits.onMaxWaterCut()) {
checkMaxWaterCutLimit(econ_production_limits, well_state, report);
}
if (econ_production_limits.onMaxGasOilRatio()) {
checkMaxGORLimit(econ_production_limits, well_state, report);
}
if (econ_production_limits.onMaxWaterGasRatio()) {
checkMaxWGRLimit(econ_production_limits, well_state, report);
}
if (econ_production_limits.onMaxGasLiquidRatio()) {
deferred_logger.warning("NOT_SUPPORTING_MAX_GLR", "the support for max Gas-Liquid ratio is not implemented yet!");
}
if (report.ratio_limit_violated) {
assert(report.worst_offending_completion != INVALIDCOMPLETION);
assert(report.violation_extent > 1.);
}
}
template<typename FluidSystem>
void
WellInterfaceFluidSystem<FluidSystem>::
updateWellTestStateEconomic(const WellState& well_state,
const double simulation_time,
const bool write_message_to_opmlog,
WellTestState& well_test_state,
DeferredLogger& deferred_logger) const
{
if (this->wellIsStopped())
return;
const WellEconProductionLimits& econ_production_limits = well_ecl_.getEconLimits();
// if no limit is effective here, then continue to the next well
if ( !econ_production_limits.onAnyEffectiveLimit() ) {
return;
}
// flag to check if the mim oil/gas rate limit is violated
bool rate_limit_violated = false;
const auto& quantity_limit = econ_production_limits.quantityLimit();
const int np = number_of_phases_;
if (econ_production_limits.onAnyRateLimit()) {
if (quantity_limit == WellEconProductionLimits::QuantityLimit::POTN)
rate_limit_violated = checkRateEconLimits(econ_production_limits, &well_state.wellPotentials()[index_of_well_ * np], deferred_logger);
else {
rate_limit_violated = checkRateEconLimits(econ_production_limits, well_state.wellRates(index_of_well_).data(), deferred_logger);
}
}
if (rate_limit_violated) {
if (econ_production_limits.endRun()) {
const std::string warning_message = std::string("ending run after well closed due to economic limits")
+ std::string("is not supported yet \n")
+ std::string("the program will keep running after ") + name()
+ std::string(" is closed");
deferred_logger.warning("NOT_SUPPORTING_ENDRUN", warning_message);
}
if (econ_production_limits.validFollowonWell()) {
deferred_logger.warning("NOT_SUPPORTING_FOLLOWONWELL", "opening following on well after well closed is not supported yet");
}
well_test_state.closeWell(name(), WellTestConfig::Reason::ECONOMIC, simulation_time);
if (write_message_to_opmlog) {
if (this->well_ecl_.getAutomaticShutIn()) {
const std::string msg = std::string("well ") + name() + std::string(" will be shut due to rate economic limit");
deferred_logger.info(msg);
} else {
const std::string msg = std::string("well ") + name() + std::string(" will be stopped due to rate economic limit");
deferred_logger.info(msg);
}
}
// the well is closed, not need to check other limits
return;
}
if ( !econ_production_limits.onAnyRatioLimit() ) {
// there is no need to check the ratio limits
return;
}
// checking for ratio related limits, mostly all kinds of ratio.
RatioLimitCheckReport ratio_report;
checkRatioEconLimits(econ_production_limits, well_state, ratio_report, deferred_logger);
if (ratio_report.ratio_limit_violated) {
const auto workover = econ_production_limits.workover();
switch (workover) {
case WellEconProductionLimits::EconWorkover::CON:
{
const int worst_offending_completion = ratio_report.worst_offending_completion;
well_test_state.addClosedCompletion(name(), worst_offending_completion, simulation_time);
if (write_message_to_opmlog) {
if (worst_offending_completion < 0) {
const std::string msg = std::string("Connection ") + std::to_string(- worst_offending_completion)
+ std::string(" for well ") + name() + std::string(" will be closed due to economic limit");
deferred_logger.info(msg);
} else {
const std::string msg = std::string("Completion ") + std::to_string(worst_offending_completion)
+ std::string(" for well ") + name() + std::string(" will be closed due to economic limit");
deferred_logger.info(msg);
}
}
bool allCompletionsClosed = true;
const auto& connections = well_ecl_.getConnections();
for (const auto& connection : connections) {
if (connection.state() == Connection::State::OPEN
&& !well_test_state.hasCompletion(name(), connection.complnum())) {
allCompletionsClosed = false;
}
}
if (allCompletionsClosed) {
well_test_state.closeWell(name(), WellTestConfig::Reason::ECONOMIC, simulation_time);
if (write_message_to_opmlog) {
if (this->well_ecl_.getAutomaticShutIn()) {
const std::string msg = name() + std::string(" will be shut due to last completion closed");
deferred_logger.info(msg);
} else {
const std::string msg = name() + std::string(" will be stopped due to last completion closed");
deferred_logger.info(msg);
}
}
}
break;
}
case WellEconProductionLimits::EconWorkover::WELL:
{
well_test_state.closeWell(name(), WellTestConfig::Reason::ECONOMIC, simulation_time);
if (write_message_to_opmlog) {
if (well_ecl_.getAutomaticShutIn()) {
// tell the control that the well is closed
const std::string msg = name() + std::string(" will be shut due to ratio economic limit");
deferred_logger.info(msg);
} else {
const std::string msg = name() + std::string(" will be stopped due to ratio economic limit");
deferred_logger.info(msg);
}
}
break;
}
case WellEconProductionLimits::EconWorkover::NONE:
break;
default:
{
deferred_logger.warning("NOT_SUPPORTED_WORKOVER_TYPE",
"not supporting workover type " + WellEconProductionLimits::EconWorkover2String(workover) );
}
}
}
}
template<typename FluidSystem>
void
WellInterfaceFluidSystem<FluidSystem>::
updateWellTestState(const WellState& well_state,
const double& simulationTime,
const bool& writeMessageToOPMLog,
WellTestState& wellTestState,
DeferredLogger& deferred_logger) const
{
// currently, we only updateWellTestState for producers
if (this->isInjector()) {
return;
}
// Based on current understanding, only under prediction mode, we need to shut well due to various
// reasons or limits. With more knowlage or testing cases later, this might need to be corrected.
if (!underPredictionMode() ) {
return;
}
// updating well test state based on physical (THP/BHP) limits.
updateWellTestStatePhysical(well_state, simulationTime, writeMessageToOPMLog, wellTestState, deferred_logger);
// updating well test state based on Economic limits.
updateWellTestStateEconomic(well_state, simulationTime, writeMessageToOPMLog, wellTestState, deferred_logger);
// TODO: well can be shut/closed due to other reasons
}
template<typename FluidSystem>
template <typename RatioFunc>
void WellInterfaceFluidSystem<FluidSystem>::
checkMaxRatioLimitCompletions(const WellState& well_state,
const double max_ratio_limit,
const RatioFunc& ratioFunc,
RatioLimitCheckReport& report) const
{
int worst_offending_completion = INVALIDCOMPLETION;
// the maximum water cut value of the completions
// it is used to identify the most offending completion
double max_ratio_completion = 0;
const int np = number_of_phases_;
const auto * perf_phase_rates = &well_state.perfPhaseRates()[first_perf_ * np];
// look for the worst_offending_completion
for (const auto& completion : completions_) {
std::vector<double> completion_rates(np, 0.0);
// looping through the connections associated with the completion
const std::vector<int>& conns = completion.second;
for (const int c : conns) {
for (int p = 0; p < np; ++p) {
const double connection_rate = perf_phase_rates[c * np + p];
completion_rates[p] += connection_rate;
}
} // end of for (const int c : conns)
parallel_well_info_.communication().sum(completion_rates.data(), completion_rates.size());
const double ratio_completion = ratioFunc(completion_rates, phaseUsage());
if (ratio_completion > max_ratio_completion) {
worst_offending_completion = completion.first;
max_ratio_completion = ratio_completion;
}
} // end of for (const auto& completion : completions_)
assert(max_ratio_completion > max_ratio_limit);
assert(worst_offending_completion != INVALIDCOMPLETION);
const double violation_extent = max_ratio_completion / max_ratio_limit;
assert(violation_extent > 1.0);
if (violation_extent > report.violation_extent) {
report.worst_offending_completion = worst_offending_completion;
report.violation_extent = violation_extent;
}
}
template<typename FluidSystem>
template<typename RatioFunc>
bool WellInterfaceFluidSystem<FluidSystem>::
checkMaxRatioLimitWell(const WellState& well_state,
const double max_ratio_limit,
const RatioFunc& ratioFunc) const
{
const int np = number_of_phases_;
std::vector<double> well_rates(np, 0.0);
for (int p = 0; p < np; ++p) {
well_rates[p] = well_state.wellRates(index_of_well_)[p];
}
const double well_ratio = ratioFunc(well_rates, phaseUsage());
return (well_ratio > max_ratio_limit);
}
template class WellInterfaceFluidSystem<BlackOilFluidSystem<double,BlackOilDefaultIndexTraits>>;
template class WellInterfaceFluidSystem<BlackOilFluidSystem<double,EclAlternativeBlackOilIndexTraits>>;
} // namespace Opm