opm-simulators/opm/autodiff/AutoDiffBlock.hpp
Markus Blatt 7c8f992a2d Fixes raisal of assertion in Eigen because of empty vector and matrices.
Apparently Eigen cannot handle empty containers during reserve correctly.
Therfore we check for the size of the vector and if it is zero simply create
empty jacobians.

Closes #290
2015-01-29 17:14:09 +01:00

576 lines
21 KiB
C++

/*
Copyright 2013 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_AUTODIFFBLOCK_HEADER_INCLUDED
#define OPM_AUTODIFFBLOCK_HEADER_INCLUDED
#include <opm/core/utility/platform_dependent/disable_warnings.h>
#include <Eigen/Eigen>
#include <Eigen/Sparse>
#include <opm/autodiff/fastSparseProduct.hpp>
#include <opm/core/utility/platform_dependent/reenable_warnings.h>
#include <vector>
#include <cassert>
#include <iostream>
namespace Opm
{
/// A class for forward-mode automatic differentiation with vector
/// values and sparse jacobian matrices.
///
/// The class contains a (column) vector of values and multiple
/// sparse matrices representing its partial derivatives. Each
/// such matrix has a number of rows equal to the number of rows
/// in the value vector, and a number of columns equal to the
/// number of discrete variables we want to compute the
/// derivatives with respect to. The reason to have multiple such
/// jacobians instead of just one is to allow simpler grouping of
/// variables, making it easier to implement various
/// preconditioning schemes. Only basic arithmetic operators are
/// implemented for this class, reflecting our needs so far.
///
/// The class is built on the Eigen library, using an Eigen array
/// type to contain the values and Eigen sparse matrices for the
/// jacobians. The overloaded operators are intended to behave in
/// a similar way to Eigen arrays, meaning for example that the *
/// operator is elementwise multiplication. The only exception is
/// multiplication with a sparse matrix from the left, which is
/// treated as an Eigen matrix operation.
///
/// There are no public constructors, instead we use the Named
/// Constructor pattern. In general, one needs to know which
/// variables one wants to compute the derivatives with respect to
/// before constructing an AutoDiffBlock. Some of the constructors
/// require you to pass a block pattern. This should be a vector
/// containing the number of columns you want for each jacobian
/// matrix.
///
/// For example: you want the derivatives with respect to three
/// different variables p, r and s. Assuming that there are 10
/// elements in p, and 20 in each of r and s, the block pattern is
/// { 10, 20, 20 }. When creating the variables p, r and s in your
/// program you have two options:
/// - Use the variable() constructor three times, passing the
/// index (0 for p, 1 for r and 2 for s), initial value of
/// each variable and the block pattern.
/// - Use the variables() constructor passing only the initial
/// values of each variable. The block pattern will be
/// inferred from the size of the initial value vectors.
/// This is usually the simplest option if you have multiple
/// variables. Note that this constructor returns a vector
/// of all three variables, so you need to use index access
/// (operator[]) to get the individual variables (that is p,
/// r and s).
///
/// After this, the r variable for example will have a size() of
/// 20 and three jacobian matrices. The first is a 20 by 10 zero
/// matrix, the second is a 20 by 20 identity matrix, and the
/// third is a 20 by 20 zero matrix.
template <typename Scalar>
class AutoDiffBlock
{
public:
/// Underlying type for values.
typedef Eigen::Array<Scalar, Eigen::Dynamic, 1> V;
/// Underlying type for jacobians.
typedef Eigen::SparseMatrix<Scalar> M;
/// Construct an empty AutoDiffBlock.
static AutoDiffBlock null()
{
V val;
std::vector<M> jac;
return AutoDiffBlock(val, jac);
}
/// Create an AutoDiffBlock representing a constant.
/// \param[in] val values
static AutoDiffBlock constant(const V& val)
{
return AutoDiffBlock(val);
}
/// Create an AutoDiffBlock representing a constant.
/// This variant requires specifying the block sizes used
/// for the Jacobians even though the Jacobian matrices
/// themselves will be zero.
/// \param[in] val values
/// \param[in] blocksizes block pattern
static AutoDiffBlock constant(const V& val, const std::vector<int>& blocksizes)
{
std::vector<M> jac;
const int num_elem = val.size();
const int num_blocks = blocksizes.size();
// For constants, all jacobian blocks are zero.
jac.resize(num_blocks);
for (int i = 0; i < num_blocks; ++i) {
jac[i] = M(num_elem, blocksizes[i]);
}
return AutoDiffBlock(val, jac);
}
/// Create an AutoDiffBlock representing a single variable block.
/// \param[in] index index of the variable you are constructing
/// \param[in] val values
/// \param[in] blocksizes block pattern
/// The resulting object will have size() equal to block_pattern[index].
/// Its jacobians will all be zero, except for derivative()[index], which
/// will be an identity matrix.
static AutoDiffBlock variable(const int index, const V& val, const std::vector<int>& blocksizes)
{
std::vector<M> jac;
const int num_elem = val.size();
const int num_blocks = blocksizes.size();
// First, set all jacobian blocks to zero...
jac.resize(num_blocks);
for (int i = 0; i < num_blocks; ++i) {
jac[i] = M(num_elem, blocksizes[i]);
}
// ... then set the one corrresponding to this variable to identity.
assert(blocksizes[index] == num_elem);
if(val.size()>0)
{
// if val is empty the following will run into an assertion
// with Eigen
jac[index].reserve(Eigen::VectorXi::Constant(val.size(), 1));
for (typename M::Index row = 0; row < val.size(); ++row) {
jac[index].insert(row, row) = Scalar(1.0);
}
}
else
{
// Do some check. Empty jacobian only make sense for empty val.
for (int i = 0; i < num_blocks; ++i) {
assert(jac[i].size()==0);
}
}
return AutoDiffBlock(val, jac);
}
/// Create an AutoDiffBlock by directly specifying values and jacobians.
/// \param[in] val values
/// \param[in] jac vector of jacobians
static AutoDiffBlock function(const V& val, const std::vector<M>& jac)
{
return AutoDiffBlock(val, jac);
}
/// Construct a set of primary variables, each initialized to
/// a given vector.
static std::vector<AutoDiffBlock> variables(const std::vector<V>& initial_values)
{
const int num_vars = initial_values.size();
std::vector<int> bpat;
for (int v = 0; v < num_vars; ++v) {
bpat.push_back(initial_values[v].size());
}
std::vector<AutoDiffBlock> vars;
for (int v = 0; v < num_vars; ++v) {
vars.emplace_back(variable(v, initial_values[v], bpat));
}
return vars;
}
/// Elementwise operator +=
AutoDiffBlock& operator+=(const AutoDiffBlock& rhs)
{
if (jac_.empty()) {
jac_ = rhs.jac_;
} else if (!rhs.jac_.empty()) {
assert (numBlocks() == rhs.numBlocks());
assert (value().size() == rhs.value().size());
const int num_blocks = numBlocks();
for (int block = 0; block < num_blocks; ++block) {
assert(jac_[block].rows() == rhs.jac_[block].rows());
assert(jac_[block].cols() == rhs.jac_[block].cols());
jac_[block] += rhs.jac_[block];
}
}
val_ += rhs.val_;
return *this;
}
/// Elementwise operator -=
AutoDiffBlock& operator-=(const AutoDiffBlock& rhs)
{
if (jac_.empty()) {
const int num_blocks = rhs.numBlocks();
jac_.resize(num_blocks);
for (int block = 0; block < num_blocks; ++block) {
jac_[block] = -rhs.jac_[block];
}
} else if (!rhs.jac_.empty()) {
assert (numBlocks() == rhs.numBlocks());
assert (value().size() == rhs.value().size());
const int num_blocks = numBlocks();
for (int block = 0; block < num_blocks; ++block) {
assert(jac_[block].rows() == rhs.jac_[block].rows());
assert(jac_[block].cols() == rhs.jac_[block].cols());
jac_[block] -= rhs.jac_[block];
}
}
val_ -= rhs.val_;
return *this;
}
/// Elementwise operator +
AutoDiffBlock operator+(const AutoDiffBlock& rhs) const
{
if (jac_.empty() && rhs.jac_.empty()) {
return constant(val_ + rhs.val_);
}
if (jac_.empty()) {
return val_ + rhs;
}
if (rhs.jac_.empty()) {
return *this + rhs.val_;
}
std::vector<M> jac = jac_;
assert(numBlocks() == rhs.numBlocks());
int num_blocks = numBlocks();
for (int block = 0; block < num_blocks; ++block) {
assert(jac[block].rows() == rhs.jac_[block].rows());
assert(jac[block].cols() == rhs.jac_[block].cols());
jac[block] += rhs.jac_[block];
}
return function(val_ + rhs.val_, jac);
}
/// Elementwise operator -
AutoDiffBlock operator-(const AutoDiffBlock& rhs) const
{
if (jac_.empty() && rhs.jac_.empty()) {
return constant(val_ - rhs.val_);
}
if (jac_.empty()) {
return val_ - rhs;
}
if (rhs.jac_.empty()) {
return *this - rhs.val_;
}
std::vector<M> jac = jac_;
assert(numBlocks() == rhs.numBlocks());
int num_blocks = numBlocks();
for (int block = 0; block < num_blocks; ++block) {
assert(jac[block].rows() == rhs.jac_[block].rows());
assert(jac[block].cols() == rhs.jac_[block].cols());
jac[block] -= rhs.jac_[block];
}
return function(val_ - rhs.val_, jac);
}
/// Elementwise operator *
AutoDiffBlock operator*(const AutoDiffBlock& rhs) const
{
if (jac_.empty() && rhs.jac_.empty()) {
return constant(val_ * rhs.val_);
}
if (jac_.empty()) {
return val_ * rhs;
}
if (rhs.jac_.empty()) {
return *this * rhs.val_;
}
int num_blocks = numBlocks();
std::vector<M> jac(num_blocks);
assert(numBlocks() == rhs.numBlocks());
typedef Eigen::DiagonalMatrix<Scalar, Eigen::Dynamic> D;
D D1 = val_.matrix().asDiagonal();
D D2 = rhs.val_.matrix().asDiagonal();
for (int block = 0; block < num_blocks; ++block) {
assert(jac_[block].rows() == rhs.jac_[block].rows());
assert(jac_[block].cols() == rhs.jac_[block].cols());
if( jac_[block].nonZeros() == 0 && rhs.jac_[block].nonZeros() == 0 ) {
jac[block] = M( D2.rows(), jac_[block].cols() );
}
else if( jac_[block].nonZeros() == 0 )
jac[block] = D1*rhs.jac_[block];
else if ( rhs.jac_[block].nonZeros() == 0 ) {
jac[block] = D2*jac_[block];
}
else {
jac[block] = D2*jac_[block] + D1*rhs.jac_[block];
}
}
return function(val_ * rhs.val_, jac);
}
/// Elementwise operator /
AutoDiffBlock operator/(const AutoDiffBlock& rhs) const
{
if (jac_.empty() && rhs.jac_.empty()) {
return constant(val_ / rhs.val_);
}
if (jac_.empty()) {
return val_ / rhs;
}
if (rhs.jac_.empty()) {
return *this / rhs.val_;
}
int num_blocks = numBlocks();
std::vector<M> jac(num_blocks);
assert(numBlocks() == rhs.numBlocks());
typedef Eigen::DiagonalMatrix<Scalar, Eigen::Dynamic> D;
D D1 = val_.matrix().asDiagonal();
D D2 = rhs.val_.matrix().asDiagonal();
D D3 = (1.0/(rhs.val_*rhs.val_)).matrix().asDiagonal();
for (int block = 0; block < num_blocks; ++block) {
assert(jac_[block].rows() == rhs.jac_[block].rows());
assert(jac_[block].cols() == rhs.jac_[block].cols());
if( jac_[block].nonZeros() == 0 && rhs.jac_[block].nonZeros() == 0 ) {
jac[block] = M( D3.rows(), jac_[block].cols() );
}
else if( jac_[block].nonZeros() == 0 ) {
jac[block] = D3 * ( D1*rhs.jac_[block]);
jac[block] *= -1.0;
}
else if ( rhs.jac_[block].nonZeros() == 0 )
{
jac[block] = D3 * (D2*jac_[block]);
}
else {
jac[block] = D3 * (D2*jac_[block] - D1*rhs.jac_[block]);
}
}
return function(val_ / rhs.val_, jac);
}
/// I/O.
template <class Ostream>
Ostream&
print(Ostream& os) const
{
int num_blocks = jac_.size();
os << "Value =\n" << val_ << "\n\nJacobian =\n";
for (int i = 0; i < num_blocks; ++i) {
os << "Sub Jacobian #" << i << '\n' << jac_[i] << "\n";
}
return os;
}
/// Number of elements
int size() const
{
return val_.size();
}
/// Number of Jacobian blocks.
int numBlocks() const
{
return jac_.size();
}
/// Sizes (number of columns) of Jacobian blocks.
std::vector<int> blockPattern() const
{
const int nb = numBlocks();
std::vector<int> bp(nb);
for (int block = 0; block < nb; ++block) {
bp[block] = jac_[block].cols();
}
return bp;
}
/// Function value.
const V& value() const
{
return val_;
}
/// Function derivatives.
const std::vector<M>& derivative() const
{
return jac_;
}
private:
AutoDiffBlock(const V& val)
: val_(val)
{
}
AutoDiffBlock(const V& val,
const std::vector<M>& jac)
: val_(val), jac_(jac)
{
#ifndef NDEBUG
const int num_elem = val_.size();
const int num_blocks = jac_.size();
for (int block = 0; block < num_blocks; ++block) {
assert(num_elem == jac_[block].rows());
}
#endif
}
V val_;
std::vector<M> jac_;
};
// --------- Free functions and operators for AutoDiffBlock ---------
/// Stream output.
template <class Ostream, typename Scalar>
Ostream&
operator<<(Ostream& os, const AutoDiffBlock<Scalar>& fw)
{
return fw.print(os);
}
/// Multiply with sparse matrix from the left.
template <typename Scalar>
AutoDiffBlock<Scalar> operator*(const typename AutoDiffBlock<Scalar>::M& lhs,
const AutoDiffBlock<Scalar>& rhs)
{
int num_blocks = rhs.numBlocks();
std::vector<typename AutoDiffBlock<Scalar>::M> jac(num_blocks);
assert(lhs.cols() == rhs.value().rows());
for (int block = 0; block < num_blocks; ++block) {
// jac[block] = lhs*rhs.derivative()[block];
fastSparseProduct(lhs, rhs.derivative()[block], jac[block]);
}
typename AutoDiffBlock<Scalar>::V val = lhs*rhs.value().matrix();
return AutoDiffBlock<Scalar>::function(val, jac);
}
/// Elementwise multiplication with constant on the left.
template <typename Scalar>
AutoDiffBlock<Scalar> operator*(const typename AutoDiffBlock<Scalar>::V& lhs,
const AutoDiffBlock<Scalar>& rhs)
{
return AutoDiffBlock<Scalar>::constant(lhs, rhs.blockPattern()) * rhs;
}
/// Elementwise multiplication with constant on the right.
template <typename Scalar>
AutoDiffBlock<Scalar> operator*(const AutoDiffBlock<Scalar>& lhs,
const typename AutoDiffBlock<Scalar>::V& rhs)
{
return rhs * lhs; // Commutative operation.
}
/// Elementwise addition with constant on the left.
template <typename Scalar>
AutoDiffBlock<Scalar> operator+(const typename AutoDiffBlock<Scalar>::V& lhs,
const AutoDiffBlock<Scalar>& rhs)
{
return AutoDiffBlock<Scalar>::constant(lhs, rhs.blockPattern()) + rhs;
}
/// Elementwise addition with constant on the right.
template <typename Scalar>
AutoDiffBlock<Scalar> operator+(const AutoDiffBlock<Scalar>& lhs,
const typename AutoDiffBlock<Scalar>::V& rhs)
{
return rhs + lhs; // Commutative operation.
}
/// Elementwise subtraction with constant on the left.
template <typename Scalar>
AutoDiffBlock<Scalar> operator-(const typename AutoDiffBlock<Scalar>::V& lhs,
const AutoDiffBlock<Scalar>& rhs)
{
return AutoDiffBlock<Scalar>::constant(lhs, rhs.blockPattern()) - rhs;
}
/// Elementwise subtraction with constant on the right.
template <typename Scalar>
AutoDiffBlock<Scalar> operator-(const AutoDiffBlock<Scalar>& lhs,
const typename AutoDiffBlock<Scalar>::V& rhs)
{
return lhs - AutoDiffBlock<Scalar>::constant(rhs, lhs.blockPattern());
}
/// Elementwise division with constant on the left.
template <typename Scalar>
AutoDiffBlock<Scalar> operator/(const typename AutoDiffBlock<Scalar>::V& lhs,
const AutoDiffBlock<Scalar>& rhs)
{
return AutoDiffBlock<Scalar>::constant(lhs, rhs.blockPattern()) / rhs;
}
/// Elementwise division with constant on the right.
template <typename Scalar>
AutoDiffBlock<Scalar> operator/(const AutoDiffBlock<Scalar>& lhs,
const typename AutoDiffBlock<Scalar>::V& rhs)
{
return lhs / AutoDiffBlock<Scalar>::constant(rhs, lhs.blockPattern());
}
/**
* @brief Operator for multiplication with a scalar on the right-hand side
*
* @param lhs The left-hand side AD forward block
* @param rhs The scalar to multiply with
* @return The product
*/
template <typename Scalar>
AutoDiffBlock<Scalar> operator*(const AutoDiffBlock<Scalar>& lhs,
const Scalar& rhs)
{
std::vector< typename AutoDiffBlock<Scalar>::M > jac;
jac.reserve( lhs.numBlocks() );
for (int block=0; block<lhs.numBlocks(); block++) {
jac.emplace_back( lhs.derivative()[block] * rhs );
}
return AutoDiffBlock<Scalar>::function( lhs.value() * rhs, jac );
}
/**
* @brief Operator for multiplication with a scalar on the left-hand side
*
* @param lhs The scalar to multiply with
* @param rhs The right-hand side AD forward block
* @return The product
*/
template <typename Scalar>
AutoDiffBlock<Scalar> operator*(const Scalar& lhs,
const AutoDiffBlock<Scalar>& rhs)
{
return rhs * lhs; // Commutative operation.
}
} // namespace Opm
#endif // OPM_AUTODIFFBLOCK_HEADER_INCLUDED