mirror of
https://github.com/OPM/opm-simulators.git
synced 2024-11-25 10:40:21 -06:00
fd4f5f5a26
Conflicts: opm/autodiff/FullyImplicitBlackoilSolver.cpp To resolve conflicts, WellState was changed to WellStateFullyImplicitBlackoil in multiple places, and perfRate() changed to perfPhaseRate() in WellDensitySegmented.
174 lines
8.0 KiB
C++
174 lines
8.0 KiB
C++
/*
|
|
Copyright 2014 SINTEF ICT, Applied Mathematics.
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <opm/autodiff/WellDensitySegmented.hpp>
|
|
#include <opm/core/wells.h>
|
|
#include <opm/autodiff/WellStateFullyImplicitBlackoil.hpp>
|
|
#include <opm/core/utility/ErrorMacros.hpp>
|
|
#include <opm/core/props/BlackoilPhases.hpp>
|
|
#include <numeric>
|
|
#include <cmath>
|
|
|
|
|
|
std::vector<double>
|
|
Opm::WellDensitySegmented::computeConnectionPressureDelta(const Wells& wells,
|
|
const WellStateFullyImplicitBlackoil& wstate,
|
|
const PhaseUsage& phase_usage,
|
|
const std::vector<double>& b_perf,
|
|
const std::vector<double>& rsmax_perf,
|
|
const std::vector<double>& rvmax_perf,
|
|
const std::vector<double>& z_perf,
|
|
const std::vector<double>& surf_dens,
|
|
const double gravity)
|
|
{
|
|
// Verify that we have consistent input.
|
|
const int np = wells.number_of_phases;
|
|
const int nw = wells.number_of_wells;
|
|
const int nperf = wells.well_connpos[nw];
|
|
if (wells.number_of_phases != phase_usage.num_phases) {
|
|
OPM_THROW(std::logic_error, "Inconsistent input: wells vs. phase_usage.");
|
|
}
|
|
if (surf_dens.size() != size_t(wells.number_of_phases)) {
|
|
OPM_THROW(std::logic_error, "Inconsistent input: surf_dens vs. phase_usage.");
|
|
}
|
|
if (nperf*np != int(wstate.perfPhaseRates().size())) {
|
|
OPM_THROW(std::logic_error, "Inconsistent input: wells vs. wstate.");
|
|
}
|
|
if (nperf*np != int(b_perf.size())) {
|
|
OPM_THROW(std::logic_error, "Inconsistent input: wells vs. b_perf.");
|
|
}
|
|
if (nperf != int(z_perf.size())) {
|
|
OPM_THROW(std::logic_error, "Inconsistent input: wells vs. z_perf.");
|
|
}
|
|
if ((!rsmax_perf.empty()) || (!rvmax_perf.empty())) {
|
|
// Need both oil and gas phases.
|
|
if (!phase_usage.phase_used[BlackoilPhases::Liquid]) {
|
|
OPM_THROW(std::logic_error, "Oil phase inactive, but non-empty rsmax_perf or rvmax_perf.");
|
|
}
|
|
if (!phase_usage.phase_used[BlackoilPhases::Vapour]) {
|
|
OPM_THROW(std::logic_error, "Gas phase inactive, but non-empty rsmax_perf or rvmax_perf.");
|
|
}
|
|
}
|
|
|
|
// Algorithm:
|
|
|
|
// We'll assume the perforations are given in order from top to
|
|
// bottom for each well. By top and bottom we do not necessarily
|
|
// mean in a geometric sense (depth), but in a topological sense:
|
|
// the 'top' perforation is nearest to the surface topologically.
|
|
// Our goal is to compute a pressure delta for each perforation.
|
|
|
|
// 1. Compute the flow (in surface volume units for each
|
|
// component) exiting up the wellbore from each perforation,
|
|
// taking into account flow from lower in the well, and
|
|
// in/out-flow at each perforation.
|
|
std::vector<double> q_out_perf(nperf*np);
|
|
for (int w = 0; w < nw; ++w) {
|
|
// Iterate over well perforations from bottom to top.
|
|
for (int perf = wells.well_connpos[w+1] - 1; perf >= wells.well_connpos[w]; --perf) {
|
|
for (int phase = 0; phase < np; ++phase) {
|
|
if (perf == wells.well_connpos[w+1] - 1) {
|
|
// This is the bottom perforation. No flow from below.
|
|
q_out_perf[perf*np + phase] = 0.0;
|
|
} else {
|
|
// Set equal to flow from below.
|
|
q_out_perf[perf*np + phase] = q_out_perf[(perf+1)*np + phase];
|
|
}
|
|
// Subtract outflow through perforation.
|
|
q_out_perf[perf*np + phase] -= wstate.perfPhaseRates()[perf*np + phase];
|
|
}
|
|
}
|
|
}
|
|
|
|
// 2. Compute the component mix at each perforation as the
|
|
// absolute values of the surface rates divided by their sum.
|
|
// Then compute volume ratios (formation factors) for each perforation.
|
|
// Finally compute densities for the segments associated with each perforation.
|
|
const int gaspos = phase_usage.phase_pos[BlackoilPhases::Vapour];
|
|
const int oilpos = phase_usage.phase_pos[BlackoilPhases::Liquid];
|
|
std::vector<double> mix(np);
|
|
std::vector<double> x(np);
|
|
std::vector<double> dens(nperf);
|
|
for (int w = 0; w < nw; ++w) {
|
|
for (int perf = wells.well_connpos[w]; perf < wells.well_connpos[w+1]; ++perf) {
|
|
// Find component mix.
|
|
const double tot_surf_rate = std::accumulate(q_out_perf.begin() + np*perf,
|
|
q_out_perf.begin() + np*(perf+1), 0.0);
|
|
if (tot_surf_rate != 0.0) {
|
|
for (int phase = 0; phase < np; ++phase) {
|
|
mix[phase] = std::fabs(q_out_perf[perf*np + phase]/tot_surf_rate);
|
|
}
|
|
} else {
|
|
// No flow => use well specified fractions for mix.
|
|
std::copy(wells.comp_frac + w*np, wells.comp_frac + (w+1)*np, mix.begin());
|
|
}
|
|
// Compute volume ratio.
|
|
x = mix;
|
|
double rs = 0.0;
|
|
double rv = 0.0;
|
|
if (!rsmax_perf.empty() && mix[oilpos] > 0.0) {
|
|
rs = std::min(mix[gaspos]/mix[oilpos], rsmax_perf[perf]);
|
|
}
|
|
if (!rvmax_perf.empty() && mix[gaspos] > 0.0) {
|
|
rv = std::min(mix[oilpos]/mix[gaspos], rvmax_perf[perf]);
|
|
}
|
|
if (rs != 0.0) {
|
|
// Subtract gas in oil from gas mixture
|
|
x[gaspos] = (mix[gaspos] - mix[oilpos]*rs)/(1.0 - rs*rv);
|
|
}
|
|
if (rv != 0.0) {
|
|
// Subtract oil in gas from oil mixture
|
|
x[oilpos] = (mix[oilpos] - mix[gaspos]*rv)/(1.0 - rs*rv);;
|
|
}
|
|
double volrat = 0.0;
|
|
for (int phase = 0; phase < np; ++phase) {
|
|
volrat += x[phase] / b_perf[perf*np + phase];
|
|
}
|
|
// Compute segment density.
|
|
dens[perf] = std::inner_product(surf_dens.begin(), surf_dens.end(), mix.begin(), 0.0) / volrat;
|
|
}
|
|
}
|
|
|
|
// 3. Compute pressure differences between perforations.
|
|
// dp_perf will contain the pressure difference between a
|
|
// perforation and the one above it, except for the first
|
|
// perforation for each well, for which it will be the
|
|
// difference to the reference (bhp) depth.
|
|
std::vector<double> dp_perf(nperf);
|
|
for (int w = 0; w < nw; ++w) {
|
|
for (int perf = wells.well_connpos[w]; perf < wells.well_connpos[w+1]; ++perf) {
|
|
const double z_above = perf == wells.well_connpos[w] ? wells.depth_ref[w] : z_perf[perf - 1];
|
|
const double dz = z_perf[perf] - z_above;
|
|
dp_perf[perf] = dz * dens[perf] * gravity;
|
|
}
|
|
}
|
|
|
|
// 4. Compute pressure differences to the reference point (bhp) by
|
|
// accumulating the already computed adjacent pressure
|
|
// differences, storing the result in dp_perf.
|
|
// This accumulation must be done per well.
|
|
for (int w = 0; w < nw; ++w) {
|
|
const auto beg = dp_perf.begin() + wells.well_connpos[w];
|
|
const auto end = dp_perf.begin() + wells.well_connpos[w + 1];
|
|
std::partial_sum(beg, end, beg);
|
|
}
|
|
|
|
return dp_perf;
|
|
}
|