opm-simulators/opm/autodiff/BlackoilMultiSegmentModel.hpp
Kai Bao 9972dae32a updating for the comments.
implement wells(), localWellsActive() and wellsActive() for the
BlackoilModelBase and its derived classed.
2016-04-06 12:54:01 +02:00

308 lines
12 KiB
C++

/*
Copyright 2013, 2015 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_BLACKOILMULTISEGMENTMODEL_HEADER_INCLUDED
#define OPM_BLACKOILMULTISEGMENTMODEL_HEADER_INCLUDED
#include <opm/core/simulator/BlackoilState.hpp>
#include <opm/autodiff/BlackoilModelBase.hpp>
#include <opm/autodiff/BlackoilModelParameters.hpp>
#include <opm/autodiff/WellStateMultiSegment.hpp>
#include <opm/autodiff/WellMultiSegment.hpp>
namespace Opm {
struct BlackoilMultiSegmentSolutionState : public DefaultBlackoilSolutionState
{
explicit BlackoilMultiSegmentSolutionState(const int np)
: DefaultBlackoilSolutionState(np)
, segp ( ADB::null())
, segqs ( ADB::null())
{
}
ADB segp; // the segment pressures
ADB segqs; // the segment phase rate in surface volume
};
/// A model implementation for three-phase black oil with support
/// for multi-segment wells.
///
/// It uses automatic differentiation via the class AutoDiffBlock
/// to simplify assembly of the jacobian matrix.
/// \tparam Grid UnstructuredGrid or CpGrid.
/// \tparam Implementation Provides concrete state types.
template<class Grid>
class BlackoilMultiSegmentModel : public BlackoilModelBase<Grid, BlackoilMultiSegmentModel<Grid>>
{
public:
typedef BlackoilModelBase<Grid, BlackoilMultiSegmentModel<Grid> > Base; // base class
typedef typename Base::ReservoirState ReservoirState;
typedef typename Base::WellState WellState;
typedef BlackoilMultiSegmentSolutionState SolutionState;
friend Base;
// --------- Public methods ---------
/// Construct the model. It will retain references to the
/// arguments of this functions, and they are expected to
/// remain in scope for the lifetime of the solver.
/// \param[in] param parameters
/// \param[in] grid grid data structure
/// \param[in] fluid fluid properties
/// \param[in] geo rock properties
/// \param[in] rock_comp_props if non-null, rock compressibility properties
/// \param[in] wells well structure
/// \param[in] vfp_properties Vertical flow performance tables
/// \param[in] linsolver linear solver
/// \param[in] eclState eclipse state
/// \param[in] has_disgas turn on dissolved gas
/// \param[in] has_vapoil turn on vaporized oil feature
/// \param[in] terminal_output request output to cout/cerr
/// \param[in] wells_multisegment a vector of multisegment wells
BlackoilMultiSegmentModel(const typename Base::ModelParameters& param,
const Grid& grid ,
const BlackoilPropsAdInterface& fluid,
const DerivedGeology& geo ,
const RockCompressibility* rock_comp_props,
const Wells* wells,
const NewtonIterationBlackoilInterface& linsolver,
Opm::EclipseStateConstPtr eclState,
const bool has_disgas,
const bool has_vapoil,
const bool terminal_output,
const std::vector<WellMultiSegmentConstPtr>& wells_multisegment);
/// Called once before each time step.
/// \param[in] dt time step size
/// \param[in, out] reservoir_state reservoir state variables
/// \param[in, out] well_state well state variables
void prepareStep(const double dt,
ReservoirState& reservoir_state,
WellState& well_state);
/// Assemble the residual and Jacobian of the nonlinear system.
/// \param[in] reservoir_state reservoir state variables
/// \param[in, out] well_state well state variables
/// \param[in] initial_assembly pass true if this is the first call to assemble() in this timestep
void assemble(const ReservoirState& reservoir_state,
WellState& well_state,
const bool initial_assembly);
using Base::numPhases;
using Base::numMaterials;
using Base::materialName;
protected:
// --------- Data members ---------
// For non-segmented wells, it should be the density calculated with AVG or SEG way.
// while usually SEG way by default.
using Base::pvdt_;
using Base::geo_;
using Base::active_;
using Base::rq_;
using Base::fluid_;
using Base::terminal_output_;
using Base::grid_;
using Base::canph_;
using Base::residual_;
using Base::isSg_;
using Base::isRs_;
using Base::isRv_;
using Base::has_disgas_;
using Base::has_vapoil_;
using Base::primalVariable_;
using Base::cells_;
using Base::param_;
using Base::linsolver_;
// Pressure correction due to the different depth of the perforation
// and the cell center of the grid block
// For the non-segmented wells, since the perforation are forced to be
// at the center of the grid cell, it should be ZERO.
// It only applies to the mutli-segmented wells.
V well_perforation_cell_pressure_diffs_;
// Pressure correction due to the depth differennce between segment depth and perforation depth.
ADB well_segment_perforation_pressure_diffs_;
// The depth difference between segment nodes and perforations
V well_segment_perforation_depth_diffs_;
// the average of the fluid densities in the grid block
// which is used to calculate the hydrostatic head correction due to the depth difference of the perforation
// and the cell center of the grid block
V well_perforation_cell_densities_;
// the density of the fluid mixture in the segments
// which is calculated in an implicit way
ADB well_segment_densities_;
// the hydrostatic pressure drop between segment nodes
// calculated with the above density of fluid mixtures
// for the top segment, they should always be zero for the moment.
ADB well_segment_pressures_delta_;
// the surface volume of components in the segments
// the initial value at the beginning of the time step
std::vector<V> segment_comp_surf_volume_initial_;
// the value within the current iteration.
std::vector<ADB> segment_comp_surf_volume_current_;
// the mass flow rate in the segments
ADB segment_mass_flow_rates_;
// the viscosity of the fluid mixture in the segments
// TODO: it is only used to calculate the Reynolds number as we know
// maybe it is not better just to store the Reynolds number?
ADB segment_viscosities_;
const std::vector<WellMultiSegmentConstPtr> wells_multisegment_;
std::vector<int> top_well_segments_;
// segment volume by dt (time step)
// to handle the volume effects of the segment
V segvdt_;
// Well operations and data needed.
struct MultiSegmentWellOps {
explicit MultiSegmentWellOps(const std::vector<WellMultiSegmentConstPtr>& wells_ms);
Eigen::SparseMatrix<double> w2p; // well -> perf (scatter)
Eigen::SparseMatrix<double> p2w; // perf -> well (gather)
Eigen::SparseMatrix<double> w2s; // well -> segment (scatter)
Eigen::SparseMatrix<double> s2w; // segment -> well (gather)
Eigen::SparseMatrix<double> s2p; // segment -> perf (scatter)
Eigen::SparseMatrix<double> p2s; // perf -> segment (gather)
Eigen::SparseMatrix<double> s2s_inlets; // segment -> its inlet segments
Eigen::SparseMatrix<double> s2s_outlet; // segment -> its outlet segment
Eigen::SparseMatrix<double> topseg2w; // top segment -> well
AutoDiffMatrix eliminate_topseg; // change the top segment related to be zero
std::vector<int> well_cells; // the set of perforated cells
V conn_trans_factors; // connection transmissibility factors
bool has_multisegment_wells; // flag indicating whether there is any muli-segment well
};
MultiSegmentWellOps wops_ms_;
using Base::stdWells;
using Base::wells;
using Base::wellsActive;
using Base::updatePrimalVariableFromState;
using Base::phaseCondition;
using Base::fluidRvSat;
using Base::fluidRsSat;
using Base::fluidDensity;
using Base::updatePhaseCondFromPrimalVariable;
using Base::computeGasPressure;
using Base::dpMaxRel;
using Base::dsMax;
using Base::drMaxRel;
using Base::convergenceReduction;
using Base::maxResidualAllowed;
using Base::variableState;
using Base::asImpl;
const std::vector<WellMultiSegmentConstPtr>& wellsMultiSegment() const { return wells_multisegment_; }
void updateWellControls(WellState& xw) const;
void updateWellState(const V& dwells,
WellState& well_state);
void
variableWellStateInitials(const WellState& xw,
std::vector<V>& vars0) const;
void computeWellConnectionPressures(const SolutionState& state,
const WellState& xw);
bool
solveWellEq(const std::vector<ADB>& mob_perfcells,
const std::vector<ADB>& b_perfcells,
SolutionState& state,
WellState& well_state);
void
computeWellFlux(const SolutionState& state,
const std::vector<ADB>& mob_perfcells,
const std::vector<ADB>& b_perfcells,
V& aliveWells,
std::vector<ADB>& cq_s) const;
void
updatePerfPhaseRatesAndPressures(const std::vector<ADB>& cq_s,
const SolutionState& state,
WellState& xw) const;
void
addWellFluxEq(const std::vector<ADB>& cq_s,
const SolutionState& state);
void
addWellControlEq(const SolutionState& state,
const WellState& xw,
const V& aliveWells);
int numWellVars() const;
void
makeConstantState(SolutionState& state) const;
void
variableStateExtractWellsVars(const std::vector<int>& indices,
std::vector<ADB>& vars,
SolutionState& state) const;
// Calculate the density of the mixture in the segments
// And the surface volume of the components in the segments by dt
void
computeSegmentFluidProperties(const SolutionState& state);
void
computeSegmentPressuresDelta(const SolutionState& state);
};
/// Providing types by template specialisation of ModelTraits for BlackoilMultiSegmentModel.
template <class GridT>
struct ModelTraits< BlackoilMultiSegmentModel<GridT> >
{
typedef BlackoilState ReservoirState;
typedef WellStateMultiSegment WellState;
typedef BlackoilModelParameters ModelParameters;
typedef BlackoilMultiSegmentSolutionState SolutionState;
};
} // namespace Opm
#include "BlackoilMultiSegmentModel_impl.hpp"
#endif // OPM_BLACKOILMULTISEGMENTMODEL_HEADER_INCLUDED