opm-simulators/opm/autodiff/NewtonIterationBlackoilInterleaved.cpp
2017-04-28 15:36:25 +02:00

496 lines
20 KiB
C++

/*
Copyright 2015 SINTEF ICT, Applied Mathematics.
Copyright 2015 Dr. Blatt - HPC-Simulation-Software & Services
Copyright 2015 NTNU
Copyright 2015 Statoil AS
Copyright 2015 IRIS AS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#include <opm/autodiff/DuneMatrix.hpp>
#include <opm/autodiff/AdditionalObjectDeleter.hpp>
#include <opm/autodiff/CPRPreconditioner.hpp>
#include <opm/autodiff/NewtonIterationBlackoilInterleaved.hpp>
#include <opm/autodiff/NewtonIterationUtilities.hpp>
#include <opm/autodiff/ParallelRestrictedAdditiveSchwarz.hpp>
#include <opm/autodiff/ParallelOverlappingILU0.hpp>
#include <opm/autodiff/AutoDiffHelpers.hpp>
#include <opm/common/Exceptions.hpp>
#include <opm/core/linalg/ParallelIstlInformation.hpp>
#include <opm/autodiff/ISTLSolver.hpp>
#include <opm/common/utility/platform_dependent/disable_warnings.h>
#if HAVE_UMFPACK
#include <Eigen/UmfPackSupport>
#else
#include <Eigen/SparseLU>
#endif
#include <opm/common/utility/platform_dependent/reenable_warnings.h>
namespace Opm
{
namespace detail {
/**
* Simple binary operator that always returns 0.1
* It is used to get the sparsity pattern for our
* interleaved system, and is marginally faster than using
* operator+=.
*/
template<typename Scalar> struct PointOneOp {
EIGEN_EMPTY_STRUCT_CTOR(PointOneOp)
Scalar operator()(const Scalar&, const Scalar&) const { return 0.1; }
};
}
/// This class solves the fully implicit black-oil system by
/// solving the reduced system (after eliminating well variables)
/// as a block-structured matrix (one block for all cell variables) for a fixed
/// number of cell variables np .
template <int np, class ScalarT = double >
class NewtonIterationBlackoilInterleavedImpl : public NewtonIterationBlackoilInterface
{
typedef ScalarT Scalar;
typedef Dune::FieldVector<Scalar, np > VectorBlockType;
typedef Dune::MatrixBlock<Scalar, np, np > MatrixBlockType;
typedef Dune::BCRSMatrix <MatrixBlockType> Mat;
typedef Dune::BlockVector<VectorBlockType> Vector;
typedef Opm::ISTLSolver< MatrixBlockType, VectorBlockType > ISTLSolverType;
public:
typedef NewtonIterationBlackoilInterface :: SolutionVector SolutionVector;
/// Construct a system solver.
/// \param[in] param parameters controlling the behaviour of the linear solvers
/// \param[in] parallelInformation In the case of a parallel run
/// with dune-istl the information about the parallelization.
NewtonIterationBlackoilInterleavedImpl(const NewtonIterationBlackoilInterleavedParameters& param,
const boost::any& parallelInformation_arg=boost::any())
: istlSolver_( param, parallelInformation_arg ),
parameters_( param )
{
}
/// Solve the system of linear equations Ax = b, with A being the
/// combined derivative matrix of the residual and b
/// being the residual itself.
/// \param[in] residual residual object containing A and b.
/// \return the solution x
/// \copydoc NewtonIterationBlackoilInterface::iterations
int iterations () const { return istlSolver_.iterations(); }
/// \copydoc NewtonIterationBlackoilInterface::parallelInformation
const boost::any& parallelInformation() const { return istlSolver_.parallelInformation(); }
public:
void formInterleavedSystem(const std::vector<LinearisedBlackoilResidual::ADB>& eqs,
Mat& istlA) const
{
assert( np == int(eqs.size()) );
// Find sparsity structure as union of basic block sparsity structures,
// corresponding to the jacobians with respect to pressure.
// Use our custom PointOneOp to get to the union structure.
// As default we only iterate over the pressure derivatives.
Eigen::SparseMatrix<double, Eigen::ColMajor> col_major = eqs[0].derivative()[0].getSparse();
detail::PointOneOp<double> point_one;
for (int phase = 1; phase < np; ++phase) {
const AutoDiffMatrix::SparseRep& mat = eqs[phase].derivative()[0].getSparse();
col_major = col_major.binaryExpr(mat, point_one);
}
// For some cases (for instance involving Solvent flow) the reasoning for only adding
// the pressure derivatives fails. As getting the sparsity pattern is non-trivial, in terms
// of work, the full sparsity pattern is only added when required.
if (parameters_.require_full_sparsity_pattern_) {
for (int p1 = 0; p1 < np; ++p1) {
for (int p2 = 1; p2 < np; ++p2) { // pressure is already added
const AutoDiffMatrix::SparseRep& mat = eqs[p1].derivative()[p2].getSparse();
col_major = col_major.binaryExpr(mat, point_one);
}
}
}
// Automatically convert the column major structure to a row-major structure
Eigen::SparseMatrix<double, Eigen::RowMajor> row_major = col_major;
const int size = row_major.rows();
assert(size == row_major.cols());
{
// Create ISTL matrix with interleaved rows and columns (block structured).
istlA.setSize(row_major.rows(), row_major.cols(), row_major.nonZeros());
istlA.setBuildMode(Mat::row_wise);
const int* ia = row_major.outerIndexPtr();
const int* ja = row_major.innerIndexPtr();
const typename Mat::CreateIterator endrow = istlA.createend();
for (typename Mat::CreateIterator row = istlA.createbegin(); row != endrow; ++row) {
const int ri = row.index();
for (int i = ia[ri]; i < ia[ri + 1]; ++i) {
row.insert(ja[i]);
}
}
}
/*
// not neeeded since MatrixBlock initially zeros all elements during construction
// Set all blocks to zero.
for (auto row = istlA.begin(), rowend = istlA.end(); row != rowend; ++row ) {
for (auto col = row->begin(), colend = row->end(); col != colend; ++col ) {
*col = 0.0;
}
}
*/
/**
* Go through all jacobians, and insert in correct spot
*
* The straight forward way to do this would be to run through each
* element in the output matrix, and set all block entries by gathering
* from all "input matrices" (derivatives).
*
* A faster alternative is to instead run through each "input matrix" and
* insert its elements in the correct spot in the output matrix.
*
*/
for (int p1 = 0; p1 < np; ++p1) {
for (int p2 = 0; p2 < np; ++p2) {
// Note that that since these are CSC and not CSR matrices,
// ja contains row numbers instead of column numbers.
const AutoDiffMatrix::SparseRep& s = eqs[p1].derivative()[p2].getSparse();
const int* ia = s.outerIndexPtr();
const int* ja = s.innerIndexPtr();
const double* sa = s.valuePtr();
for (int col = 0; col < size; ++col) {
for (int elem_ix = ia[col]; elem_ix < ia[col + 1]; ++elem_ix) {
const int row = ja[elem_ix];
istlA[row][col][p1][p2] = sa[elem_ix];
}
}
}
}
}
/// Solve the linear system Ax = b, with A being the
/// combined derivative matrix of the residual and b
/// being the residual itself.
/// \param[in] residual residual object containing A and b.
/// \return the solution x
SolutionVector computeNewtonIncrement(const LinearisedBlackoilResidual& residual) const
{
typedef LinearisedBlackoilResidual::ADB ADB;
typedef ADB::V V;
// Build the vector of equations.
//const int np = residual.material_balance_eq.size();
assert( np == int(residual.material_balance_eq.size()) );
std::vector<ADB> eqs;
eqs.reserve(np + 2);
for (int phase = 0; phase < np; ++phase) {
eqs.push_back(residual.material_balance_eq[phase]);
}
// check if wells are present
const bool hasWells = residual.well_flux_eq.size() > 0 ;
std::vector<ADB> elim_eqs;
if( hasWells )
{
eqs.push_back(residual.well_flux_eq);
eqs.push_back(residual.well_eq);
// Eliminate the well-related unknowns, and corresponding equations.
elim_eqs.reserve(2);
elim_eqs.push_back(eqs[np]);
eqs = eliminateVariable(eqs, np); // Eliminate well flux unknowns.
elim_eqs.push_back(eqs[np]);
eqs = eliminateVariable(eqs, np); // Eliminate well bhp unknowns.
assert(int(eqs.size()) == np);
}
// Scale material balance equations.
for (int phase = 0; phase < np; ++phase) {
eqs[phase] = eqs[phase] * residual.matbalscale[phase];
}
// calculating the size for b
int size_b = 0;
for (int elem = 0; elem < np; ++elem) {
const int loc_size = eqs[elem].size();
size_b += loc_size;
}
V b(size_b);
int pos = 0;
for (int elem = 0; elem < np; ++elem) {
const int loc_size = eqs[elem].size();
b.segment(pos, loc_size) = eqs[elem].value();
pos += loc_size;
}
assert(pos == size_b);
// Create ISTL matrix with interleaved rows and columns (block structured).
Mat istlA;
formInterleavedSystem(eqs, istlA);
// Solve reduced system.
SolutionVector dx(SolutionVector::Zero(b.size()));
// Right hand side.
const int size = istlA.N();
Vector istlb(size);
for (int i = 0; i < size; ++i) {
for( int p = 0, idx = i; p<np; ++p, idx += size ) {
istlb[i][p] = b(idx);
}
}
// System solution
Vector x(istlA.M());
x = 0.0;
// solve linear system using ISTL methods
istlSolver_.solve( istlA, x, istlb );
// Copy solver output to dx.
for (int i = 0; i < size; ++i) {
for( int p=0, idx = i; p<np; ++p, idx += size ) {
dx(idx) = x[i][p];
}
}
if ( hasWells ) {
// Compute full solution using the eliminated equations.
// Recovery in inverse order of elimination.
dx = recoverVariable(elim_eqs[1], dx, np);
dx = recoverVariable(elim_eqs[0], dx, np);
}
return dx;
}
protected:
ISTLSolverType istlSolver_;
NewtonIterationBlackoilInterleavedParameters parameters_;
}; // end NewtonIterationBlackoilInterleavedImpl
/// Construct a system solver.
NewtonIterationBlackoilInterleaved::NewtonIterationBlackoilInterleaved(const ParameterGroup& param,
const boost::any& parallelInformation_arg)
: newtonIncrementDoublePrecision_(),
newtonIncrementSinglePrecision_(),
parameters_( param ),
parallelInformation_(parallelInformation_arg),
iterations_( 0 )
{
}
namespace detail {
template< int NP, class Scalar >
struct NewtonIncrement
{
template <class NewtonIncVector>
static const NewtonIterationBlackoilInterface&
get( NewtonIncVector& newtonIncrements,
const NewtonIterationBlackoilInterleavedParameters& param,
const boost::any& parallelInformation,
const int np )
{
if( np == NP )
{
assert( np < int(newtonIncrements.size()) );
// create NewtonIncrement with fixed np
if( ! newtonIncrements[ NP ] )
newtonIncrements[ NP ].reset( new NewtonIterationBlackoilInterleavedImpl< NP, Scalar >( param, parallelInformation ) );
return *(newtonIncrements[ NP ]);
}
else
{
return NewtonIncrement< NP-1, Scalar >::get(newtonIncrements, param, parallelInformation, np );
}
}
};
template<class Scalar>
struct NewtonIncrement< 0, Scalar >
{
template <class NewtonIncVector>
static const NewtonIterationBlackoilInterface&
get( NewtonIncVector&,
const NewtonIterationBlackoilInterleavedParameters&,
const boost::any&,
const int np )
{
OPM_THROW(std::runtime_error,"NewtonIncrement::get: number of variables not supported yet. Adjust maxNumberEquations appropriately to cover np = " << np);
}
};
std::pair<NewtonIterationBlackoilInterleaved::SolutionVector, Dune::InverseOperatorResult>
computePressureIncrement(const LinearisedBlackoilResidual& residual)
{
typedef LinearisedBlackoilResidual::ADB ADB;
// Build the vector of equations (should be just a single material balance equation
// in which the pressure equation is stored).
const int np = residual.material_balance_eq.size();
assert(np == 1);
std::vector<ADB> eqs;
eqs.reserve(np + 2);
for (int phase = 0; phase < np; ++phase) {
eqs.push_back(residual.material_balance_eq[phase]);
}
// Check if wells are present.
const bool hasWells = residual.well_flux_eq.size() > 0 ;
std::vector<ADB> elim_eqs;
if (hasWells) {
// Eliminate the well-related unknowns, and corresponding equations.
eqs.push_back(residual.well_flux_eq);
eqs.push_back(residual.well_eq);
elim_eqs.reserve(2);
elim_eqs.push_back(eqs[np]);
eqs = eliminateVariable(eqs, np); // Eliminate well flux unknowns.
elim_eqs.push_back(eqs[np]);
eqs = eliminateVariable(eqs, np); // Eliminate well bhp unknowns.
assert(int(eqs.size()) == np);
}
// Solve the linearised oil equation.
Eigen::SparseMatrix<double, Eigen::RowMajor> eigenA = eqs[0].derivative()[0].getSparse();
DuneMatrix opA(eigenA);
const int size = eqs[0].size();
typedef Dune::BlockVector<Dune::FieldVector<double, 1> > Vector1;
Vector1 x;
x.resize(size);
x = 0.0;
Vector1 b;
b.resize(size);
b = 0.0;
std::copy_n(eqs[0].value().data(), size, b.begin());
// Solve with AMG solver.
typedef Dune::BCRSMatrix<Dune::FieldMatrix<double, 1, 1> > Mat;
typedef Dune::MatrixAdapter<Mat, Vector1, Vector1> Operator;
Operator sOpA(opA);
typedef Dune::Amg::SequentialInformation ParallelInformation;
typedef Dune::SeqILU0<Mat,Vector1,Vector1> EllipticPreconditioner;
typedef EllipticPreconditioner Smoother;
typedef Dune::Amg::AMG<Operator, Vector1, Smoother, ParallelInformation> AMG;
typedef Dune::Amg::FirstDiagonal CouplingMetric;
typedef Dune::Amg::SymmetricCriterion<Mat, CouplingMetric> CritBase;
typedef Dune::Amg::CoarsenCriterion<CritBase> Criterion;
// TODO: revise choice of parameters
const int coarsenTarget = 1200;
Criterion criterion(15, coarsenTarget);
criterion.setDebugLevel(0); // no debug information, 1 for printing hierarchy information
criterion.setDefaultValuesIsotropic(2);
criterion.setNoPostSmoothSteps(1);
criterion.setNoPreSmoothSteps(1);
// for DUNE 2.2 we also need to pass the smoother args
typedef typename AMG::Smoother Smoother;
typedef typename Dune::Amg::SmootherTraits<Smoother>::Arguments SmootherArgs;
SmootherArgs smootherArgs;
smootherArgs.iterations = 1;
smootherArgs.relaxationFactor = 1.0;
AMG precond(sOpA, criterion, smootherArgs);
const int verbosity = 0;
const int maxit = 30;
const double tolerance = 1e-5;
// Construct linear solver.
Dune::BiCGSTABSolver<Vector1> linsolve(sOpA, precond, tolerance, maxit, verbosity);
// Solve system.
Dune::InverseOperatorResult result;
linsolve.apply(x, b, result);
// Check for failure of linear solver.
if (!result.converged) {
const std::string msg("Convergence failure for linear solver in computePressureIncrement().");
OpmLog::problem(msg);
OPM_THROW_NOLOG(LinearSolverProblem, msg);
}
// Copy solver output to dx.
NewtonIterationBlackoilInterleaved::SolutionVector dx(size);
for (int i = 0; i < size; ++i) {
dx(i) = x[i];
}
if (hasWells) {
// Compute full solution using the eliminated equations.
// Recovery in inverse order of elimination.
dx = recoverVariable(elim_eqs[1], dx, np);
dx = recoverVariable(elim_eqs[0], dx, np);
}
return std::make_pair(dx, result);
}
} // end namespace detail
NewtonIterationBlackoilInterleaved::SolutionVector
NewtonIterationBlackoilInterleaved::computeNewtonIncrement(const LinearisedBlackoilResidual& residual) const
{
// get np and call appropriate template method
const int np = residual.material_balance_eq.size();
if (np == 1) {
auto result = detail::computePressureIncrement(residual);
iterations_ = result.second.iterations;
return result.first;
}
const NewtonIterationBlackoilInterface& newtonIncrement = residual.singlePrecision ?
detail::NewtonIncrement< maxNumberEquations_, float > :: get( newtonIncrementSinglePrecision_, parameters_, parallelInformation_, np ) :
detail::NewtonIncrement< maxNumberEquations_, double > :: get( newtonIncrementDoublePrecision_, parameters_, parallelInformation_, np );
// compute newton increment
SolutionVector dx = newtonIncrement.computeNewtonIncrement( residual );
// get number of linear iterations
iterations_ = newtonIncrement.iterations();
return dx;
}
const boost::any& NewtonIterationBlackoilInterleaved::parallelInformation() const
{
return parallelInformation_;
}
} // namespace Opm