opm-simulators/opm/autodiff/BlackoilSolventModel_impl.hpp
2015-09-03 09:33:46 +02:00

701 lines
29 KiB
C++

/*
Copyright 2015 IRIS AS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_BLACKOILSOLVENTMODEL_IMPL_HEADER_INCLUDED
#define OPM_BLACKOILSOLVENTMODEL_IMPL_HEADER_INCLUDED
#include <opm/autodiff/BlackoilSolventModel.hpp>
#include <opm/autodiff/AutoDiffBlock.hpp>
#include <opm/autodiff/AutoDiffHelpers.hpp>
#include <opm/autodiff/GridHelpers.hpp>
#include <opm/autodiff/BlackoilPropsAdInterface.hpp>
#include <opm/autodiff/GeoProps.hpp>
#include <opm/autodiff/WellDensitySegmented.hpp>
#include <opm/core/grid.h>
#include <opm/core/linalg/LinearSolverInterface.hpp>
#include <opm/core/linalg/ParallelIstlInformation.hpp>
#include <opm/core/props/rock/RockCompressibility.hpp>
#include <opm/core/utility/ErrorMacros.hpp>
#include <opm/core/utility/Exceptions.hpp>
#include <opm/core/utility/Units.hpp>
#include <opm/core/well_controls.h>
#include <opm/core/utility/parameters/ParameterGroup.hpp>
#include <cassert>
#include <cmath>
#include <iostream>
#include <iomanip>
#include <limits>
namespace Opm {
namespace detail {
template <class PU>
int solventPos(const PU& pu)
{
const int maxnp = Opm::BlackoilPhases::MaxNumPhases;
int pos = 0;
for (int phase = 0; phase < maxnp; ++phase) {
if (pu.phase_used[phase]) {
pos++;
}
}
return pos;
}
} // namespace detail
template <class Grid>
BlackoilSolventModel<Grid>::BlackoilSolventModel(const typename Base::ModelParameters& param,
const Grid& grid,
const BlackoilPropsAdInterface& fluid,
const DerivedGeology& geo,
const RockCompressibility* rock_comp_props,
const SolventPropsAdFromDeck& solvent_props,
const Wells* wells_arg,
const NewtonIterationBlackoilInterface& linsolver,
const EclipseStateConstPtr eclState,
const bool has_disgas,
const bool has_vapoil,
const bool terminal_output,
const bool has_solvent)
: Base(param, grid, fluid, geo, rock_comp_props, wells_arg, linsolver,
eclState, has_disgas, has_vapoil, terminal_output),
has_solvent_(has_solvent),
solvent_pos_(detail::solventPos(fluid.phaseUsage())),
solvent_props_(solvent_props)
{
if (has_solvent_) {
// If deck has solvent, residual_ should contain solvent equation.
rq_.resize(fluid_.numPhases() + 1);
residual_.material_balance_eq.resize(fluid_.numPhases() + 1, ADB::null());
assert(solvent_pos_ == fluid_.numPhases());
if (has_vapoil_) {
OPM_THROW(std::runtime_error, "Solvent option only works with dead gas\n");
}
}
}
template <class Grid>
void
BlackoilSolventModel<Grid>::makeConstantState(SolutionState& state) const
{
Base::makeConstantState(state);
state.solvent_saturation = ADB::constant(state.solvent_saturation.value());
}
template <class Grid>
std::vector<V>
BlackoilSolventModel<Grid>::variableStateInitials(const ReservoirState& x,
const WellState& xw) const
{
std::vector<V> vars0 = Base::variableStateInitials(x, xw);
assert(int(vars0.size()) == fluid_.numPhases() + 2);
// Initial polymer concentration.
if (has_solvent_) {
assert (not x.solvent_saturation().empty());
const int nc = x.solvent_saturation().size();
const V ss = Eigen::Map<const V>(&x.solvent_saturation()[0], nc);
// Solvent belongs after other reservoir vars but before well vars.
auto solvent_pos = vars0.begin() + fluid_.numPhases();
assert(solvent_pos == vars0.end() - 2);
vars0.insert(solvent_pos, ss);
}
return vars0;
}
template <class Grid>
std::vector<int>
BlackoilSolventModel<Grid>::variableStateIndices() const
{
std::vector<int> ind = Base::variableStateIndices();
assert(ind.size() == 5);
if (has_solvent_) {
ind.resize(6);
// Solvent belongs after other reservoir vars but before well vars.
ind[Solvent] = fluid_.numPhases();
// Solvent is pushing back the well vars.
++ind[Qs];
++ind[Bhp];
}
return ind;
}
template <class Grid>
typename BlackoilSolventModel<Grid>::SolutionState
BlackoilSolventModel<Grid>::variableStateExtractVars(const ReservoirState& x,
const std::vector<int>& indices,
std::vector<ADB>& vars) const
{
SolutionState state = Base::variableStateExtractVars(x, indices, vars);
if (has_solvent_) {
state.solvent_saturation = std::move(vars[indices[Solvent]]);
if (active_[ Oil ]) {
// Note that so is never a primary variable.
const Opm::PhaseUsage pu = fluid_.phaseUsage();
state.saturation[pu.phase_pos[ Oil ]] -= state.solvent_saturation;
}
}
return state;
}
template <class Grid>
void
BlackoilSolventModel<Grid>::computeAccum(const SolutionState& state,
const int aix )
{
Base::computeAccum(state, aix);
// Compute accumulation of the solvent
if (has_solvent_) {
const ADB& press = state.pressure;
const ADB& ss = state.solvent_saturation;
const ADB pv_mult = poroMult(press); // also computed in Base::computeAccum, could be optimized.
const Opm::PhaseUsage& pu = fluid_.phaseUsage();
const ADB& pg = state.canonical_phase_pressures[pu.phase_pos[Gas]];
rq_[solvent_pos_].b = solvent_props_.bSolvent(pg,cells_);
rq_[solvent_pos_].accum[aix] = pv_mult * rq_[solvent_pos_].b * ss;
}
}
template <class Grid>
void
BlackoilSolventModel<Grid>::
assembleMassBalanceEq(const SolutionState& state)
{
Base::assembleMassBalanceEq(state);
if (has_solvent_) {
residual_.material_balance_eq[ solvent_pos_ ] =
pvdt_ * (rq_[solvent_pos_].accum[1] - rq_[solvent_pos_].accum[0])
+ ops_.div*rq_[solvent_pos_].mflux;
}
}
template <class Grid>
void BlackoilSolventModel<Grid>::addWellContributionToMassBalanceEq(const std::vector<ADB>& cq_s,
const SolutionState& state,
WellState& xw)
{
// Add well contributions to solvent mass balance equation
Base::addWellContributionToMassBalanceEq(cq_s, state, xw);
if (has_solvent_) {
const int nperf = wells().well_connpos[wells().number_of_wells];
const int nc = Opm::AutoDiffGrid::numCells(grid_);
const Opm::PhaseUsage& pu = fluid_.phaseUsage();
const ADB zero = ADB::constant(V::Zero(nc));
const ADB& ss = state.solvent_saturation;
const ADB& sg = (active_[ Gas ]
? state.saturation[ pu.phase_pos[ Gas ] ]
: zero);
Selector<double> zero_selector(ss.value(), Selector<double>::Zero);
V F_solvent = zero_selector.select(ss, ss / (ss + sg)).value();
const std::vector<int> well_cells(wells().well_cells, wells().well_cells + nperf);
const int nw = wells().number_of_wells;
V wellSolventFraction = Eigen::Map<const V>(&xw.solventFraction()[0], nperf);
for (int w = 0; w < nw; ++w) {
if(wells().type[w] == PRODUCER) {
for (int perf = wells().well_connpos[w]; perf < wells().well_connpos[w+1]; ++perf) {
wellSolventFraction[perf] = F_solvent[well_cells[perf]];
}
}
}
const ADB& rs_perfcells = subset(state.rs, well_cells);
int gas_pos = fluid_.phaseUsage().phase_pos[Gas];
int oil_pos = fluid_.phaseUsage().phase_pos[Oil];
// remove contribution from the dissolved gas.
// TODO compensate for gas in the oil phase
assert(!has_vapoil_);
const ADB cq_s_solvent = wellSolventFraction * (cq_s[gas_pos] - rs_perfcells * cq_s[oil_pos]);
// Solvent contribution to the mass balance equation is given as a fraction
// of the gas contribution.
residual_.material_balance_eq[solvent_pos_] -= superset(cq_s_solvent, well_cells, nc);
// The gas contribution must be reduced accordingly for the total contribution to be
// the same.
residual_.material_balance_eq[gas_pos] += superset(cq_s_solvent, well_cells, nc);
}
}
template <class Grid>
void BlackoilSolventModel<Grid>::updateState(const V& dx,
ReservoirState& reservoir_state,
WellState& well_state)
{
if (has_solvent_) {
// Extract solvent change.
const int np = fluid_.numPhases();
const int nc = Opm::AutoDiffGrid::numCells(grid_);
const V zero = V::Zero(nc);
const int solvent_start = nc * np;
const V dss = subset(dx, Span(nc, 1, solvent_start));
// Create new dx with the dss part deleted.
V modified_dx = V::Zero(dx.size() - nc);
modified_dx.head(solvent_start) = dx.head(solvent_start);
const int tail_len = dx.size() - solvent_start - nc;
modified_dx.tail(tail_len) = dx.tail(tail_len);
// Call base version.
Base::updateState(modified_dx, reservoir_state, well_state);
// Update solvent.
const V ss_old = Eigen::Map<const V>(&reservoir_state.solvent_saturation()[0], nc, 1);
const V ss = (ss_old - dss).max(zero);
std::copy(&ss[0], &ss[0] + nc, reservoir_state.solvent_saturation().begin());
// adjust oil saturation
const Opm::PhaseUsage& pu = fluid_.phaseUsage();
const int oilpos = pu.phase_pos[ Oil ];
for (int c = 0; c < nc; ++c) {
reservoir_state.saturation()[c*np + oilpos] = 1 - ss[c];
if (pu.phase_used[ Gas ]) {
const int gaspos = pu.phase_pos[ Gas ];
reservoir_state.saturation()[c*np + oilpos] -= reservoir_state.saturation()[c*np + gaspos];
}
if (pu.phase_used[ Water ]) {
const int waterpos = pu.phase_pos[ Water ];
reservoir_state.saturation()[c*np + oilpos] -= reservoir_state.saturation()[c*np + waterpos];
}
}
} else {
// Just forward call to base version.
Base::updateState(dx, reservoir_state, well_state);
}
}
template <class Grid>
void
BlackoilSolventModel<Grid>::computeMassFlux(const int actph ,
const V& transi,
const ADB& kr ,
const ADB& phasePressure,
const SolutionState& state)
{
Base::computeMassFlux(actph, transi, kr, phasePressure, state);
const int canonicalPhaseIdx = canph_[ actph ];
if (canonicalPhaseIdx == Gas) {
if (has_solvent_) {
const int nc = Opm::UgGridHelpers::numCells(grid_);
const Opm::PhaseUsage& pu = fluid_.phaseUsage();
const ADB zero = ADB::constant(V::Zero(nc));
const ADB& ss = state.solvent_saturation;
const ADB& sg = (active_[ Gas ]
? state.saturation[ pu.phase_pos[ Gas ] ]
: zero);
Selector<double> zero_selector(ss.value(), Selector<double>::Zero);
ADB F_solvent = zero_selector.select(ss, ss / (ss + sg));
V ones = V::Constant(nc, 1.0);
const ADB tr_mult = transMult(state.pressure);
const ADB mu = solvent_props_.muSolvent(phasePressure,cells_);
rq_[solvent_pos_].mob = solvent_props_.solventRelPermMultiplier(F_solvent, cells_) * tr_mult * kr / mu;
rq_[actph].mob = solvent_props_.gasRelPermMultiplier( (ones - F_solvent) , cells_) * rq_[actph].mob;
const ADB rho_solvent = solvent_props_.solventSurfaceDensity(cells_) * rq_[solvent_pos_].b;
const ADB rhoavg_solvent = ops_.caver * rho_solvent;
rq_[ solvent_pos_ ].dh = ops_.ngrad * phasePressure - geo_.gravity()[2] * (rhoavg_solvent * (ops_.ngrad * geo_.z().matrix()));
UpwindSelector<double> upwind(grid_, ops_, rq_[solvent_pos_].dh.value());
// Compute solvent flux.
rq_[solvent_pos_].mflux = upwind.select(rq_[solvent_pos_].b * rq_[solvent_pos_].mob) * (transi * rq_[solvent_pos_].dh);
}
}
}
template <class Grid>
std::vector<ADB>
BlackoilSolventModel<Grid>::computeRelPerm(const SolutionState& state) const
{
using namespace Opm::AutoDiffGrid;
const int nc = numCells(grid_);
const ADB zero = ADB::constant(V::Zero(nc));
const Opm::PhaseUsage& pu = fluid_.phaseUsage();
const ADB& sw = (active_[ Water ]
? state.saturation[ pu.phase_pos[ Water ] ]
: zero);
const ADB& so = (active_[ Oil ]
? state.saturation[ pu.phase_pos[ Oil ] ]
: zero);
const ADB& sg = (active_[ Gas ]
? state.saturation[ pu.phase_pos[ Gas ] ]
: zero);
if (has_solvent_) {
const ADB& ss = state.solvent_saturation;
return fluid_.relperm(sw, so, sg+ss, cells_);
} else {
return fluid_.relperm(sw, so, sg, cells_);
}
}
template <class Grid>
void
BlackoilSolventModel<Grid>::assemble(const ReservoirState& reservoir_state,
WellState& well_state,
const bool initial_assembly)
{
using namespace Opm::AutoDiffGrid;
// Possibly switch well controls and updating well state to
// get reasonable initial conditions for the wells
updateWellControls(well_state);
// Create the primary variables.
SolutionState state = variableState(reservoir_state, well_state);
if (initial_assembly) {
// Create the (constant, derivativeless) initial state.
SolutionState state0 = state;
makeConstantState(state0);
// Compute initial accumulation contributions
// and well connection pressures.
computeAccum(state0, 0);
computeWellConnectionPressures(state0, well_state);
}
// -------- Mass balance equations --------
assembleMassBalanceEq(state);
// -------- Well equations ----------
if ( ! wellsActive() ) {
return;
}
V aliveWells;
const int np = wells().number_of_phases;
std::vector<ADB> cq_s(np, ADB::null());
const int nw = wells().number_of_wells;
const int nperf = wells().well_connpos[nw];
const std::vector<int> well_cells(wells().well_cells, wells().well_cells + nperf);
std::vector<ADB> mob_perfcells(np, ADB::null());
std::vector<ADB> b_perfcells(np, ADB::null());
for (int phase = 0; phase < np; ++phase) {
mob_perfcells[phase] = subset(rq_[phase].mob, well_cells);
b_perfcells[phase] = subset(rq_[phase].b, well_cells);
}
if (has_solvent_) {
int gas_pos = fluid_.phaseUsage().phase_pos[Gas];
// Gas and solvent is combinded and solved together
// The input in the well equation is then the
// total gas phase = hydro carbon gas + solvent gas
// This may need to be reconsidered later, as the model
// is tested.
mob_perfcells[gas_pos] += subset(rq_[solvent_pos_].mob, well_cells);
b_perfcells[gas_pos] += subset(rq_[solvent_pos_].b, well_cells);
}
if (param_.solve_welleq_initially_ && initial_assembly) {
// solve the well equations as a pre-processing step
Base::solveWellEq(mob_perfcells, b_perfcells, state, well_state);
}
Base::computeWellFlux(state, mob_perfcells, b_perfcells, aliveWells, cq_s);
Base::updatePerfPhaseRatesAndPressures(cq_s, state, well_state);
Base::addWellFluxEq(cq_s, state);
addWellContributionToMassBalanceEq(cq_s, state, well_state);
Base::addWellControlEq(state, well_state, aliveWells);
}
template <class Grid>
double
BlackoilSolventModel<Grid>::convergenceReduction(const Eigen::Array<double, Eigen::Dynamic, MaxNumPhases+1>& B,
const Eigen::Array<double, Eigen::Dynamic, MaxNumPhases+1>& tempV,
const Eigen::Array<double, Eigen::Dynamic, MaxNumPhases+1>& R,
std::array<double,MaxNumPhases+1>& R_sum,
std::array<double,MaxNumPhases+1>& maxCoeff,
std::array<double,MaxNumPhases+1>& B_avg,
std::vector<double>& maxNormWell,
int nc,
int nw) const
{
// Do the global reductions
#if HAVE_MPI
if ( linsolver_.parallelInformation().type() == typeid(ParallelISTLInformation) )
{
const ParallelISTLInformation& info =
boost::any_cast<const ParallelISTLInformation&>(linsolver_.parallelInformation());
// Compute the global number of cells and porevolume
std::vector<int> v(nc, 1);
auto nc_and_pv = std::tuple<int, double>(0, 0.0);
auto nc_and_pv_operators = std::make_tuple(Opm::Reduction::makeGlobalSumFunctor<int>(),
Opm::Reduction::makeGlobalSumFunctor<double>());
auto nc_and_pv_containers = std::make_tuple(v, geo_.poreVolume());
info.computeReduction(nc_and_pv_containers, nc_and_pv_operators, nc_and_pv);
for ( int idx=0; idx<MaxNumPhases+1; ++idx )
{
if ((idx == MaxNumPhases && has_solvent_) || active_[idx]) { // Dealing with solvent *or* an active phase.
auto values = std::tuple<double,double,double>(0.0 ,0.0 ,0.0);
auto containers = std::make_tuple(B.col(idx),
tempV.col(idx),
R.col(idx));
auto operators = std::make_tuple(Opm::Reduction::makeGlobalSumFunctor<double>(),
Opm::Reduction::makeGlobalMaxFunctor<double>(),
Opm::Reduction::makeGlobalSumFunctor<double>());
info.computeReduction(containers, operators, values);
B_avg[idx] = std::get<0>(values)/std::get<0>(nc_and_pv);
maxCoeff[idx] = std::get<1>(values);
R_sum[idx] = std::get<2>(values);
if (idx != MaxNumPhases) { // We do not compute a well flux residual for solvent.
maxNormWell[idx] = 0.0;
for ( int w=0; w<nw; ++w ) {
maxNormWell[idx] = std::max(maxNormWell[idx], std::abs(residual_.well_flux_eq.value()[nw*idx + w]));
}
}
}
else
{
maxNormWell[idx] = R_sum[idx] = B_avg[idx] = maxCoeff[idx] = 0.0;
}
}
info.communicator().max(&maxNormWell[0], MaxNumPhases+1);
// Compute pore volume
return std::get<1>(nc_and_pv);
}
else
#endif
{
for ( int idx=0; idx<MaxNumPhases+1; ++idx )
{
if (((idx == MaxNumPhases && has_solvent_) || active_[idx]) ) { // Dealing with solvent *or* an active phase.
B_avg[idx] = B.col(idx).sum()/nc;
maxCoeff[idx] = tempV.col(idx).maxCoeff();
R_sum[idx] = R.col(idx).sum();
}
else
{
R_sum[idx] = B_avg[idx] = maxCoeff[idx] =0.0;
}
if (idx != MaxNumPhases) { // We do not compute a well flux residual for polymer.
maxNormWell[idx] = 0.0;
for ( int w=0; w<nw; ++w ) {
maxNormWell[idx] = std::max(maxNormWell[idx], std::abs(residual_.well_flux_eq.value()[nw*idx + w]));
}
}
}
// Compute total pore volume
return geo_.poreVolume().sum();
}
}
template <class Grid>
bool
BlackoilSolventModel<Grid>::getConvergence(const double dt, const int iteration)
{
const double tol_mb = param_.tolerance_mb_;
const double tol_cnv = param_.tolerance_cnv_;
const double tol_wells = param_.tolerance_wells_;
const int nc = Opm::AutoDiffGrid::numCells(grid_);
const int nw = wellsActive() ? wells().number_of_wells : 0;
const Opm::PhaseUsage& pu = fluid_.phaseUsage();
const V pv = geo_.poreVolume();
const std::vector<PhasePresence> cond = phaseCondition();
std::array<double,MaxNumPhases+1> CNV = {{0., 0., 0., 0.}};
std::array<double,MaxNumPhases+1> R_sum = {{0., 0., 0., 0.}};
std::array<double,MaxNumPhases+1> B_avg = {{0., 0., 0., 0.}};
std::array<double,MaxNumPhases+1> maxCoeff = {{0., 0., 0., 0.}};
std::array<double,MaxNumPhases+1> mass_balance_residual = {{0., 0., 0., 0.}};
std::array<double,MaxNumPhases> well_flux_residual = {{0., 0., 0.}};
std::size_t cols = MaxNumPhases+1; // needed to pass the correct type to Eigen
Eigen::Array<V::Scalar, Eigen::Dynamic, MaxNumPhases+1> B(nc, cols);
Eigen::Array<V::Scalar, Eigen::Dynamic, MaxNumPhases+1> R(nc, cols);
Eigen::Array<V::Scalar, Eigen::Dynamic, MaxNumPhases+1> tempV(nc, cols);
std::vector<double> maxNormWell(MaxNumPhases);
for ( int idx=0; idx<MaxNumPhases; ++idx )
{
if (active_[idx]) {
const int pos = pu.phase_pos[idx];
const ADB& tempB = rq_[pos].b;
B.col(idx) = 1./tempB.value();
R.col(idx) = residual_.material_balance_eq[idx].value();
tempV.col(idx) = R.col(idx).abs()/pv;
}
}
if (has_solvent_) {
const ADB& tempB = rq_[solvent_pos_].b;
B.col(MaxNumPhases) = 1. / tempB.value();
R.col(MaxNumPhases) = residual_.material_balance_eq[solvent_pos_].value();
tempV.col(MaxNumPhases) = R.col(MaxNumPhases).abs()/pv;
}
const double pvSum = convergenceReduction(B, tempV, R, R_sum, maxCoeff, B_avg,
maxNormWell, nc, nw);
bool converged_MB = true;
bool converged_CNV = true;
bool converged_Well = true;
// Finish computation
for ( int idx = 0; idx < (MaxNumPhases + 1) ; ++idx )
{
CNV[idx] = B_avg[idx] * dt * maxCoeff[idx];
mass_balance_residual[idx] = std::abs(B_avg[idx]*R_sum[idx]) * dt / pvSum;
converged_MB = converged_MB && (mass_balance_residual[idx] < tol_mb);
converged_CNV = converged_CNV && (CNV[idx] < tol_cnv);
if (idx != MaxNumPhases) { // No well flux residual for polymer.
well_flux_residual[idx] = B_avg[idx] * maxNormWell[idx];
converged_Well = converged_Well && (well_flux_residual[idx] < tol_wells);
}
}
const double residualWell = detail::infinityNormWell(residual_.well_eq,
linsolver_.parallelInformation());
converged_Well = converged_Well && (residualWell < Opm::unit::barsa);
const bool converged = converged_MB && converged_CNV && converged_Well;
// if one of the residuals is NaN, throw exception, so that the solver can be restarted
if (std::isnan(mass_balance_residual[Water]) || mass_balance_residual[Water] > maxResidualAllowed() ||
std::isnan(mass_balance_residual[Oil]) || mass_balance_residual[Oil] > maxResidualAllowed() ||
std::isnan(mass_balance_residual[Gas]) || mass_balance_residual[Gas] > maxResidualAllowed() ||
std::isnan(mass_balance_residual[Gas]) || mass_balance_residual[MaxNumPhases] > maxResidualAllowed() ||
std::isnan(CNV[Water]) || CNV[Water] > maxResidualAllowed() ||
std::isnan(CNV[Oil]) || CNV[Oil] > maxResidualAllowed() ||
std::isnan(CNV[Gas]) || CNV[Gas] > maxResidualAllowed() ||
std::isnan(CNV[MaxNumPhases]) || CNV[MaxNumPhases] > maxResidualAllowed() ||
std::isnan(well_flux_residual[Water]) || well_flux_residual[Water] > maxResidualAllowed() ||
std::isnan(well_flux_residual[Oil]) || well_flux_residual[Oil] > maxResidualAllowed() ||
std::isnan(well_flux_residual[Gas]) || well_flux_residual[Gas] > maxResidualAllowed() ||
std::isnan(residualWell) || residualWell > maxResidualAllowed() )
{
OPM_THROW(Opm::NumericalProblem,"One of the residuals is NaN or too large!");
}
if ( terminal_output_ )
{
// Only rank 0 does print to std::cout
if (iteration == 0) {
std::cout << "\nIter MB(WATER) MB(OIL) MB(GAS) MB(SOLVENT) CNVW CNVO CNVG CNVS W-FLUX(W) W-FLUX(O) W-FLUX(G)\n";
}
const std::streamsize oprec = std::cout.precision(3);
const std::ios::fmtflags oflags = std::cout.setf(std::ios::scientific);
std::cout << std::setw(4) << iteration
<< std::setw(11) << mass_balance_residual[Water]
<< std::setw(11) << mass_balance_residual[Oil]
<< std::setw(11) << mass_balance_residual[Gas]
<< std::setw(11) << mass_balance_residual[MaxNumPhases]
<< std::setw(11) << CNV[Water]
<< std::setw(11) << CNV[Oil]
<< std::setw(11) << CNV[Gas]
<< std::setw(11) << CNV[MaxNumPhases]
<< std::setw(11) << well_flux_residual[Water]
<< std::setw(11) << well_flux_residual[Oil]
<< std::setw(11) << well_flux_residual[Gas]
<< std::endl;
std::cout.precision(oprec);
std::cout.flags(oflags);
}
return converged;
}
}
#endif // OPM_BLACKOILSOLVENT_IMPL_HEADER_INCLUDED