mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-17 19:33:00 -06:00
4e3a69cc90
Note that this patch does not introduce any real temperature dependence but only changes the APIs for the viscosity and for the density related methods. Note that I also don't like the fact that this requires so many changes to so many files, but with the current design of the property classes I cannot see a way to avoid this...
682 lines
25 KiB
C++
682 lines
25 KiB
C++
/*
|
|
Copyright 2013 SINTEF ICT, Applied Mathematics.
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
#include <config.h>
|
|
|
|
#include <opm/autodiff/ImpesTPFAAD.hpp>
|
|
#include <opm/autodiff/GeoProps.hpp>
|
|
#include <opm/autodiff/GridHelpers.hpp>
|
|
|
|
#include <opm/core/simulator/BlackoilState.hpp>
|
|
#include <opm/core/simulator/WellState.hpp>
|
|
#include <opm/core/utility/ErrorMacros.hpp>
|
|
#include <opm/core/linalg/LinearSolverInterface.hpp>
|
|
#include <opm/core/wells.h>
|
|
|
|
#include <iostream>
|
|
#include <iomanip>
|
|
|
|
namespace Opm {
|
|
|
|
// Repeated from inside ImpesTPFAAD for convenience.
|
|
typedef AutoDiffBlock<double> ADB;
|
|
typedef ADB::V V;
|
|
typedef ADB::M M;
|
|
|
|
|
|
namespace {
|
|
std::vector<int>
|
|
buildAllCells(const int nc)
|
|
{
|
|
std::vector<int> all_cells(nc);
|
|
|
|
for (int c = 0; c < nc; ++c) { all_cells[c] = c; }
|
|
|
|
return all_cells;
|
|
}
|
|
|
|
template <class GeoProps>
|
|
AutoDiffBlock<double>::M
|
|
gravityOperator(const UnstructuredGrid& grid,
|
|
const HelperOps& ops ,
|
|
const GeoProps& geo )
|
|
{
|
|
using namespace Opm::AutoDiffGrid;
|
|
const int nc = numCells(grid);
|
|
|
|
std::vector<int> f2hf(2 * numFaces(grid), -1);
|
|
Eigen::Array<int, Eigen::Dynamic, 2, Eigen::RowMajor>
|
|
face_cells = faceCellsToEigen(grid);
|
|
|
|
typedef typename Opm::UgGridHelpers::Cell2FacesTraits<UnstructuredGrid>::Type
|
|
Cell2Faces;
|
|
Cell2Faces c2f=cell2Faces(grid);
|
|
for (int c = 0; c < nc; ++c) {
|
|
typename Cell2Faces::row_type
|
|
cell_faces = c2f[c];
|
|
typedef typename Cell2Faces::row_type::iterator Iter;
|
|
for (Iter f=cell_faces.begin(), end=cell_faces.end();
|
|
f!=end; ++f) {
|
|
const int p = 0 + (face_cells(*f,0) != c);
|
|
f2hf[2*(*f) + p] = f-c2f[0].begin();
|
|
}
|
|
}
|
|
|
|
typedef AutoDiffBlock<double>::V V;
|
|
typedef AutoDiffBlock<double>::M M;
|
|
|
|
const V& gpot = geo.gravityPotential();
|
|
const V& trans = geo.transmissibility();
|
|
|
|
const HelperOps::IFaces::Index ni = ops.internal_faces.size();
|
|
|
|
typedef Eigen::Triplet<double> Tri;
|
|
std::vector<Tri> grav; grav.reserve(2 * ni);
|
|
for (HelperOps::IFaces::Index i = 0; i < ni; ++i) {
|
|
const int f = ops.internal_faces[ i ];
|
|
const int c1 = face_cells(f,0);
|
|
const int c2 = face_cells(f,1);
|
|
|
|
assert ((c1 >= 0) && (c2 >= 0));
|
|
|
|
const double dG1 = gpot[ f2hf[2*f + 0] ];
|
|
const double dG2 = gpot[ f2hf[2*f + 1] ];
|
|
const double t = trans[ f ];
|
|
|
|
grav.push_back(Tri(i, c1, t * dG1));
|
|
grav.push_back(Tri(i, c2, - t * dG2));
|
|
}
|
|
|
|
M G(ni, nc); G.setFromTriplets(grav.begin(), grav.end());
|
|
|
|
return G;
|
|
}
|
|
|
|
V computePerfPress(const UnstructuredGrid& grid, const Wells& wells, const V& rho, const double grav)
|
|
{
|
|
using namespace Opm::AutoDiffGrid;
|
|
const int nw = wells.number_of_wells;
|
|
const int nperf = wells.well_connpos[nw];
|
|
const int dim = dimensions(grid);
|
|
V wdp = V::Zero(nperf,1);
|
|
assert(wdp.size() == rho.size());
|
|
|
|
// Main loop, iterate over all perforations,
|
|
// using the following formula:
|
|
// wdp(perf) = g*(perf_z - well_ref_z)*rho(perf)
|
|
// where the total density rho(perf) is taken to be
|
|
// sum_p (rho_p*saturation_p) in the perforation cell.
|
|
// [although this is computed on the outside of this function].
|
|
for (int w = 0; w < nw; ++w) {
|
|
const double ref_depth = wells.depth_ref[w];
|
|
for (int j = wells.well_connpos[w]; j < wells.well_connpos[w + 1]; ++j) {
|
|
const int cell = wells.well_cells[j];
|
|
const double cell_depth = grid.cell_centroids[dim * cell + dim - 1];
|
|
wdp[j] = rho[j]*grav*(cell_depth - ref_depth);
|
|
}
|
|
}
|
|
return wdp;
|
|
}
|
|
|
|
} // anonymous namespace
|
|
|
|
|
|
|
|
|
|
|
|
ImpesTPFAAD::ImpesTPFAAD(const UnstructuredGrid& grid,
|
|
const BlackoilPropsAdInterface& fluid,
|
|
const DerivedGeology& geo,
|
|
const Wells& wells,
|
|
const LinearSolverInterface& linsolver)
|
|
: grid_ (grid)
|
|
, fluid_ (fluid)
|
|
, geo_ (geo)
|
|
, wells_ (wells)
|
|
, linsolver_(linsolver)
|
|
// , pdepfdata_(grid.number_of_cells, fluid)
|
|
, ops_ (grid)
|
|
, grav_ (gravityOperator(grid_, ops_, geo_))
|
|
, cell_residual_ (ADB::null())
|
|
, well_flow_residual_ ()
|
|
, well_residual_ (ADB::null())
|
|
, total_residual_ (ADB::null())
|
|
, qs_ (ADB::null())
|
|
{
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void
|
|
ImpesTPFAAD::solve(const double dt,
|
|
BlackoilState& state,
|
|
WellState& well_state)
|
|
{
|
|
using namespace Opm::AutoDiffGrid;
|
|
const int nc = numCells(grid_);
|
|
const int np = state.numPhases();
|
|
|
|
well_flow_residual_.resize(np, ADB::null());
|
|
|
|
// Compute dynamic data that are treated explicitly.
|
|
computeExplicitData(dt, state, well_state);
|
|
// Compute relperms once and for all (since saturations are explicit).
|
|
DataBlock s = Eigen::Map<const DataBlock>(state.saturation().data(), nc, np);
|
|
assert(np == 2);
|
|
kr_ = fluid_.relperm(s.col(0), s.col(1), V::Zero(nc,1), buildAllCells(nc));
|
|
// Compute relperms for wells. This must be revisited for crossflow.
|
|
const int nw = wells_.number_of_wells;
|
|
const int nperf = wells_.well_connpos[nw];
|
|
DataBlock well_s(nperf, np);
|
|
for (int w = 0; w < nw; ++w) {
|
|
const double* comp_frac = &wells_.comp_frac[np*w];
|
|
for (int j = wells_.well_connpos[w]; j < wells_.well_connpos[w+1]; ++j) {
|
|
well_s.row(j) = Eigen::Map<const DataBlock>(comp_frac, 1, np);
|
|
}
|
|
}
|
|
const std::vector<int> well_cells(wells_.well_cells,
|
|
wells_.well_cells + nperf);
|
|
well_kr_ = fluid_.relperm(well_s.col(0), well_s.col(1), V::Zero(nperf,1), well_cells);
|
|
|
|
const double atol = 1.0e-10;
|
|
const double rtol = 5.0e-6;
|
|
const int maxit = 15;
|
|
|
|
assemble(dt, state, well_state);
|
|
|
|
const double r0 = residualNorm();
|
|
int it = 0;
|
|
std::cout << "\nIteration Residual\n"
|
|
<< std::setw(9) << it << std::setprecision(9)
|
|
<< std::setw(18) << r0 << std::endl;
|
|
bool resTooLarge = r0 > atol;
|
|
while (resTooLarge && (it < maxit)) {
|
|
solveJacobianSystem(state, well_state);
|
|
|
|
assemble(dt, state, well_state);
|
|
|
|
const double r = residualNorm();
|
|
|
|
resTooLarge = (r > atol) && (r > rtol*r0);
|
|
|
|
it += 1;
|
|
|
|
std::cout << std::setw(9) << it << std::setprecision(9)
|
|
<< std::setw(18) << r << std::endl;
|
|
}
|
|
|
|
if (resTooLarge) {
|
|
OPM_THROW(std::runtime_error, "Failed to compute converged pressure solution");
|
|
}
|
|
else {
|
|
computeFluxes(state, well_state);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void
|
|
ImpesTPFAAD::computeExplicitData(const double dt,
|
|
const BlackoilState& state,
|
|
const WellState& well_state)
|
|
{
|
|
using namespace Opm::AutoDiffGrid;
|
|
// Suppress warnings about "unused parameters".
|
|
static_cast<void>(dt);
|
|
static_cast<void>(well_state);
|
|
|
|
const int nc = numCells(grid_);
|
|
const int np = state.numPhases();
|
|
const int nw = wells_.number_of_wells;
|
|
const int nperf = wells_.well_connpos[nw];
|
|
const int dim = dimensions(grid_);
|
|
|
|
const std::vector<int> cells = buildAllCells(nc);
|
|
|
|
// Compute relperms.
|
|
DataBlock s = Eigen::Map<const DataBlock>(state.saturation().data(), nc, np);
|
|
assert(np == 2);
|
|
kr_ = fluid_.relperm(s.col(0), s.col(1), V::Zero(nc,1), buildAllCells(nc));
|
|
|
|
// Compute relperms for wells. This must be revisited for crossflow.
|
|
DataBlock well_s(nperf, np);
|
|
for (int w = 0; w < nw; ++w) {
|
|
const double* comp_frac = &wells_.comp_frac[np*w];
|
|
for (int j = wells_.well_connpos[w]; j < wells_.well_connpos[w+1]; ++j) {
|
|
well_s.row(j) = Eigen::Map<const DataBlock>(comp_frac, 1, np);
|
|
}
|
|
}
|
|
const std::vector<int> well_cells(wells_.well_cells,
|
|
wells_.well_cells + nperf);
|
|
well_kr_ = fluid_.relperm(well_s.col(0), well_s.col(1), V::Zero(nperf,1), well_cells);
|
|
|
|
// Compute well pressure differentials.
|
|
// Construct pressure difference vector for wells.
|
|
const double* g = geo_.gravity();
|
|
if (g) {
|
|
// Guard against gravity in anything but last dimension.
|
|
for (int dd = 0; dd < dim - 1; ++dd) {
|
|
assert(g[dd] == 0.0);
|
|
}
|
|
}
|
|
V cell_rho_total = V::Zero(nc,1);
|
|
const Eigen::Map<const V> p(state.pressure().data(), nc, 1);
|
|
const Eigen::Map<const V> T(state.temperature().data(), nc, 1);
|
|
for (int phase = 0; phase < np; ++phase) {
|
|
const V cell_rho = fluidRho(phase, p, T, cells);
|
|
const V cell_s = s.col(phase);
|
|
cell_rho_total += cell_s * cell_rho;
|
|
}
|
|
V rho_perf = subset(cell_rho_total, well_cells);
|
|
well_perf_dp_ = computePerfPress(grid_, wells_, rho_perf, g ? g[dim-1] : 0.0);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void
|
|
ImpesTPFAAD::assemble(const double dt,
|
|
const BlackoilState& state,
|
|
const WellState& well_state)
|
|
{
|
|
using namespace Opm::AutoDiffGrid;
|
|
const V& pv = geo_.poreVolume();
|
|
const int nc = numCells(grid_); ;
|
|
const int np = state.numPhases();
|
|
const int nw = wells_.number_of_wells;
|
|
const int nperf = wells_.well_connpos[nw];
|
|
|
|
const std::vector<int> cells = buildAllCells(nc);
|
|
|
|
const Eigen::Map<const DataBlock> z0all(&state.surfacevol()[0], nc, np);
|
|
const DataBlock qall = DataBlock::Zero(nc, np);
|
|
const V delta_t = dt * V::Ones(nc, 1);
|
|
const V transi = subset(geo_.transmissibility(),
|
|
ops_.internal_faces);
|
|
const std::vector<int> well_cells(wells_.well_cells,
|
|
wells_.well_cells + nperf);
|
|
const V transw = Eigen::Map<const V>(wells_.WI, nperf, 1);
|
|
|
|
// Initialize AD variables: p (cell pressures) and bhp (well bhp).
|
|
const V p0 = Eigen::Map<const V>(&state.pressure()[0], nc, 1);
|
|
const V T0 = Eigen::Map<const V>(&state.temperature()[0], nc, 1);
|
|
const V bhp0 = Eigen::Map<const V>(&well_state.bhp()[0], nw, 1);
|
|
std::vector<V> vars0 = { p0, bhp0 };
|
|
std::vector<ADB> vars = ADB::variables(vars0);
|
|
const ADB& p = vars[0];
|
|
const ADB T = ADB::constant(T0);
|
|
const ADB& bhp = vars[1];
|
|
std::vector<int> bpat = p.blockPattern();
|
|
|
|
// Compute T_ij * (p_i - p_j).
|
|
const ADB nkgradp = transi * (ops_.ngrad * p);
|
|
|
|
// Extract variables for perforation cell pressures
|
|
// and corresponding perforation well pressures.
|
|
const ADB p_perfcell = subset(p, well_cells);
|
|
const ADB T_perfcell = subset(T, well_cells);
|
|
// Construct matrix to map wells->perforations.
|
|
M well_to_perf(well_cells.size(), nw);
|
|
typedef Eigen::Triplet<double> Tri;
|
|
std::vector<Tri> w2p;
|
|
for (int w = 0; w < nw; ++w) {
|
|
for (int perf = wells_.well_connpos[w]; perf < wells_.well_connpos[w+1]; ++perf) {
|
|
w2p.emplace_back(perf, w, 1.0);
|
|
}
|
|
}
|
|
well_to_perf.setFromTriplets(w2p.begin(), w2p.end());
|
|
const M perf_to_well = well_to_perf.transpose();
|
|
// Finally construct well perforation pressures and well flows.
|
|
const ADB p_perfwell = well_to_perf*bhp + well_perf_dp_;
|
|
const ADB nkgradp_well = transw * (p_perfcell - p_perfwell);
|
|
const Selector<double> cell_to_well_selector(nkgradp_well.value());
|
|
|
|
cell_residual_ = ADB::constant(pv, bpat);
|
|
well_residual_ = ADB::constant(V::Zero(nw,1), bpat);
|
|
ADB divcontrib_sum = ADB::constant(V::Zero(nc,1), bpat);
|
|
qs_ = ADB::constant(V::Zero(nw*np, 1), bpat);
|
|
for (int phase = 0; phase < np; ++phase) {
|
|
const ADB cell_b = fluidFvf(phase, p, T, cells);
|
|
const ADB cell_rho = fluidRho(phase, p, T, cells);
|
|
const ADB well_b = fluidFvf(phase, p_perfwell, T_perfcell, well_cells);
|
|
const V kr = fluidKr(phase);
|
|
// Explicitly not asking for derivatives of viscosity,
|
|
// since they are not available yet.
|
|
const V mu = fluidMu(phase, p.value(), T.value(), cells);
|
|
const V cell_mob = kr / mu;
|
|
const ADB head_diff_grav = (grav_ * cell_rho);
|
|
const ADB head = nkgradp + (grav_ * cell_rho);
|
|
const UpwindSelector<double> upwind(grid_, ops_, head.value());
|
|
const V face_mob = upwind.select(cell_mob);
|
|
const V well_kr = fluidKrWell(phase);
|
|
const V well_mu = fluidMu(phase, p_perfwell.value(), T_perfcell.value(), well_cells);
|
|
const V well_mob = well_kr / well_mu;
|
|
const V perf_mob = cell_to_well_selector.select(subset(cell_mob, well_cells), well_mob);
|
|
const ADB flux = face_mob * head;
|
|
const ADB perf_flux = perf_mob * (nkgradp_well); // No gravity term for perforations.
|
|
const ADB face_b = upwind.select(cell_b);
|
|
const ADB perf_b = cell_to_well_selector.select(subset(cell_b, well_cells), well_b);
|
|
const V z0 = z0all.block(0, phase, nc, 1);
|
|
const V q = qall .block(0, phase, nc, 1);
|
|
const ADB well_contrib = superset(perf_flux*perf_b, well_cells, nc);
|
|
const ADB divcontrib = delta_t * (ops_.div * (flux * face_b) + well_contrib);
|
|
const V qcontrib = delta_t * q;
|
|
const ADB pvcontrib = ADB::constant(pv*z0, bpat);
|
|
const ADB component_contrib = pvcontrib + qcontrib;
|
|
divcontrib_sum = divcontrib_sum - divcontrib/cell_b;
|
|
cell_residual_ = cell_residual_ - (component_contrib/cell_b);
|
|
const ADB well_rates = perf_to_well * (perf_flux*perf_b);
|
|
qs_ = qs_ + superset(well_rates, Span(nw, 1, phase*nw), nw*np);
|
|
}
|
|
cell_residual_ = cell_residual_ + divcontrib_sum;
|
|
// Handling BHP and SURFACE_RATE wells.
|
|
V bhp_targets(nw,1);
|
|
V rate_targets(nw,1);
|
|
M rate_distr(nw, np*nw);
|
|
for (int w = 0; w < nw; ++w) {
|
|
const WellControls* wc = wells_.ctrls[w];
|
|
if (well_controls_get_current_type(wc) == BHP) {
|
|
bhp_targets[w] = well_controls_get_current_target( wc );
|
|
rate_targets[w] = -1e100;
|
|
} else if (well_controls_get_current_type(wc) == SURFACE_RATE) {
|
|
bhp_targets[w] = -1e100;
|
|
rate_targets[w] = well_controls_get_current_target( wc );
|
|
{
|
|
const double * distr = well_controls_get_current_distr( wc );
|
|
for (int phase = 0; phase < np; ++phase) {
|
|
rate_distr.insert(w, phase*nw + w) = distr[phase];
|
|
}
|
|
}
|
|
} else {
|
|
OPM_THROW(std::runtime_error, "Can only handle BHP and SURFACE_RATE type controls.");
|
|
}
|
|
}
|
|
const ADB bhp_residual = bhp - bhp_targets;
|
|
const ADB rate_residual = rate_distr * qs_ - rate_targets;
|
|
// Choose bhp residual for positive bhp targets.
|
|
Selector<double> bhp_selector(bhp_targets);
|
|
well_residual_ = bhp_selector.select(bhp_residual, rate_residual);
|
|
|
|
// Build full residual by concatenation of residual arrays and
|
|
// jacobian matrices.
|
|
total_residual_ = collapseJacs(vertcat(cell_residual_, well_residual_));
|
|
|
|
// std::cout.precision(16);
|
|
// std::cout << total_residual_;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void
|
|
ImpesTPFAAD::solveJacobianSystem(BlackoilState& state,
|
|
WellState& well_state) const
|
|
{
|
|
using namespace Opm::AutoDiffGrid;
|
|
const int nc = numCells(grid_);
|
|
const int nw = wells_.number_of_wells;
|
|
// const int np = state.numPhases();
|
|
|
|
Eigen::SparseMatrix<double, Eigen::RowMajor> matr = total_residual_.derivative()[0];
|
|
|
|
V dx(V::Zero(total_residual_.size()));
|
|
Opm::LinearSolverInterface::LinearSolverReport rep
|
|
= linsolver_.solve(matr.rows(), matr.nonZeros(),
|
|
matr.outerIndexPtr(), matr.innerIndexPtr(), matr.valuePtr(),
|
|
total_residual_.value().data(), dx.data());
|
|
if (!rep.converged) {
|
|
OPM_THROW(std::runtime_error, "ImpesTPFAAD::solve(): Linear solver convergence failure.");
|
|
}
|
|
const V p0 = Eigen::Map<const V>(&state.pressure()[0], nc, 1);
|
|
const V dp = subset(dx, Span(nc));
|
|
const V p = p0 - dp;
|
|
std::copy(&p[0], &p[0] + nc, state.pressure().begin());
|
|
const V bhp0 = Eigen::Map<const V>(&well_state.bhp()[0], nw, 1);
|
|
Span bhp_dofs(nw, 1, nc);
|
|
const V dbhp = subset(dx, bhp_dofs);
|
|
const V bhp = bhp0 - dbhp;
|
|
std::copy(&bhp[0], &bhp[0] + nw, well_state.bhp().begin());
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
double
|
|
ImpesTPFAAD::residualNorm() const
|
|
{
|
|
return total_residual_.value().matrix().norm();
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void
|
|
ImpesTPFAAD::computeFluxes(BlackoilState& state,
|
|
WellState& well_state) const
|
|
{
|
|
using namespace Opm::AutoDiffGrid;
|
|
// This method computes state.faceflux(),
|
|
// well_state.perfRates() and well_state.perfPress().
|
|
const int nc = numCells(grid_);
|
|
const int np = state.numPhases();
|
|
const int nw = wells_.number_of_wells;
|
|
const int nperf = wells_.well_connpos[nw];
|
|
|
|
// Build cell sets.
|
|
const std::vector<int> cells = buildAllCells(nc);
|
|
const std::vector<int> well_cells(wells_.well_cells,
|
|
wells_.well_cells + nperf);
|
|
// Construct matrix to map wells->perforations.
|
|
M well_to_perf(well_cells.size(), nw);
|
|
typedef Eigen::Triplet<double> Tri;
|
|
std::vector<Tri> w2p;
|
|
for (int w = 0; w < nw; ++w) {
|
|
for (int perf = wells_.well_connpos[w]; perf < wells_.well_connpos[w+1]; ++perf) {
|
|
w2p.emplace_back(perf, w, 1.0);
|
|
}
|
|
}
|
|
well_to_perf.setFromTriplets(w2p.begin(), w2p.end());
|
|
const M perf_to_well = well_to_perf.transpose();
|
|
const V transw = Eigen::Map<const V>(wells_.WI, nperf, 1);
|
|
|
|
const V p = Eigen::Map<const V>(&state.pressure()[0], nc, 1);
|
|
const V T = Eigen::Map<const V>(&state.temperature()[0], nc, 1);
|
|
const V bhp = Eigen::Map<const V>(&well_state.bhp()[0], nw, 1);
|
|
|
|
const V p_perfcell = subset(p, well_cells);
|
|
const V T_perfcell = subset(T, well_cells);
|
|
|
|
const V transi = subset(geo_.transmissibility(),
|
|
ops_.internal_faces);
|
|
const V nkgradp = transi * (ops_.ngrad * p.matrix()).array();
|
|
|
|
const V p_perfwell = (well_to_perf*bhp.matrix()).array() + well_perf_dp_;
|
|
const V nkgradp_well = transw * (p_perfcell - p_perfwell);
|
|
const Selector<double> cell_to_well_selector(nkgradp_well);
|
|
|
|
V flux = V::Zero(ops_.internal_faces.size(), 1);
|
|
V perf_flux = V::Zero(nperf, 1);
|
|
|
|
for (int phase = 0; phase < np; ++phase) {
|
|
const V cell_rho = fluidRho(phase, p, T, cells);
|
|
const V head = nkgradp + (grav_ * cell_rho.matrix()).array();
|
|
const UpwindSelector<double> upwind(grid_, ops_, head);
|
|
const V kr = fluidKr(phase);
|
|
const V mu = fluidMu(phase, p, T, cells);
|
|
const V cell_mob = kr / mu;
|
|
const V face_mob = upwind.select(cell_mob);
|
|
const V well_kr = fluidKrWell(phase);
|
|
const V well_mu = fluidMu(phase, p_perfwell, T_perfcell, well_cells);
|
|
const V well_mob = well_kr / well_mu;
|
|
const V perf_mob = cell_to_well_selector.select(subset(cell_mob, well_cells), well_mob);
|
|
|
|
perf_flux += perf_mob * (nkgradp_well); // No gravity term for perforations.
|
|
flux += face_mob * head;
|
|
}
|
|
|
|
V all_flux = superset(flux, ops_.internal_faces, numFaces(grid_));
|
|
std::copy(all_flux.data(), all_flux.data() + numFaces(grid_), state.faceflux().begin());
|
|
|
|
perf_flux = -perf_flux; // well_state.perfRates() assumed to be inflows.
|
|
std::copy(perf_flux.data(), perf_flux.data() + nperf, well_state.perfRates().begin());
|
|
|
|
std::copy(p_perfwell.data(), p_perfwell.data() + nperf, well_state.perfPress().begin());
|
|
std::copy(qs_.value().data(), qs_.value().data() + np*nw, &well_state.wellRates()[0]);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
V ImpesTPFAAD::fluidMu(const int phase, const V& p, const V& T, const std::vector<int>& cells) const
|
|
{
|
|
switch (phase) {
|
|
case Water:
|
|
return fluid_.muWat(p, T, cells);
|
|
case Oil: {
|
|
V dummy_rs = V::Zero(p.size(), 1) * p;
|
|
std::vector<PhasePresence> cond(dummy_rs.size());
|
|
|
|
return fluid_.muOil(p, T, dummy_rs, cond, cells);
|
|
}
|
|
case Gas:
|
|
return fluid_.muGas(p, T, cells);
|
|
default:
|
|
OPM_THROW(std::runtime_error, "Unknown phase index " << phase);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
ADB ImpesTPFAAD::fluidMu(const int phase, const ADB& p, const ADB& T, const std::vector<int>& cells) const
|
|
{
|
|
switch (phase) {
|
|
case Water:
|
|
return fluid_.muWat(p, T, cells);
|
|
case Oil: {
|
|
ADB dummy_rs = V::Zero(p.size(), 1) * p;
|
|
std::vector<PhasePresence> cond(dummy_rs.size());
|
|
|
|
return fluid_.muOil(p, T, dummy_rs, cond, cells);
|
|
}
|
|
case Gas:
|
|
return fluid_.muGas(p, T, cells);
|
|
default:
|
|
OPM_THROW(std::runtime_error, "Unknown phase index " << phase);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
V ImpesTPFAAD::fluidFvf(const int phase, const V& p, const V& T, const std::vector<int>& cells) const
|
|
{
|
|
switch (phase) {
|
|
case Water:
|
|
return fluid_.bWat(p, T, cells);
|
|
case Oil: {
|
|
V dummy_rs = V::Zero(p.size(), 1) * p;
|
|
std::vector<PhasePresence> cond(dummy_rs.size());
|
|
|
|
return fluid_.bOil(p, T, dummy_rs, cond, cells);
|
|
}
|
|
case Gas:
|
|
return fluid_.bGas(p, T, cells);
|
|
default:
|
|
OPM_THROW(std::runtime_error, "Unknown phase index " << phase);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
ADB ImpesTPFAAD::fluidFvf(const int phase, const ADB& p, const ADB& T, const std::vector<int>& cells) const
|
|
{
|
|
switch (phase) {
|
|
case Water:
|
|
return fluid_.bWat(p, T, cells);
|
|
case Oil: {
|
|
ADB dummy_rs = V::Zero(p.size(), 1) * p;
|
|
std::vector<PhasePresence> cond(dummy_rs.size());
|
|
|
|
return fluid_.bOil(p, T, dummy_rs, cond, cells);
|
|
}
|
|
case Gas:
|
|
return fluid_.bGas(p, T, cells);
|
|
default:
|
|
OPM_THROW(std::runtime_error, "Unknown phase index " << phase);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
V ImpesTPFAAD::fluidRho(const int phase, const V& p, const V& T, const std::vector<int>& cells) const
|
|
{
|
|
const double* rhos = fluid_.surfaceDensity();
|
|
V b = fluidFvf(phase, p, T, cells);
|
|
V rho = V::Constant(p.size(), 1, rhos[phase]) * b;
|
|
return rho;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
ADB ImpesTPFAAD::fluidRho(const int phase, const ADB& p, const ADB& T, const std::vector<int>& cells) const
|
|
{
|
|
const double* rhos = fluid_.surfaceDensity();
|
|
ADB b = fluidFvf(phase, p, T, cells);
|
|
ADB rho = V::Constant(p.size(), 1, rhos[phase]) * b;
|
|
return rho;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
V ImpesTPFAAD::fluidKr(const int phase) const
|
|
{
|
|
return kr_[phase];
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
V ImpesTPFAAD::fluidKrWell(const int phase) const
|
|
{
|
|
return well_kr_[phase];
|
|
}
|
|
|
|
} // namespace Opm
|
|
|