mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-17 20:03:12 -06:00
507 lines
19 KiB
C++
507 lines
19 KiB
C++
/*
|
|
Copyright 2014 SINTEF ICT, Applied Mathematics.
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <config.h>
|
|
|
|
#include <opm/autodiff/DuneMatrix.hpp>
|
|
|
|
#include <opm/autodiff/NewtonIterationBlackoilCPR.hpp>
|
|
#include <opm/autodiff/CPRPreconditioner.hpp>
|
|
#include <opm/autodiff/AutoDiffHelpers.hpp>
|
|
#include <opm/core/utility/ErrorMacros.hpp>
|
|
#include <opm/core/utility/Units.hpp>
|
|
#include <opm/core/linalg/LinearSolverFactory.hpp>
|
|
|
|
#include <opm/core/utility/platform_dependent/disable_warnings.h>
|
|
|
|
#include <dune/istl/bvector.hh>
|
|
// #include <dune/istl/bcrsmatrix.hh>
|
|
#include <dune/istl/operators.hh>
|
|
#include <dune/istl/io.hh>
|
|
#include <dune/istl/owneroverlapcopy.hh>
|
|
#include <dune/istl/preconditioners.hh>
|
|
#include <dune/istl/schwarz.hh>
|
|
#include <dune/istl/solvers.hh>
|
|
#include <dune/istl/paamg/amg.hh>
|
|
#include <dune/istl/paamg/kamg.hh>
|
|
#include <dune/istl/paamg/pinfo.hh>
|
|
|
|
#include <opm/core/utility/platform_dependent/reenable_warnings.h>
|
|
|
|
#if HAVE_UMFPACK
|
|
#include <Eigen/UmfPackSupport>
|
|
#else
|
|
#include <Eigen/SparseLU>
|
|
#endif
|
|
|
|
namespace Opm
|
|
{
|
|
|
|
|
|
typedef AutoDiffBlock<double> ADB;
|
|
typedef ADB::V V;
|
|
typedef ADB::M M;
|
|
|
|
typedef Dune::FieldVector<double, 1 > VectorBlockType;
|
|
typedef Dune::FieldMatrix<double, 1, 1> MatrixBlockType;
|
|
typedef Dune::BCRSMatrix <MatrixBlockType> Mat;
|
|
typedef Dune::BlockVector<VectorBlockType> Vector;
|
|
|
|
|
|
namespace {
|
|
/// Eliminate a variable via Schur complement.
|
|
/// \param[in] eqs set of equations with Jacobians
|
|
/// \param[in] n index of equation/variable to eliminate.
|
|
/// \return new set of equations, one smaller than eqs.
|
|
/// Note: this method requires the eliminated variable to have the same size
|
|
/// as the equation in the corresponding position (that also will be eliminated).
|
|
/// It also required the jacobian block n of equation n to be diagonal.
|
|
std::vector<ADB> eliminateVariable(const std::vector<ADB>& eqs, const int n);
|
|
|
|
/// Recover that value of a variable previously eliminated.
|
|
/// \param[in] equation previously eliminated equation.
|
|
/// \param[in] partial_solution solution to the remainder system after elimination.
|
|
/// \param[in] n index of equation/variable that was eliminated.
|
|
/// \return solution to complete system.
|
|
V recoverVariable(const ADB& equation, const V& partial_solution, const int n);
|
|
|
|
/// Determine diagonality of a sparse matrix.
|
|
/// If there are off-diagonal elements in the sparse
|
|
/// structure, this function returns true if they are all
|
|
/// equal to zero.
|
|
/// \param[in] matrix the matrix under consideration
|
|
/// \return true if matrix is diagonal
|
|
bool isDiagonal(const M& matrix);
|
|
|
|
/// Form an elliptic system of equations.
|
|
/// \param[in] num_phases the number of fluid phases
|
|
/// \param[in] eqs the equations
|
|
/// \param[out] A the resulting full system matrix
|
|
/// \param[out] b the right hand side
|
|
/// This function will deal with the first num_phases
|
|
/// equations in eqs, and return a matrix A for the full
|
|
/// system that has a elliptic upper left corner, if possible.
|
|
void formEllipticSystem(const int num_phases,
|
|
const std::vector<ADB>& eqs,
|
|
Eigen::SparseMatrix<double, Eigen::RowMajor>& A,
|
|
V& b);
|
|
|
|
/// Create a dune-istl matrix from an Eigen matrix.
|
|
/// \param[in] matrix input Eigen::SparseMatrix
|
|
/// \return output Dune::BCRSMatrix
|
|
Mat makeIstlMatrix(const Eigen::SparseMatrix<double, Eigen::RowMajor>& matrix);
|
|
|
|
} // anonymous namespace
|
|
|
|
|
|
|
|
|
|
|
|
/// Construct a system solver.
|
|
NewtonIterationBlackoilCPR::NewtonIterationBlackoilCPR(const parameter::ParameterGroup& param)
|
|
: iterations_( 0 )
|
|
{
|
|
cpr_relax_ = param.getDefault("cpr_relax", 1.0);
|
|
cpr_ilu_n_ = param.getDefault("cpr_ilu_n", 0);
|
|
cpr_use_amg_ = param.getDefault("cpr_use_amg", false);
|
|
cpr_use_bicgstab_ = param.getDefault("cpr_use_bicgstab", true);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/// Solve the linear system Ax = b, with A being the
|
|
/// combined derivative matrix of the residual and b
|
|
/// being the residual itself.
|
|
/// \param[in] residual residual object containing A and b.
|
|
/// \return the solution x
|
|
NewtonIterationBlackoilCPR::SolutionVector
|
|
NewtonIterationBlackoilCPR::computeNewtonIncrement(const LinearisedBlackoilResidual& residual) const
|
|
{
|
|
// Build the vector of equations.
|
|
const int np = residual.material_balance_eq.size();
|
|
std::vector<ADB> eqs;
|
|
eqs.reserve(np + 2);
|
|
for (int phase = 0; phase < np; ++phase) {
|
|
eqs.push_back(residual.material_balance_eq[phase]);
|
|
}
|
|
|
|
// check if wells are present
|
|
const bool hasWells = residual.well_flux_eq.size() > 0 ;
|
|
std::vector<ADB> elim_eqs;
|
|
if( hasWells )
|
|
{
|
|
eqs.push_back(residual.well_flux_eq);
|
|
eqs.push_back(residual.well_eq);
|
|
|
|
// Eliminate the well-related unknowns, and corresponding equations.
|
|
elim_eqs.reserve(2);
|
|
elim_eqs.push_back(eqs[np]);
|
|
eqs = eliminateVariable(eqs, np); // Eliminate well flux unknowns.
|
|
elim_eqs.push_back(eqs[np]);
|
|
eqs = eliminateVariable(eqs, np); // Eliminate well bhp unknowns.
|
|
assert(int(eqs.size()) == np);
|
|
}
|
|
|
|
// Scale material balance equations.
|
|
const double matbalscale[3] = { 1.1169, 1.0031, 0.0031 }; // HACK hardcoded instead of computed.
|
|
for (int phase = 0; phase < np; ++phase) {
|
|
eqs[phase] = eqs[phase] * matbalscale[phase];
|
|
}
|
|
|
|
// Add material balance equations (or other manipulations) to
|
|
// form pressure equation in top left of full system.
|
|
Eigen::SparseMatrix<double, Eigen::RowMajor> A;
|
|
V b;
|
|
formEllipticSystem(np, eqs, A, b);
|
|
|
|
// Scale pressure equation.
|
|
const double pscale = 200*unit::barsa;
|
|
const int nc = residual.material_balance_eq[0].size();
|
|
A.topRows(nc) *= pscale;
|
|
b.topRows(nc) *= pscale;
|
|
|
|
// Solve reduced system.
|
|
SolutionVector dx(SolutionVector::Zero(b.size()));
|
|
|
|
// Create ISTL matrix.
|
|
DuneMatrix istlA( A );
|
|
|
|
// Create ISTL matrix for elliptic part.
|
|
DuneMatrix istlAe( A.topLeftCorner(nc, nc) );
|
|
|
|
// Construct operator, scalar product and vectors needed.
|
|
typedef Dune::MatrixAdapter<Mat,Vector,Vector> Operator;
|
|
Operator opA(istlA);
|
|
Dune::SeqScalarProduct<Vector> sp;
|
|
// Right hand side.
|
|
Vector istlb(opA.getmat().N());
|
|
std::copy_n(b.data(), istlb.size(), istlb.begin());
|
|
// System solution
|
|
Vector x(opA.getmat().M());
|
|
x = 0.0;
|
|
|
|
// Construct preconditioner.
|
|
// typedef Dune::SeqILU0<Mat,Vector,Vector> Preconditioner;
|
|
typedef Opm::CPRPreconditioner<Mat,Vector,Vector> Preconditioner;
|
|
Preconditioner precond(istlA, istlAe, cpr_relax_, cpr_ilu_n_, cpr_use_amg_, cpr_use_bicgstab_);
|
|
|
|
// Construct linear solver.
|
|
const double tolerance = 1e-3;
|
|
const int maxit = 150;
|
|
const int verbosity = 0;
|
|
const int restart = 40;
|
|
Dune::RestartedGMResSolver<Vector> linsolve(opA, sp, precond, tolerance, restart, maxit, verbosity);
|
|
|
|
// Solve system.
|
|
Dune::InverseOperatorResult result;
|
|
linsolve.apply(x, istlb, result);
|
|
|
|
// store number of iterations
|
|
iterations_ = result.iterations;
|
|
|
|
// Check for failure of linear solver.
|
|
if (!result.converged) {
|
|
OPM_THROW(std::runtime_error, "Convergence failure for linear solver.");
|
|
}
|
|
|
|
// Copy solver output to dx.
|
|
std::copy(x.begin(), x.end(), dx.data());
|
|
|
|
if( hasWells )
|
|
{
|
|
// Compute full solution using the eliminated equations.
|
|
// Recovery in inverse order of elimination.
|
|
dx = recoverVariable(elim_eqs[1], dx, np);
|
|
dx = recoverVariable(elim_eqs[0], dx, np);
|
|
}
|
|
return dx;
|
|
}
|
|
|
|
|
|
|
|
|
|
namespace
|
|
{
|
|
|
|
|
|
std::vector<ADB> eliminateVariable(const std::vector<ADB>& eqs, const int n)
|
|
{
|
|
// Check that the variable index to eliminate is within bounds.
|
|
const int num_eq = eqs.size();
|
|
const int num_vars = eqs[0].derivative().size();
|
|
if (num_eq != num_vars) {
|
|
OPM_THROW(std::logic_error, "eliminateVariable() requires the same number of variables and equations.");
|
|
}
|
|
if (n >= num_eq) {
|
|
OPM_THROW(std::logic_error, "Trying to eliminate variable from too small set of equations.");
|
|
}
|
|
|
|
// Schur complement of (A B ; C D) wrt. D is A - B*inv(D)*C.
|
|
// This is applied to all 2x2 block submatrices
|
|
// The right hand side is modified accordingly. bi = bi - B * inv(D)* bn;
|
|
// We do not explicitly compute inv(D) instead Du = C is solved
|
|
|
|
// Extract the submatrix
|
|
const std::vector<M>& Jn = eqs[n].derivative();
|
|
|
|
// Use sparse LU to solve the block submatrices i.e compute inv(D)
|
|
#if HAVE_UMFPACK
|
|
const Eigen::UmfPackLU< M > solver(Jn[n]);
|
|
#else
|
|
const Eigen::SparseLU< M > solver(Jn[n]);
|
|
#endif
|
|
M id(Jn[n].rows(), Jn[n].cols());
|
|
id.setIdentity();
|
|
const Eigen::SparseMatrix<M::Scalar, Eigen::ColMajor> Di = solver.solve(id);
|
|
|
|
// compute inv(D)*bn for the update of the right hand side
|
|
const Eigen::VectorXd& Dibn = solver.solve(eqs[n].value().matrix());
|
|
|
|
std::vector<V> vals(num_eq); // Number n will remain empty.
|
|
std::vector<std::vector<M>> jacs(num_eq); // Number n will remain empty.
|
|
for (int eq = 0; eq < num_eq; ++eq) {
|
|
jacs[eq].reserve(num_eq - 1);
|
|
const std::vector<M>& Je = eqs[eq].derivative();
|
|
const M& B = Je[n];
|
|
// Update right hand side.
|
|
vals[eq] = eqs[eq].value().matrix() - B * Dibn;
|
|
}
|
|
for (int var = 0; var < num_eq; ++var) {
|
|
if (var == n) {
|
|
continue;
|
|
}
|
|
// solve Du = C
|
|
// const M u = Di * Jn[var]; // solver.solve(Jn[var]);
|
|
M u;
|
|
fastSparseProduct(Di, Jn[var], u); // solver.solve(Jn[var]);
|
|
for (int eq = 0; eq < num_eq; ++eq) {
|
|
if (eq == n) {
|
|
continue;
|
|
}
|
|
const std::vector<M>& Je = eqs[eq].derivative();
|
|
const M& B = Je[n];
|
|
|
|
// Create new jacobians.
|
|
// Add A
|
|
jacs[eq].push_back(Je[var]);
|
|
M& J = jacs[eq].back();
|
|
// Subtract Bu (B*inv(D)*C)
|
|
M Bu;
|
|
fastSparseProduct(B, u, Bu);
|
|
J -= Bu;
|
|
}
|
|
}
|
|
|
|
// Create return value.
|
|
std::vector<ADB> retval;
|
|
retval.reserve(num_eq - 1);
|
|
for (int eq = 0; eq < num_eq; ++eq) {
|
|
if (eq == n) {
|
|
continue;
|
|
}
|
|
retval.push_back(ADB::function(vals[eq], jacs[eq]));
|
|
}
|
|
return retval;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
V recoverVariable(const ADB& equation, const V& partial_solution, const int n)
|
|
{
|
|
// The equation to solve for the unknown y (to be recovered) is
|
|
// Cx + Dy = b
|
|
// Dy = (b - Cx)
|
|
// where D is the eliminated block, C is the jacobian of
|
|
// the eliminated equation with respect to the
|
|
// non-eliminated unknowms, b is the right-hand side of
|
|
// the eliminated equation, and x is the partial solution
|
|
// of the non-eliminated unknowns.
|
|
|
|
const M& D = equation.derivative()[n];
|
|
// Build C.
|
|
std::vector<M> C_jacs = equation.derivative();
|
|
C_jacs.erase(C_jacs.begin() + n);
|
|
ADB eq_coll = collapseJacs(ADB::function(equation.value(), C_jacs));
|
|
const M& C = eq_coll.derivative()[0];
|
|
|
|
// Use sparse LU to solve the block submatrices
|
|
#if HAVE_UMFPACK
|
|
const Eigen::UmfPackLU< M > solver(D);
|
|
#else
|
|
const Eigen::SparseLU< M > solver(D);
|
|
#endif
|
|
|
|
// Compute value of eliminated variable.
|
|
const Eigen::VectorXd b = (equation.value().matrix() - C * partial_solution.matrix());
|
|
const Eigen::VectorXd elim_var = solver.solve(b);
|
|
|
|
// Find the relevant sizes to use when reconstructing the full solution.
|
|
const int nelim = equation.size();
|
|
const int npart = partial_solution.size();
|
|
assert(C.cols() == npart);
|
|
const int full_size = nelim + npart;
|
|
int start = 0;
|
|
for (int i = 0; i < n; ++i) {
|
|
start += equation.derivative()[i].cols();
|
|
}
|
|
assert(start < full_size);
|
|
|
|
// Reconstruct complete solution vector.
|
|
V sol(full_size);
|
|
std::copy_n(partial_solution.data(), start, sol.data());
|
|
std::copy_n(elim_var.data(), nelim, sol.data() + start);
|
|
std::copy_n(partial_solution.data() + start, npart - start, sol.data() + start + nelim);
|
|
return sol;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
bool isDiagonal(const M& matr)
|
|
{
|
|
M matrix = matr;
|
|
matrix.makeCompressed();
|
|
for (int k = 0; k < matrix.outerSize(); ++k) {
|
|
for (M::InnerIterator it(matrix, k); it; ++it) {
|
|
if (it.col() != it.row()) {
|
|
// Off-diagonal element.
|
|
if (it.value() != 0.0) {
|
|
// Nonzero off-diagonal element.
|
|
// std::cout << "off-diag: " << it.row() << ' ' << it.col() << std::endl;
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
|
|
|
|
/// Form an elliptic system of equations.
|
|
/// \param[in] num_phases the number of fluid phases
|
|
/// \param[in] eqs the equations
|
|
/// \param[out] A the resulting full system matrix
|
|
/// \param[out] b the right hand side
|
|
/// This function will deal with the first num_phases
|
|
/// equations in eqs, and return a matrix A for the full
|
|
/// system that has a elliptic upper left corner, if possible.
|
|
void formEllipticSystem(const int num_phases,
|
|
const std::vector<ADB>& eqs_in,
|
|
Eigen::SparseMatrix<double, Eigen::RowMajor>& A,
|
|
// M& A,
|
|
V& b)
|
|
{
|
|
if (num_phases != 3) {
|
|
OPM_THROW(std::logic_error, "formEllipticSystem() requires 3 phases.");
|
|
}
|
|
|
|
// A concession to MRST, to obtain more similar behaviour:
|
|
// swap the first two equations, so that oil is first, then water.
|
|
auto eqs = eqs_in;
|
|
std::swap(eqs[0], eqs[1]);
|
|
|
|
// Characterize the material balance equations.
|
|
const int n = eqs[0].size();
|
|
const double ratio_limit = 0.01;
|
|
typedef Eigen::Array<double, Eigen::Dynamic, Eigen::Dynamic> Block;
|
|
// The l1 block indicates if the equation for a given cell and phase is
|
|
// sufficiently strong on the diagonal.
|
|
Block l1 = Block::Zero(n, num_phases);
|
|
for (int phase = 0; phase < num_phases; ++phase) {
|
|
const M& J = eqs[phase].derivative()[0];
|
|
V dj = J.diagonal().cwiseAbs();
|
|
V sod = V::Zero(n);
|
|
for (int elem = 0; elem < n; ++elem) {
|
|
sod(elem) = J.col(elem).cwiseAbs().sum() - dj(elem);
|
|
}
|
|
l1.col(phase) = (dj/sod > ratio_limit).cast<double>();
|
|
}
|
|
|
|
// By default, replace first equation with sum of all phase equations.
|
|
// Build helper vectors.
|
|
V l21 = V::Zero(n);
|
|
V l22 = V::Ones(n);
|
|
V l31 = V::Zero(n);
|
|
V l33 = V::Ones(n);
|
|
|
|
// If the first phase diagonal is not strong enough, we need further treatment.
|
|
// Then the first equation will be the sum of the remaining equations,
|
|
// and we swap the first equation into one of their slots.
|
|
for (int elem = 0; elem < n; ++elem) {
|
|
if (!l1(elem, 0)) {
|
|
const double l12x = l1(elem, 1);
|
|
const double l13x = l1(elem, 2);
|
|
const bool allzero = (l12x + l13x == 0);
|
|
if (allzero) {
|
|
l1(elem, 0) = 1;
|
|
} else {
|
|
if (l12x >= l13x) {
|
|
l21(elem) = 1;
|
|
l22(elem) = 0;
|
|
} else {
|
|
l31(elem) = 1;
|
|
l33(elem) = 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Construct the sparse matrix L that does the swaps and sums.
|
|
Span i1(n, 1, 0);
|
|
Span i2(n, 1, n);
|
|
Span i3(n, 1, 2*n);
|
|
std::vector< Eigen::Triplet<double> > t;
|
|
t.reserve(7*n);
|
|
for (int ii = 0; ii < n; ++ii) {
|
|
t.emplace_back(i1[ii], i1[ii], l1(ii));
|
|
t.emplace_back(i1[ii], i2[ii], l1(ii+n));
|
|
t.emplace_back(i1[ii], i3[ii], l1(ii+2*n));
|
|
t.emplace_back(i2[ii], i1[ii], l21(ii));
|
|
t.emplace_back(i2[ii], i2[ii], l22(ii));
|
|
t.emplace_back(i3[ii], i1[ii], l31(ii));
|
|
t.emplace_back(i3[ii], i3[ii], l33(ii));
|
|
}
|
|
M L(3*n, 3*n);
|
|
L.setFromTriplets(t.begin(), t.end());
|
|
|
|
// Combine in single block.
|
|
ADB total_residual = eqs[0];
|
|
for (int phase = 1; phase < num_phases; ++phase) {
|
|
total_residual = vertcat(total_residual, eqs[phase]);
|
|
}
|
|
total_residual = collapseJacs(total_residual);
|
|
|
|
// Create output as product of L with equations.
|
|
A = L * total_residual.derivative()[0];
|
|
b = L * total_residual.value().matrix();
|
|
}
|
|
|
|
} // anonymous namespace
|
|
|
|
|
|
} // namespace Opm
|
|
|