opm-simulators/opm/autodiff/BlackoilModelEbos.hpp
Robert Kloefkorn 3db63b0a22 add flow_ebos, an ebos based simulator
it uses ebos for linearization of the mass balance equations and the
current flow code from opm-simulators for all the rest. currently, the
results match the ones from plain `flow` for SPE1, SPE9 and Norne, but
performance is not optimal: on SPE9, converting from and to the legacy
data structures takes about a third of the time to do the actual mass
balance assembly. nevertheless `flow_ebos` is almost as fast as plain
`flow` for SPE9. (for Norne `flow_ebos` is about 15% slower, even
though the results match quite closely. the reason for this is that it
requires more iterations for some reason.)
2016-08-09 18:38:23 +02:00

1923 lines
84 KiB
C++

/*
Copyright 2013, 2015 SINTEF ICT, Applied Mathematics.
Copyright 2014, 2015 Dr. Blatt - HPC-Simulation-Software & Services
Copyright 2014, 2015 Statoil ASA.
Copyright 2015 NTNU
Copyright 2015 IRIS AS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_BLACKOILMODELEBOS_HEADER_INCLUDED
#define OPM_BLACKOILMODELEBOS_HEADER_INCLUDED
#include <applications/ebos/eclproblem.hh>
#include <ewoms/common/start.hh>
#include <opm/autodiff/BlackoilModelParameters.hpp>
#include <opm/autodiff/StandardWells.hpp>
#include <opm/autodiff/AutoDiffBlock.hpp>
#include <opm/autodiff/AutoDiffHelpers.hpp>
#include <opm/autodiff/GridHelpers.hpp>
#include <opm/autodiff/WellHelpers.hpp>
#include <opm/autodiff/BlackoilPropsAdInterface.hpp>
#include <opm/autodiff/GeoProps.hpp>
#include <opm/autodiff/WellDensitySegmented.hpp>
#include <opm/autodiff/VFPProperties.hpp>
#include <opm/autodiff/VFPProdProperties.hpp>
#include <opm/autodiff/VFPInjProperties.hpp>
#include <opm/autodiff/DefaultBlackoilSolutionState.hpp>
#include <opm/autodiff/BlackoilDetails.hpp>
#include <opm/core/grid.h>
#include <opm/core/linalg/LinearSolverInterface.hpp>
#include <opm/core/linalg/ParallelIstlInformation.hpp>
#include <opm/core/props/rock/RockCompressibility.hpp>
#include <opm/common/ErrorMacros.hpp>
#include <opm/common/Exceptions.hpp>
#include <opm/common/OpmLog/OpmLog.hpp>
#include <opm/core/utility/Units.hpp>
#include <opm/core/well_controls.h>
#include <opm/core/utility/parameters/ParameterGroup.hpp>
#include <opm/parser/eclipse/EclipseState/EclipseState.hpp>
#include <opm/parser/eclipse/EclipseState/Tables/TableManager.hpp>
#include <opm/common/data/SimulationDataContainer.hpp>
#include <cassert>
#include <cmath>
#include <iostream>
#include <iomanip>
#include <limits>
#include <vector>
#include <algorithm>
//#include <fstream>
namespace Ewoms {
namespace Properties {
NEW_TYPE_TAG(EclFlowProblem, INHERITS_FROM(BlackOilModel, EclBaseProblem));
SET_BOOL_PROP(EclFlowProblem, DisableWells, true);
SET_BOOL_PROP(EclFlowProblem, EnableDebuggingChecks, false);
}}
namespace Opm {
namespace parameter { class ParameterGroup; }
class DerivedGeology;
class RockCompressibility;
class NewtonIterationBlackoilInterface;
class VFPProperties;
class SimulationDataContainer;
/// A model implementation for three-phase black oil.
///
/// The simulator is capable of handling three-phase problems
/// where gas can be dissolved in oil and vice versa. It
/// uses an industry-standard TPFA discretization with per-phase
/// upwind weighting of mobilities.
///
/// It uses automatic differentiation via the class AutoDiffBlock
/// to simplify assembly of the jacobian matrix.
/// \tparam Grid UnstructuredGrid or CpGrid.
/// \tparam WellModel WellModel employed.
/// \tparam Implementation Provides concrete state types.
template<class Grid>
class BlackoilModelEbos
{
public:
// --------- Types and enums ---------
typedef AutoDiffBlock<double> ADB;
typedef ADB::V V;
typedef ADB::M M;
typedef BlackoilState ReservoirState;
typedef WellStateFullyImplicitBlackoil WellState;
typedef BlackoilModelParameters ModelParameters;
typedef DefaultBlackoilSolutionState SolutionState;
typedef typename TTAG(EclFlowProblem) TypeTag;
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator ;
typedef typename GET_PROP_TYPE(TypeTag, SolutionVector) SolutionVector ;
typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) PrimaryVariables ;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef typename GET_PROP_TYPE(TypeTag, Indices) BlackoilIndices;
//typedef typename SolutionVector :: value_type PrimaryVariables ;
// --------- Public methods ---------
/// Construct the model. It will retain references to the
/// arguments of this functions, and they are expected to
/// remain in scope for the lifetime of the solver.
/// \param[in] param parameters
/// \param[in] grid grid data structure
/// \param[in] fluid fluid properties
/// \param[in] geo rock properties
/// \param[in] rock_comp_props if non-null, rock compressibility properties
/// \param[in] wells well structure
/// \param[in] vfp_properties Vertical flow performance tables
/// \param[in] linsolver linear solver
/// \param[in] eclState eclipse state
/// \param[in] has_disgas turn on dissolved gas
/// \param[in] has_vapoil turn on vaporized oil feature
/// \param[in] terminal_output request output to cout/cerr
BlackoilModelEbos(const ModelParameters& param,
const Grid& grid ,
const BlackoilPropsAdInterface& fluid,
const DerivedGeology& geo ,
const RockCompressibility* rock_comp_props,
const StandardWells& well_model,
const NewtonIterationBlackoilInterface& linsolver,
Opm::EclipseStateConstPtr eclState,
const bool has_disgas,
const bool has_vapoil,
const bool terminal_output)
: grid_ (grid)
, fluid_ (fluid)
, geo_ (geo)
, rock_comp_props_(rock_comp_props)
, vfp_properties_(
eclState->getTableManager().getVFPInjTables(),
eclState->getTableManager().getVFPProdTables())
, linsolver_ (linsolver)
, active_(detail::activePhases(fluid.phaseUsage()))
, canph_ (detail::active2Canonical(fluid.phaseUsage()))
, cells_ (detail::buildAllCells(Opm::AutoDiffGrid::numCells(grid)))
, ops_ (grid, geo.nnc())
, has_disgas_(has_disgas)
, has_vapoil_(has_vapoil)
, param_( param )
, use_threshold_pressure_(false)
, rq_ (fluid.numPhases())
, phaseCondition_(AutoDiffGrid::numCells(grid))
, well_model_ (well_model)
, isRs_(V::Zero(AutoDiffGrid::numCells(grid)))
, isRv_(V::Zero(AutoDiffGrid::numCells(grid)))
, isSg_(V::Zero(AutoDiffGrid::numCells(grid)))
, residual_ ( { std::vector<ADB>(fluid.numPhases(), ADB::null()),
ADB::null(),
ADB::null(),
{ 1.1169, 1.0031, 0.0031 }, // the default magic numbers
false } )
, terminal_output_ (terminal_output)
, current_relaxation_(1.0)
, ebosSimulator_( 0 )
{
const double gravity = detail::getGravity(geo_.gravity(), UgGridHelpers::dimensions(grid_));
const V depth = Opm::AutoDiffGrid::cellCentroidsZToEigen(grid_);
well_model_.init(&fluid_, &active_, &phaseCondition_, &vfp_properties_, gravity, depth);
wellModel().setWellsActive( localWellsActive() );
global_nc_ = Opm::AutoDiffGrid::numCells(grid_);
static Simulator* ebosPtr = 0;
if( ! ebosPtr )
{
std::string progName("./ebos");
std::string deckFile("--ecl-deck-file-name=");
deckFile += param.deck_file_name_;
char* ptr[2];
ptr[ 0 ] = const_cast< char * > (progName.c_str());
ptr[ 1 ] = const_cast< char * > (deckFile.c_str());
Simulator::registerParameters();
Ewoms::setupParameters_< TypeTag > ( 2, ptr );
ebosPtr = new Simulator();
ebosPtr->model().applyInitialSolution();
}
ebosSimulator_ = ebosPtr;
}
/// Called once before each time step.
/// \param[in] timer simulation timer
/// \param[in, out] reservoir_state reservoir state variables
/// \param[in, out] well_state well state variables
void prepareStep(const SimulatorTimerInterface& timer,
const ReservoirState& reservoir_state,
const WellState& /* well_state */)
{
if (active_[Gas]) {
updatePrimalVariableFromState(reservoir_state);
}
}
/// Called once per nonlinear iteration.
/// This model will perform a Newton-Raphson update, changing reservoir_state
/// and well_state. It will also use the nonlinear_solver to do relaxation of
/// updates if necessary.
/// \param[in] iteration should be 0 for the first call of a new timestep
/// \param[in] timer simulation timer
/// \param[in] nonlinear_solver nonlinear solver used (for oscillation/relaxation control)
/// \param[in, out] reservoir_state reservoir state variables
/// \param[in, out] well_state well state variables
template <class NonlinearSolverType>
IterationReport nonlinearIteration(const int iteration,
const SimulatorTimerInterface& timer,
NonlinearSolverType& nonlinear_solver,
ReservoirState& reservoir_state,
WellState& well_state)
{
const double dt = timer.currentStepLength();
if (iteration == 0) {
// For each iteration we store in a vector the norms of the residual of
// the mass balance for each active phase, the well flux and the well equations.
residual_norms_history_.clear();
current_relaxation_ = 1.0;
dx_old_ = V::Zero(sizeNonLinear());
}
IterationReport iter_report = assemble(timer, iteration, reservoir_state, well_state);
residual_norms_history_.push_back(computeResidualNorms());
const bool converged = getConvergence(timer, iteration);
const bool must_solve = (iteration < nonlinear_solver.minIter()) || (!converged);
if (must_solve) {
// enable single precision for solvers when dt is smaller then 20 days
residual_.singlePrecision = (unit::convert::to(dt, unit::day) < 20.) ;
// Compute the nonlinear update.
V dx = solveJacobianSystem();
// Stabilize the nonlinear update.
bool isOscillate = false;
bool isStagnate = false;
nonlinear_solver.detectOscillations(residual_norms_history_, iteration, isOscillate, isStagnate);
if (isOscillate) {
current_relaxation_ -= nonlinear_solver.relaxIncrement();
current_relaxation_ = std::max(current_relaxation_, nonlinear_solver.relaxMax());
if (terminalOutputEnabled()) {
std::string msg = " Oscillating behavior detected: Relaxation set to "
+ std::to_string(current_relaxation_);
OpmLog::info(msg);
}
}
nonlinear_solver.stabilizeNonlinearUpdate(dx, dx_old_, current_relaxation_);
// Apply the update, applying model-dependent
// limitations and chopping of the update.
updateState(dx, reservoir_state, well_state);
}
const bool failed = false; // Not needed in this model.
const int linear_iters = must_solve ? linearIterationsLastSolve() : 0;
return IterationReport{ failed, converged, linear_iters, iter_report.well_iterations };
}
/// Called once after each time step.
/// In this class, this function does nothing.
/// \param[in] timer simulation timer
/// \param[in, out] reservoir_state reservoir state variables
/// \param[in, out] well_state well state variables
void afterStep(const SimulatorTimerInterface& timer,
const ReservoirState& reservoir_state,
WellState& well_state)
{
}
/// Assemble the residual and Jacobian of the nonlinear system.
/// \param[in] reservoir_state reservoir state variables
/// \param[in, out] well_state well state variables
/// \param[in] initial_assembly pass true if this is the first call to assemble() in this timestep
IterationReport assemble(const SimulatorTimerInterface& timer,
const int iterationIdx,
const ReservoirState& reservoir_state,
WellState& well_state)
{
using namespace Opm::AutoDiffGrid;
// Possibly switch well controls and updating well state to
// get reasonable initial conditions for the wells
wellModel().updateWellControls(well_state);
// Create the primary variables.
SolutionState state(/*numPhases=*/3);
setupLegacyState(state, reservoir_state, well_state);
// -------- Mass balance equations --------
assembleMassBalanceEq(timer, iterationIdx, reservoir_state, state);
// -------- Well equations ----------
if (iterationIdx == 0) {
// Create the (constant, derivativeless) initial state.
SolutionState state0 = state;
makeConstantState(state0);
// Compute initial accumulation contributions
// and well connection pressures.
wellModel().computeWellConnectionPressures(state0, well_state);
}
IterationReport iter_report = {false, false, 0, 0};
if ( ! wellsActive() ) {
return iter_report;
}
std::vector<ADB> mob_perfcells;
std::vector<ADB> b_perfcells;
wellModel().extractWellPerfProperties(state, rq_, mob_perfcells, b_perfcells);
if (param_.solve_welleq_initially_ && iterationIdx == 0) {
// solve the well equations as a pre-processing step
iter_report = solveWellEq(mob_perfcells, b_perfcells, state, well_state);
}
V aliveWells;
std::vector<ADB> cq_s;
wellModel().computeWellFlux(state, mob_perfcells, b_perfcells, aliveWells, cq_s);
wellModel().updatePerfPhaseRatesAndPressures(cq_s, state, well_state);
wellModel().addWellFluxEq(cq_s, state, residual_);
addWellContributionToMassBalanceEq(cq_s, state, well_state);
wellModel().addWellControlEq(state, well_state, aliveWells, residual_);
if (param_.compute_well_potentials_) {
SolutionState state0 = state;
makeConstantState(state0);
wellModel().computeWellPotentials(mob_perfcells, b_perfcells, state0, well_state);
}
return iter_report;
}
/// \brief Compute the residual norms of the mass balance for each phase,
/// the well flux, and the well equation.
/// \return a vector that contains for each phase the norm of the mass balance
/// and afterwards the norm of the residual of the well flux and the well equation.
std::vector<double> computeResidualNorms() const
{
std::vector<double> residualNorms;
std::vector<ADB>::const_iterator massBalanceIt = residual_.material_balance_eq.begin();
const std::vector<ADB>::const_iterator endMassBalanceIt = residual_.material_balance_eq.end();
for (; massBalanceIt != endMassBalanceIt; ++massBalanceIt) {
const double massBalanceResid = detail::infinityNorm( (*massBalanceIt),
linsolver_.parallelInformation() );
if (!std::isfinite(massBalanceResid)) {
OPM_THROW(Opm::NumericalProblem,
"Encountered a non-finite residual");
}
residualNorms.push_back(massBalanceResid);
}
// the following residuals are not used in the oscillation detection now
const double wellFluxResid = detail::infinityNormWell( residual_.well_flux_eq,
linsolver_.parallelInformation() );
if (!std::isfinite(wellFluxResid)) {
OPM_THROW(Opm::NumericalProblem,
"Encountered a non-finite residual");
}
residualNorms.push_back(wellFluxResid);
const double wellResid = detail::infinityNormWell( residual_.well_eq,
linsolver_.parallelInformation() );
if (!std::isfinite(wellResid)) {
OPM_THROW(Opm::NumericalProblem,
"Encountered a non-finite residual");
}
residualNorms.push_back(wellResid);
return residualNorms;
}
/// \brief compute the relative change between to simulation states
// \return || u^n+1 - u^n || / || u^n+1 ||
double relativeChange( const SimulationDataContainer& previous, const SimulationDataContainer& current ) const
{
std::vector< double > p0 ( previous.pressure() );
std::vector< double > sat0( previous.saturation() );
const std::size_t pSize = p0.size();
const std::size_t satSize = sat0.size();
// compute u^n - u^n+1
for( std::size_t i=0; i<pSize; ++i ) {
p0[ i ] -= current.pressure()[ i ];
}
for( std::size_t i=0; i<satSize; ++i ) {
sat0[ i ] -= current.saturation()[ i ];
}
// compute || u^n - u^n+1 ||
const double stateOld = detail::euclidianNormSquared( p0.begin(), p0.end(), 1, linsolver_.parallelInformation() ) +
detail::euclidianNormSquared( sat0.begin(), sat0.end(),
current.numPhases(),
linsolver_.parallelInformation() );
// compute || u^n+1 ||
const double stateNew = detail::euclidianNormSquared( current.pressure().begin(), current.pressure().end(), 1, linsolver_.parallelInformation() ) +
detail::euclidianNormSquared( current.saturation().begin(), current.saturation().end(),
current.numPhases(),
linsolver_.parallelInformation() );
if( stateNew > 0.0 ) {
return stateOld / stateNew ;
}
else {
return 0.0;
}
}
/// The size (number of unknowns) of the nonlinear system of equations.
int sizeNonLinear() const
{
return residual_.sizeNonLinear();
}
/// Number of linear iterations used in last call to solveJacobianSystem().
int linearIterationsLastSolve() const
{
return linsolver_.iterations();
}
/// Solve the Jacobian system Jx = r where J is the Jacobian and
/// r is the residual.
V solveJacobianSystem() const
{
return linsolver_.computeNewtonIncrement(residual_);
}
/// Apply an update to the primary variables, chopped if appropriate.
/// \param[in] dx updates to apply to primary variables
/// \param[in, out] reservoir_state reservoir state variables
/// \param[in, out] well_state well state variables
void updateState(const V& dx,
ReservoirState& reservoir_state,
WellState& well_state)
{
using namespace Opm::AutoDiffGrid;
const int np = fluid_.numPhases();
const int nc = numCells(grid_);
const V null;
assert(null.size() == 0);
const V zero = V::Zero(nc);
// Extract parts of dx corresponding to each part.
const V dp = subset(dx, Span(nc));
int varstart = nc;
const V dsw = active_[Water] ? subset(dx, Span(nc, 1, varstart)) : null;
varstart += dsw.size();
const V dxvar = active_[Gas] ? subset(dx, Span(nc, 1, varstart)): null;
varstart += dxvar.size();
// Extract well parts np phase rates + bhp
const V dwells = subset(dx, Span(wellModel().numWellVars(), 1, varstart));
varstart += dwells.size();
assert(varstart == dx.size());
// Pressure update.
const double dpmaxrel = dpMaxRel();
const V p_old = Eigen::Map<const V>(&reservoir_state.pressure()[0], nc, 1);
const V absdpmax = dpmaxrel*p_old.abs();
const V dp_limited = sign(dp) * dp.abs().min(absdpmax);
const V p = (p_old - dp_limited).max(zero);
std::copy(&p[0], &p[0] + nc, reservoir_state.pressure().begin());
// Saturation updates.
const Opm::PhaseUsage& pu = fluid_.phaseUsage();
const DataBlock s_old = Eigen::Map<const DataBlock>(& reservoir_state.saturation()[0], nc, np);
const double dsmax = dsMax();
V so;
V sw;
V sg;
{
V maxVal = zero;
V dso = zero;
if (active_[Water]){
maxVal = dsw.abs().max(maxVal);
dso = dso - dsw;
}
V dsg;
if (active_[Gas]){
dsg = isSg_ * dxvar - isRv_ * dsw;
maxVal = dsg.abs().max(maxVal);
dso = dso - dsg;
}
maxVal = dso.abs().max(maxVal);
V step = dsmax/maxVal;
step = step.min(1.);
if (active_[Water]) {
const int pos = pu.phase_pos[ Water ];
const V sw_old = s_old.col(pos);
sw = sw_old - step * dsw;
}
if (active_[Gas]) {
const int pos = pu.phase_pos[ Gas ];
const V sg_old = s_old.col(pos);
sg = sg_old - step * dsg;
}
assert(active_[Oil]);
const int pos = pu.phase_pos[ Oil ];
const V so_old = s_old.col(pos);
so = so_old - step * dso;
}
// Appleyard chop process.
if (active_[Gas]) {
auto ixg = sg < 0;
for (int c = 0; c < nc; ++c) {
if (ixg[c]) {
if (active_[Water]) {
sw[c] = sw[c] / (1-sg[c]);
}
so[c] = so[c] / (1-sg[c]);
sg[c] = 0;
}
}
}
if (active_[Oil]) {
auto ixo = so < 0;
for (int c = 0; c < nc; ++c) {
if (ixo[c]) {
if (active_[Water]) {
sw[c] = sw[c] / (1-so[c]);
}
if (active_[Gas]) {
sg[c] = sg[c] / (1-so[c]);
}
so[c] = 0;
}
}
}
if (active_[Water]) {
auto ixw = sw < 0;
for (int c = 0; c < nc; ++c) {
if (ixw[c]) {
so[c] = so[c] / (1-sw[c]);
if (active_[Gas]) {
sg[c] = sg[c] / (1-sw[c]);
}
sw[c] = 0;
}
}
}
//const V sumSat = sw + so + sg;
//sw = sw / sumSat;
//so = so / sumSat;
//sg = sg / sumSat;
// Update the reservoir_state
if (active_[Water]) {
for (int c = 0; c < nc; ++c) {
reservoir_state.saturation()[c*np + pu.phase_pos[ Water ]] = sw[c];
}
}
if (active_[Gas]) {
for (int c = 0; c < nc; ++c) {
reservoir_state.saturation()[c*np + pu.phase_pos[ Gas ]] = sg[c];
}
}
if (active_[ Oil ]) {
for (int c = 0; c < nc; ++c) {
reservoir_state.saturation()[c*np + pu.phase_pos[ Oil ]] = so[c];
}
}
// Update rs and rv
const double drmaxrel = drMaxRel();
V rs;
if (has_disgas_) {
const V rs_old = Eigen::Map<const V>(&reservoir_state.gasoilratio()[0], nc);
const V drs = isRs_ * dxvar;
const V drs_limited = sign(drs) * drs.abs().min(rs_old.abs()*drmaxrel);
rs = rs_old - drs_limited;
}
V rv;
if (has_vapoil_) {
const V rv_old = Eigen::Map<const V>(&reservoir_state.rv()[0], nc);
const V drv = isRv_ * dxvar;
const V drv_limited = sign(drv) * drv.abs().min(rv_old.abs()*drmaxrel);
rv = rv_old - drv_limited;
}
// Sg is used as primal variable for water only cells.
const double epsilon = std::sqrt(std::numeric_limits<double>::epsilon());
auto watOnly = sw > (1 - epsilon);
// phase translation sg <-> rs
std::vector<HydroCarbonState>& hydroCarbonState = reservoir_state.hydroCarbonState();
std::fill(hydroCarbonState.begin(), hydroCarbonState.end(), HydroCarbonState::GasAndOil);
if (has_disgas_) {
const V rsSat0 = fluidRsSat(p_old, s_old.col(pu.phase_pos[Oil]), cells_);
const V rsSat = fluidRsSat(p, so, cells_);
// The obvious case
auto hasGas = (sg > 0 && isRs_ == 0);
// Set oil saturated if previous rs is sufficiently large
const V rs_old = Eigen::Map<const V>(&reservoir_state.gasoilratio()[0], nc);
auto gasVaporized = ( (rs > rsSat * (1+epsilon) && isRs_ == 1 ) && (rs_old > rsSat0 * (1-epsilon)) );
auto useSg = watOnly || hasGas || gasVaporized;
for (int c = 0; c < nc; ++c) {
if (useSg[c]) {
rs[c] = rsSat[c];
} else {
hydroCarbonState[c] = HydroCarbonState::OilOnly;
}
}
}
// phase transitions so <-> rv
if (has_vapoil_) {
// The gas pressure is needed for the rvSat calculations
const V gaspress_old = computeGasPressure(p_old, s_old.col(Water), s_old.col(Oil), s_old.col(Gas));
const V gaspress = computeGasPressure(p, sw, so, sg);
const V rvSat0 = fluidRvSat(gaspress_old, s_old.col(pu.phase_pos[Oil]), cells_);
const V rvSat = fluidRvSat(gaspress, so, cells_);
// The obvious case
auto hasOil = (so > 0 && isRv_ == 0);
// Set oil saturated if previous rv is sufficiently large
const V rv_old = Eigen::Map<const V>(&reservoir_state.rv()[0], nc);
auto oilCondensed = ( (rv > rvSat * (1+epsilon) && isRv_ == 1) && (rv_old > rvSat0 * (1-epsilon)) );
auto useSg = watOnly || hasOil || oilCondensed;
for (int c = 0; c < nc; ++c) {
if (useSg[c]) {
rv[c] = rvSat[c];
} else {
hydroCarbonState[c] = HydroCarbonState::GasOnly;
}
}
}
// Update the reservoir_state
if (has_disgas_) {
std::copy(&rs[0], &rs[0] + nc, reservoir_state.gasoilratio().begin());
}
if (has_vapoil_) {
std::copy(&rv[0], &rv[0] + nc, reservoir_state.rv().begin());
}
wellModel().updateWellState(dwells, dpMaxRel(), well_state);
// Update phase conditions used for property calculations.
updatePhaseCondFromPrimalVariable(reservoir_state);
}
/// Return true if output to cout is wanted.
bool terminalOutputEnabled() const
{
return terminal_output_;
}
/// Compute convergence based on total mass balance (tol_mb) and maximum
/// residual mass balance (tol_cnv).
/// \param[in] timer simulation timer
/// \param[in] dt timestep length
/// \param[in] iteration current iteration number
bool getConvergence(const SimulatorTimerInterface& timer, const int iteration)
{
const double dt = timer.currentStepLength();
const double tol_mb = param_.tolerance_mb_;
const double tol_cnv = param_.tolerance_cnv_;
const double tol_wells = param_.tolerance_wells_;
const int nc = Opm::AutoDiffGrid::numCells(grid_);
const int np = numPhases();
assert(int(rq_.size()) == np);
const V& pv = geo_.poreVolume();
std::vector<double> R_sum(np);
std::vector<double> B_avg(np);
std::vector<double> maxCoeff(np);
std::vector<double> maxNormWell(np);
Eigen::Array<V::Scalar, Eigen::Dynamic, Eigen::Dynamic> B(nc, np);
Eigen::Array<V::Scalar, Eigen::Dynamic, Eigen::Dynamic> R(nc, np);
Eigen::Array<V::Scalar, Eigen::Dynamic, Eigen::Dynamic> tempV(nc, np);
for ( int idx = 0; idx < np; ++idx )
{
const ADB& tempB = rq_[idx].b;
B.col(idx) = 1./tempB.value();
R.col(idx) = residual_.material_balance_eq[idx].value();
tempV.col(idx) = R.col(idx).abs()/pv;
}
const double pvSum = convergenceReduction(B, tempV, R,
R_sum, maxCoeff, B_avg, maxNormWell,
nc);
std::vector<double> CNV(np);
std::vector<double> mass_balance_residual(np);
std::vector<double> well_flux_residual(np);
bool converged_MB = true;
bool converged_CNV = true;
bool converged_Well = true;
// Finish computation
for ( int idx = 0; idx < np; ++idx )
{
CNV[idx] = B_avg[idx] * dt * maxCoeff[idx];
mass_balance_residual[idx] = std::abs(B_avg[idx]*R_sum[idx]) * dt / pvSum;
converged_MB = converged_MB && (mass_balance_residual[idx] < tol_mb);
converged_CNV = converged_CNV && (CNV[idx] < tol_cnv);
// Well flux convergence is only for fluid phases, not other materials
// in our current implementation.
assert(np >= np);
if (idx < np) {
well_flux_residual[idx] = B_avg[idx] * maxNormWell[idx];
converged_Well = converged_Well && (well_flux_residual[idx] < tol_wells);
}
}
const double residualWell = detail::infinityNormWell(residual_.well_eq,
linsolver_.parallelInformation());
converged_Well = converged_Well && (residualWell < Opm::unit::barsa);
const bool converged = converged_MB && converged_CNV && converged_Well;
// Residual in Pascal can have high values and still be ok.
const double maxWellResidualAllowed = 1000.0 * maxResidualAllowed();
if ( terminal_output_ )
{
// Only rank 0 does print to std::cout
if (iteration == 0) {
std::string msg = "Iter";
for (int phaseIdx = 0; phaseIdx < np; ++phaseIdx) {
const std::string& phaseName = FluidSystem::phaseName(flowPhaseToEbosPhaseIdx(phaseIdx));
msg += " MB(" + phaseName + ") ";
}
for (int phaseIdx = 0; phaseIdx < np; ++phaseIdx) {
const std::string& phaseName = FluidSystem::phaseName(flowPhaseToEbosPhaseIdx(phaseIdx));
msg += " CNV(" + phaseName + ") ";
}
for (int phaseIdx = 0; phaseIdx < np; ++phaseIdx) {
const std::string& phaseName = FluidSystem::phaseName(flowPhaseToEbosPhaseIdx(phaseIdx));
msg += " W-FLUX(" + phaseName + ")";
}
// std::cout << " WELL-CONT ";
OpmLog::note(msg);
}
std::ostringstream ss;
const std::streamsize oprec = ss.precision(3);
const std::ios::fmtflags oflags = ss.setf(std::ios::scientific);
ss << std::setw(4) << iteration;
for (int idx = 0; idx < np; ++idx) {
ss << std::setw(11) << mass_balance_residual[idx];
}
for (int idx = 0; idx < np; ++idx) {
ss << std::setw(11) << CNV[idx];
}
for (int idx = 0; idx < np; ++idx) {
ss << std::setw(11) << well_flux_residual[idx];
}
// std::cout << std::setw(11) << residualWell;
ss.precision(oprec);
ss.flags(oflags);
OpmLog::note(ss.str());
}
for (int phaseIdx = 0; phaseIdx < np; ++phaseIdx) {
const auto& phaseName = FluidSystem::phaseName(flowPhaseToEbosPhaseIdx(phaseIdx));
if (std::isnan(mass_balance_residual[phaseIdx])
|| std::isnan(CNV[phaseIdx])
|| (phaseIdx < np && std::isnan(well_flux_residual[phaseIdx]))) {
OPM_THROW(Opm::NumericalProblem, "NaN residual for phase " << phaseName);
}
if (mass_balance_residual[phaseIdx] > maxResidualAllowed()
|| CNV[phaseIdx] > maxResidualAllowed()
|| (phaseIdx < np && well_flux_residual[phaseIdx] > maxResidualAllowed())) {
OPM_THROW(Opm::NumericalProblem, "Too large residual for phase " << phaseName);
}
}
if (std::isnan(residualWell) || residualWell > maxWellResidualAllowed) {
OPM_THROW(Opm::NumericalProblem, "NaN or too large residual for well control equation");
}
return converged;
}
/// The number of active fluid phases in the model.
int numPhases() const
{
return fluid_.numPhases();
}
/// Update the scaling factors for mass balance equations
void updateEquationsScaling()
{
ADB::V B;
const Opm::PhaseUsage& pu = fluid_.phaseUsage();
for ( int idx=0; idx<MaxNumPhases; ++idx )
{
if (active_[idx]) {
const int pos = pu.phase_pos[idx];
const ADB& temp_b = rq_[pos].b;
B = 1. / temp_b.value();
#if HAVE_MPI
if ( linsolver_.parallelInformation().type() == typeid(ParallelISTLInformation) )
{
const ParallelISTLInformation& real_info =
boost::any_cast<const ParallelISTLInformation&>(linsolver_.parallelInformation());
double B_global_sum = 0;
real_info.computeReduction(B, Reduction::makeGlobalSumFunctor<double>(), B_global_sum);
residual_.matbalscale[idx] = B_global_sum / global_nc_;
}
else
#endif
{
residual_.matbalscale[idx] = B.mean();
}
}
}
}
protected:
// --------- Types and enums ---------
typedef Eigen::Array<double,
Eigen::Dynamic,
Eigen::Dynamic,
Eigen::RowMajor> DataBlock;
struct ReservoirResidualQuant {
ReservoirResidualQuant()
: b ( ADB::null())
, dh ( ADB::null())
, mob ( ADB::null())
{
}
ADB b; // Reciprocal FVF
ADB dh; // Pressure drop across int. interfaces
ADB mob; // Phase mobility (per cell)
};
// --------- Data members ---------
const Grid& grid_;
const BlackoilPropsAdInterface& fluid_;
const DerivedGeology& geo_;
const RockCompressibility* rock_comp_props_;
VFPProperties vfp_properties_;
const NewtonIterationBlackoilInterface& linsolver_;
// For each canonical phase -> true if active
const std::vector<bool> active_;
// Size = # active phases. Maps active -> canonical phase indices.
const std::vector<int> canph_;
const std::vector<int> cells_; // All grid cells
HelperOps ops_;
const bool has_disgas_;
const bool has_vapoil_;
ModelParameters param_;
bool use_threshold_pressure_;
V threshold_pressures_by_connection_;
std::vector<ReservoirResidualQuant> rq_;
std::vector<PhasePresence> phaseCondition_;
// Well Model
StandardWells well_model_;
V isRs_;
V isRv_;
V isSg_;
LinearisedBlackoilResidual residual_;
/// \brief Whether we print something to std::cout
bool terminal_output_;
/// \brief The number of cells of the global grid.
int global_nc_;
std::vector<std::vector<double>> residual_norms_history_;
double current_relaxation_;
V dx_old_;
Simulator* ebosSimulator_;
// --------- Protected methods ---------
public:
/// return the StandardWells object
StandardWells& wellModel() { return well_model_; }
const StandardWells& wellModel() const { return well_model_; }
/// return the Well struct in the StandardWells
const Wells& wells() const { return well_model_.wells(); }
/// return true if wells are available in the reservoir
bool wellsActive() const { return well_model_.wellsActive(); }
/// return true if wells are available on this process
bool localWellsActive() const { return well_model_.localWellsActive(); }
void
makeConstantState(SolutionState& state) const
{
// HACK: throw away the derivatives. this may not be the most
// performant way to do things, but it will make the state
// automatically consistent with variableState() (and doing
// things automatically is all the rage in this module ;)
state.pressure = ADB::constant(state.pressure.value());
state.temperature = ADB::constant(state.temperature.value());
state.rs = ADB::constant(state.rs.value());
state.rv = ADB::constant(state.rv.value());
const int num_phases = state.saturation.size();
for (int phaseIdx = 0; phaseIdx < num_phases; ++ phaseIdx) {
state.saturation[phaseIdx] = ADB::constant(state.saturation[phaseIdx].value());
}
state.qs = ADB::constant(state.qs.value());
state.bhp = ADB::constant(state.bhp.value());
assert(state.canonical_phase_pressures.size() == static_cast<std::size_t>(Opm::BlackoilPhases::MaxNumPhases));
for (int canphase = 0; canphase < Opm::BlackoilPhases::MaxNumPhases; ++canphase) {
ADB& pp = state.canonical_phase_pressures[canphase];
pp = ADB::constant(pp.value());
}
}
void setupLegacyState(SolutionState& state,
const ReservoirState& x,
const WellState& xw) const
{
const int nc = Opm::AutoDiffGrid::numCells(grid_);
const int np = x.numPhases();
std::vector<V> vars0(np, V::Ones(nc, 1));
wellModel().variableWellStateInitials(xw, vars0);
std::vector<ADB> vars = ADB::variables(vars0);
std::vector<int> indices = {{Pressure, Sw, Xvar}};
int foo = indices.size();
indices.resize(5);
wellModel().variableStateWellIndices(indices, foo);
const ADB& ones = ADB::constant(V::Ones(nc, 1));
// temperature cannot be a variable at this time (only constant).
state.temperature = ones;
// saturations
state.saturation[Water] = std::move(vars[indices[Sw]]);
const ADB& sw = state.saturation[Water];
const ADB& xvar = vars[indices[Xvar]];
state.saturation[Gas] = xvar;
state.saturation[Oil] = sw + xvar;
// pressures
state.pressure = std::move(vars[indices[Pressure]]);
const ADB& po = state.pressure;
const ADB& tmp = po + sw + xvar;
state.canonical_phase_pressures[Gas] = tmp;
state.canonical_phase_pressures[Water] = tmp;
state.canonical_phase_pressures[Oil] = po;
if (has_disgas_) {
state.rs = po + xvar;
} else {
state.rs = po;
}
if (has_vapoil_) {
state.rv = po + xvar;
} else {
state.rv = po;
}
// Note that so is never a primary variable.
//state.saturation[Oil] = std::move(so);
// wells
wellModel().variableStateExtractWellsVars(indices, vars, state);
}
V
fluidRsSat(const V& p,
const V& satOil,
const std::vector<int>& cells) const
{
return fluid_.rsSat(ADB::constant(p), ADB::constant(satOil), cells).value();
}
V
fluidRvSat(const V& p,
const V& satOil,
const std::vector<int>& cells) const
{
return fluid_.rvSat(ADB::constant(p), ADB::constant(satOil), cells).value();
}
void convertInput( const int iterationIdx,
const ReservoirState& reservoirState,
Simulator& simulator ) const
{
SolutionVector& solution = simulator.model().solution( 0 /* timeIdx */ );
const Opm::PhaseUsage pu = fluid_.phaseUsage();
const int numCells = reservoirState.numCells();
const int numPhases = fluid_.numPhases();
const auto& oilPressure = reservoirState.pressure();
const auto& gasPressure = oilPressure;
const auto& saturations = reservoirState.saturation();
const auto& rs = reservoirState.gasoilratio();
const auto& rv = reservoirState.rv();
for( int cellIdx = 0; cellIdx<numCells; ++cellIdx )
{
// set non-switching primary variables
PrimaryVariables& cellPv = solution[ cellIdx ];
// set water saturation
cellPv.setWaterSaturation( saturations[ cellIdx*numPhases + pu.phase_pos[ Water ] ] );
// set switching variable and interpretation
if( isRs_[ cellIdx ] && has_disgas_ )
{
cellPv.setSwitchingVariable( rs[ cellIdx ] );
cellPv.setOilPressure( oilPressure[ cellIdx ] );
cellPv.setPrimaryVarsMeaning( PrimaryVariables::Sw_po_Rs );
}
else if( isRv_[ cellIdx ] && has_vapoil_ )
{
cellPv.setSwitchingVariable( rv[ cellIdx ] );
cellPv.setOilPressure( gasPressure[ cellIdx ] );
cellPv.setPrimaryVarsMeaning( PrimaryVariables::Sw_pg_Rv );
}
else
{
assert(isSg_[cellIdx]);
cellPv.setSwitchingVariable( saturations[ cellIdx*numPhases + pu.phase_pos[ Gas ] ] );
cellPv.setOilPressure( oilPressure[ cellIdx ] );
cellPv.setPrimaryVarsMeaning( PrimaryVariables::Sw_po_Sg );
}
}
if( iterationIdx == 0 )
{
simulator.model().solution( 1 /* timeIdx */ ) = solution;
}
}
public:
/*
int ebosCompToFlowPhaseIdx( const int compIdx ) const
{
const int compToPhase[ 3 ] = { Oil, Water, Gas };
return compToPhase[ compIdx ];
}
*/
int flowToEbosPvIdx( const int flowPv ) const
{
const int flowToEbos[ 3 ] = {
BlackoilIndices::pressureSwitchIdx,
BlackoilIndices::waterSaturationIdx,
BlackoilIndices::compositionSwitchIdx
};
return flowToEbos[ flowPv ];
}
int flowPhaseToEbosCompIdx( const int phaseIdx ) const
{
const int phaseToComp[ 3 ] = { FluidSystem::waterCompIdx, FluidSystem::oilCompIdx, FluidSystem::gasCompIdx };
return phaseToComp[ phaseIdx ];
}
int flowPhaseToEbosPhaseIdx( const int phaseIdx ) const
{
const int flowToEbos[ 3 ] = { FluidSystem::waterPhaseIdx, FluidSystem::oilPhaseIdx, FluidSystem::gasPhaseIdx };
return flowToEbos[ phaseIdx ];
}
private:
void convertResults(const Simulator& simulator, const ADB& sparsityPattern)
{
const auto& ebosJac = simulator.model().linearizer().matrix();
const auto& ebosResid = simulator.model().linearizer().residual();
const int numPhases = wells().number_of_phases;
const int numCells = ebosJac.N();
const int cols = ebosJac.M();
assert( numCells == cols );
// create the matrices and the right hand sides in a format which is more
// appropriate for the conversion from what's produced ebos to the flow stuff
typedef Eigen::SparseMatrix<double, Eigen::RowMajor> M;
typedef ADB::V V;
std::vector< std::vector< M > > jacs( numPhases );
std::vector< V > resid (numPhases);
for( int eqIdx = 0; eqIdx < numPhases; ++eqIdx )
{
jacs[ eqIdx ].resize( numPhases );
resid[ eqIdx ].resize( numCells );
for( int pvIdx = 0; pvIdx < numPhases; ++pvIdx )
{
jacs[ eqIdx ][ pvIdx ] = M( numCells, cols );
jacs[ eqIdx ][ pvIdx ].reserve( ebosJac.nonzeroes() );
}
}
// write the right-hand-side values from the ebosJac into the objects
// allocated above.
const auto endrow = ebosJac.end();
for( int cellIdx = 0; cellIdx < numCells; ++cellIdx )
{
const double cellVolume = simulator.model().dofTotalVolume(cellIdx);
const auto& cellRes = ebosResid[ cellIdx ];
for( int flowPhaseIdx = 0; flowPhaseIdx < numPhases; ++flowPhaseIdx )
{
const double refDens = FluidSystem::referenceDensity( flowPhaseToEbosPhaseIdx( flowPhaseIdx ), 0 );
double ebosVal = cellRes[ flowPhaseToEbosCompIdx( flowPhaseIdx ) ] / refDens * cellVolume;
resid[ flowPhaseIdx ][ cellIdx ] = ebosVal;
}
}
for( auto row = ebosJac.begin(); row != endrow; ++row )
{
const int rowIdx = row.index();
const double cellVolume = simulator.model().dofTotalVolume(rowIdx);
for( int flowPhaseIdx = 0; flowPhaseIdx < numPhases; ++flowPhaseIdx )
{
for( int pvIdx = 0; pvIdx < numPhases; ++pvIdx )
{
jacs[flowPhaseIdx][pvIdx].startVec(rowIdx);
}
}
// translate the Jacobian of the residual from the format used by ebos to
// the one expected by flow
const auto endcol = row->end();
for( auto col = row->begin(); col != endcol; ++col )
{
const int colIdx = col.index();
for( int flowPhaseIdx = 0; flowPhaseIdx < numPhases; ++flowPhaseIdx )
{
const double refDens = FluidSystem::referenceDensity( flowPhaseToEbosPhaseIdx( flowPhaseIdx ), 0 );
for( int pvIdx=0; pvIdx<numPhases; ++pvIdx )
{
double ebosVal = (*col)[flowPhaseToEbosCompIdx(flowPhaseIdx)][flowToEbosPvIdx(pvIdx)]/refDens*cellVolume;
if (ebosVal != 0.0)
jacs[flowPhaseIdx][pvIdx].insertBackByOuterInnerUnordered(rowIdx, colIdx) = ebosVal;
}
}
}
}
// convert the resulting matrices from/ row major ordering to colum major.
typedef typename ADB::M ADBJacobianMatrix;
std::vector< std::vector< ADBJacobianMatrix > > adbJacs( numPhases );
for( int flowPhaseIdx = 0; flowPhaseIdx < numPhases; ++flowPhaseIdx )
{
adbJacs[ flowPhaseIdx ].resize( numPhases + 2 );
for( int pvIdx = 0; pvIdx < numPhases; ++pvIdx )
{
jacs[ flowPhaseIdx ][ pvIdx ].finalize();
adbJacs[ flowPhaseIdx ][ pvIdx ].assign( std::move(jacs[ flowPhaseIdx ][ pvIdx ]) );
}
// add two "dummy" matrices for the well primary variables
for( int pvIdx = numPhases; pvIdx < numPhases + 2; ++pvIdx ) {
adbJacs[ flowPhaseIdx ][ pvIdx ] =
sparsityPattern.derivative()[pvIdx];
}
}
for( int eqIdx = 0; eqIdx < numPhases; ++eqIdx )
{
residual_.material_balance_eq[ eqIdx ] =
ADB::function(std::move(resid[eqIdx]),
std::move(adbJacs[eqIdx]));
}
}
void updateLegacyState(const Simulator& simulator, SolutionState& legacyState)
{
const int numPhases = 3;
const int numCells = simulator.model().numGridDof();
typedef Eigen::SparseMatrix<double, Eigen::ColMajor> EigenMatrix;
///////
// create the value vectors for the legacy state
///////
V poVal;
V TVal;
std::vector<V> SVal(numPhases);
std::vector<V> mobVal(numPhases);
std::vector<V> bVal(numPhases);
std::vector<V> pVal(numPhases);
V RsVal;
V RvVal;
poVal.resize(numCells);
TVal.resize(numCells);
for (int phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) {
SVal[phaseIdx].resize(numCells);
mobVal[phaseIdx].resize(numCells);
bVal[phaseIdx].resize(numCells);
pVal[phaseIdx].resize(numCells);
}
RsVal.resize(numCells);
RvVal.resize(numCells);
///////
// create the Jacobian matrices for the legacy state. here we assume that the
// sparsity pattern of the inputs is already correct
///////
std::vector<EigenMatrix> poJac(numPhases + 2);
//std::vector<EigenMatrix> TJac(numPhases + 2);
std::vector<std::vector<EigenMatrix>> SJac(numPhases);
std::vector<std::vector<EigenMatrix>> mobJac(numPhases);
std::vector<std::vector<EigenMatrix>> bJac(numPhases);
std::vector<std::vector<EigenMatrix>> pJac(numPhases);
std::vector<EigenMatrix> RsJac(numPhases + 2);
std::vector<EigenMatrix> RvJac(numPhases + 2);
// reservoir stuff
for (int pvIdx = 0; pvIdx < numPhases; ++ pvIdx) {
poJac[pvIdx].resize(numCells, numCells);
//TJac[pvIdx].resize(numCells, numCells);
RsJac[pvIdx].resize(numCells, numCells);
RvJac[pvIdx].resize(numCells, numCells);
poJac[pvIdx].reserve(numCells);
//TJac[pvIdx].reserve(numCells);
RsJac[pvIdx].reserve(numCells);
RvJac[pvIdx].reserve(numCells);
}
// auxiliary equations
for (int pvIdx = numPhases; pvIdx < numPhases + 2; ++ pvIdx) {
legacyState.pressure.derivative()[pvIdx].toSparse(poJac[pvIdx]);
//legacyState.temperature.derivative()[pvIdx].toSparse(TJac[pvIdx]);
legacyState.rs.derivative()[pvIdx].toSparse(RsJac[pvIdx]);
legacyState.rv.derivative()[pvIdx].toSparse(RvJac[pvIdx]);
}
for (int phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) {
SJac[phaseIdx].resize(numPhases + 2);
mobJac[phaseIdx].resize(numPhases + 2);
bJac[phaseIdx].resize(numPhases + 2);
pJac[phaseIdx].resize(numPhases + 2);
for (int pvIdx = 0; pvIdx < numPhases; ++ pvIdx) {
SJac[phaseIdx][pvIdx].resize(numCells, numCells);
SJac[phaseIdx][pvIdx].reserve(numCells);
mobJac[phaseIdx][pvIdx].resize(numCells, numCells);
mobJac[phaseIdx][pvIdx].reserve(numCells);
bJac[phaseIdx][pvIdx].resize(numCells, numCells);
bJac[phaseIdx][pvIdx].reserve(numCells);
pJac[phaseIdx][pvIdx].resize(numCells, numCells);
pJac[phaseIdx][pvIdx].reserve(numCells);
}
// auxiliary equations for the saturations and pressures
for (int pvIdx = numPhases; pvIdx < numPhases + 2; ++ pvIdx) {
legacyState.saturation[phaseIdx].derivative()[pvIdx].toSparse(SJac[phaseIdx][pvIdx]);
legacyState.saturation[phaseIdx].derivative()[pvIdx].toSparse(mobJac[phaseIdx][pvIdx]);
legacyState.saturation[phaseIdx].derivative()[pvIdx].toSparse(bJac[phaseIdx][pvIdx]);
legacyState.canonical_phase_pressures[phaseIdx].derivative()[pvIdx].toSparse(pJac[phaseIdx][pvIdx]);
}
}
///////
// write the values and the derivatives into the data structures for the
// legacy state.
///////
for( int cellIdx = 0; cellIdx < numCells; ++cellIdx )
{
const auto& intQuants = *(ebosSimulator_->model().cachedIntensiveQuantities(cellIdx, /*timeIdx=*/0));
const auto& fs = intQuants.fluidState();
poVal[cellIdx] = fs.pressure(FluidSystem::oilPhaseIdx).value;
TVal[cellIdx] = fs.temperature(0).value;
RsVal[cellIdx] = fs.Rs().value;
RvVal[cellIdx] = fs.Rv().value;
for (int pvIdx = 0; pvIdx < numPhases; ++pvIdx) {
poJac[pvIdx].startVec(cellIdx);
//TJac[pvIdx].startVec(cellIdx);
RsJac[pvIdx].startVec(cellIdx);
RvJac[pvIdx].startVec(cellIdx);
poJac[pvIdx].insertBackByOuterInnerUnordered(cellIdx, cellIdx) = fs.pressure(FluidSystem::oilPhaseIdx).derivatives[flowToEbosPvIdx(pvIdx)];
//TJac[pvIdx].insertBackByOuterInnerUnordered(cellIdx, cellIdx) = fs.temperature(FluidSystem::oilPhaseIdx).derivatives[flowToEbosPvIdx(pvIdx)];
RsJac[pvIdx].insertBackByOuterInnerUnordered(cellIdx, cellIdx) = fs.Rs().derivatives[flowToEbosPvIdx(pvIdx)];
RvJac[pvIdx].insertBackByOuterInnerUnordered(cellIdx, cellIdx) = fs.Rv().derivatives[flowToEbosPvIdx(pvIdx)];
}
for( int flowPhaseIdx = 0; flowPhaseIdx < numPhases; ++flowPhaseIdx )
{
int ebosPhaseIdx = flowPhaseToEbosPhaseIdx(flowPhaseIdx);
SVal[flowPhaseIdx][cellIdx] = fs.saturation(ebosPhaseIdx).value;
mobVal[flowPhaseIdx][cellIdx] = intQuants.mobility(ebosPhaseIdx).value;
bVal[flowPhaseIdx][cellIdx] = fs.invB(ebosPhaseIdx).value;
pVal[flowPhaseIdx][cellIdx] = fs.pressure(ebosPhaseIdx).value;
for (int pvIdx = 0; pvIdx < numPhases; ++pvIdx) {
SJac[flowPhaseIdx][pvIdx].startVec(cellIdx);
mobJac[flowPhaseIdx][pvIdx].startVec(cellIdx);
bJac[flowPhaseIdx][pvIdx].startVec(cellIdx);
pJac[flowPhaseIdx][pvIdx].startVec(cellIdx);
SJac[flowPhaseIdx][pvIdx].insertBackByOuterInnerUnordered(cellIdx, cellIdx) = fs.saturation(ebosPhaseIdx).derivatives[flowToEbosPvIdx(pvIdx)];
mobJac[flowPhaseIdx][pvIdx].insertBackByOuterInnerUnordered(cellIdx, cellIdx) = intQuants.mobility(ebosPhaseIdx).derivatives[flowToEbosPvIdx(pvIdx)];
bJac[flowPhaseIdx][pvIdx].insertBackByOuterInnerUnordered(cellIdx, cellIdx) = fs.invB(ebosPhaseIdx).derivatives[flowToEbosPvIdx(pvIdx)];
pJac[flowPhaseIdx][pvIdx].insertBackByOuterInnerUnordered(cellIdx, cellIdx) = fs.pressure(ebosPhaseIdx).derivatives[flowToEbosPvIdx(pvIdx)];
}
}
}
// finalize all Jacobian matrices
for (int pvIdx = 0; pvIdx < numPhases; ++pvIdx) {
poJac[pvIdx].finalize();
//TJac[pvIdx].finalize();
RsJac[pvIdx].finalize();
RvJac[pvIdx].finalize();
for (int phaseIdx = 0; phaseIdx < 3; ++ phaseIdx) {
SJac[phaseIdx][pvIdx].finalize();
mobJac[phaseIdx][pvIdx].finalize();
bJac[phaseIdx][pvIdx].finalize();
pJac[phaseIdx][pvIdx].finalize();
}
}
///////
// create Opm::AutoDiffMatrix objects from Eigen::SparseMatrix
// objects. (Opm::AutoDiffMatrix is not directly assignable, wtf?)
///////
typedef typename ADB::M ADBJacobianMatrix;
std::vector<ADBJacobianMatrix> poAdbJacs;
std::vector<ADBJacobianMatrix> RsAdbJacs;
std::vector<ADBJacobianMatrix> RvAdbJacs;
poAdbJacs.resize(numPhases + 2);
RsAdbJacs.resize(numPhases + 2);
RvAdbJacs.resize(numPhases + 2);
for(int pvIdx = 0; pvIdx < numPhases + 2; ++pvIdx)
{
poAdbJacs[pvIdx].assign(poJac[pvIdx]);
RsAdbJacs[pvIdx].assign(RsJac[pvIdx]);
RvAdbJacs[pvIdx].assign(RvJac[pvIdx]);
}
std::vector<std::vector<ADBJacobianMatrix>> SAdbJacs(numPhases);
std::vector<std::vector<ADBJacobianMatrix>> mobAdbJacs(numPhases);
std::vector<std::vector<ADBJacobianMatrix>> bAdbJacs(numPhases);
std::vector<std::vector<ADBJacobianMatrix>> pAdbJacs(numPhases);
for(int phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx)
{
SAdbJacs[phaseIdx].resize(numPhases + 2);
mobAdbJacs[phaseIdx].resize(numPhases + 2);
bAdbJacs[phaseIdx].resize(numPhases + 2);
pAdbJacs[phaseIdx].resize(numPhases + 2);
for(int pvIdx = 0; pvIdx < numPhases + 2; ++pvIdx)
{
SAdbJacs[phaseIdx][pvIdx].assign(SJac[phaseIdx][pvIdx]);
mobAdbJacs[phaseIdx][pvIdx].assign(mobJac[phaseIdx][pvIdx]);
bAdbJacs[phaseIdx][pvIdx].assign(bJac[phaseIdx][pvIdx]);
pAdbJacs[phaseIdx][pvIdx].assign(pJac[phaseIdx][pvIdx]);
}
}
///////
// create the ADB objects in the legacy state
///////
legacyState.pressure =
ADB::function(std::move(poVal),
std::move(poAdbJacs));
legacyState.temperature =
ADB::constant(std::move(TVal));
legacyState.rs =
ADB::function(std::move(RsVal),
std::move(RsAdbJacs));
legacyState.rv =
ADB::function(std::move(RvVal),
std::move(RvAdbJacs));
for (int phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx)
{
legacyState.saturation[phaseIdx] =
ADB::function(std::move(SVal[phaseIdx]),
std::move(SAdbJacs[phaseIdx]));
legacyState.canonical_phase_pressures[phaseIdx] =
ADB::function(std::move(pVal[phaseIdx]),
std::move(pAdbJacs[phaseIdx]));
rq_[phaseIdx].mob =
ADB::function(std::move(mobVal[phaseIdx]),
std::move(mobAdbJacs[phaseIdx]));
rq_[phaseIdx].b =
ADB::function(std::move(bVal[phaseIdx]),
std::move(bAdbJacs[phaseIdx]));
}
}
void assembleMassBalanceEq(const SimulatorTimerInterface& timer,
const int iterationIdx,
const ReservoirState& reservoirState,
SolutionState& state)
{
assert( ebosSimulator_ );
convertInput( iterationIdx, reservoirState, *ebosSimulator_ );
ebosSimulator_->startNextEpisode( timer.currentStepLength() );
ebosSimulator_->setEpisodeIndex( timer.reportStepNum() );
ebosSimulator_->setTimeStepIndex( timer.reportStepNum() );
ebosSimulator_->model().invalidateIntensiveQuantitiesCache(/*timeIdx=*/0);
ebosSimulator_->model().newtonMethod().setIterationIndex(iterationIdx);
static int prevEpisodeIdx = 10000;
// notify ebos about the end of the previous episode and time step if applicable
#warning "TODO: move this to the SimulatorFullyImplicitBlackoilEbos class"
// doing the notifactions here is conceptually wrong and also causes the
// endTimeStep() and endEpisode() methods to be not called for the
// simulation's last time step and episode.
if (ebosSimulator_->model().newtonMethod().numIterations() == 0 && prevEpisodeIdx >= 0)
ebosSimulator_->problem().endTimeStep();
if (ebosSimulator_->episodeIndex() != prevEpisodeIdx && prevEpisodeIdx >= 0)
ebosSimulator_->problem().endEpisode();
if (ebosSimulator_->episodeIndex() != prevEpisodeIdx)
ebosSimulator_->problem().beginEpisode();
ebosSimulator_->setTimeStepSize( timer.currentStepLength() );
if (ebosSimulator_->model().newtonMethod().numIterations() == 0)
ebosSimulator_->problem().beginTimeStep();
ebosSimulator_->problem().beginIteration();
ebosSimulator_->model().linearizer().linearize();
ebosSimulator_->problem().endIteration();
prevEpisodeIdx = ebosSimulator_->episodeIndex();
convertResults(*ebosSimulator_, /*sparsityPattern=*/state.saturation[0]);
updateLegacyState(*ebosSimulator_, state);
if (param_.update_equations_scaling_) {
updateEquationsScaling();
}
}
IterationReport solveWellEq(const std::vector<ADB>& mob_perfcells,
const std::vector<ADB>& b_perfcells,
SolutionState& state,
WellState& well_state)
{
V aliveWells;
const int np = wells().number_of_phases;
std::vector<ADB> cq_s(np, ADB::null());
std::vector<int> indices = wellModel().variableWellStateIndices();
SolutionState state0 = state;
WellState well_state0 = well_state;
makeConstantState(state0);
std::vector<ADB> mob_perfcells_const(np, ADB::null());
std::vector<ADB> b_perfcells_const(np, ADB::null());
if (localWellsActive() ){
// If there are non well in the sudomain of the process
// thene mob_perfcells_const and b_perfcells_const would be empty
for (int phase = 0; phase < np; ++phase) {
mob_perfcells_const[phase] = ADB::constant(mob_perfcells[phase].value());
b_perfcells_const[phase] = ADB::constant(b_perfcells[phase].value());
}
}
int it = 0;
bool converged;
do {
// bhp and Q for the wells
std::vector<V> vars0;
vars0.reserve(2);
wellModel().variableWellStateInitials(well_state, vars0);
std::vector<ADB> vars = ADB::variables(vars0);
SolutionState wellSolutionState = state0;
wellModel().variableStateExtractWellsVars(indices, vars, wellSolutionState);
wellModel().computeWellFlux(wellSolutionState, mob_perfcells_const, b_perfcells_const, aliveWells, cq_s);
wellModel().updatePerfPhaseRatesAndPressures(cq_s, wellSolutionState, well_state);
wellModel().addWellFluxEq(cq_s, wellSolutionState, residual_);
wellModel().addWellControlEq(wellSolutionState, well_state, aliveWells, residual_);
converged = getWellConvergence(it);
if (converged) {
break;
}
++it;
if( localWellsActive() )
{
std::vector<ADB> eqs;
eqs.reserve(2);
eqs.push_back(residual_.well_flux_eq);
eqs.push_back(residual_.well_eq);
ADB total_residual = vertcatCollapseJacs(eqs);
const std::vector<M>& Jn = total_residual.derivative();
typedef Eigen::SparseMatrix<double> Sp;
Sp Jn0;
Jn[0].toSparse(Jn0);
const Eigen::SparseLU< Sp > solver(Jn0);
ADB::V total_residual_v = total_residual.value();
const Eigen::VectorXd& dx = solver.solve(total_residual_v.matrix());
assert(dx.size() == total_residual_v.size());
wellModel().updateWellState(dx.array(), dpMaxRel(), well_state);
wellModel().updateWellControls(well_state);
}
} while (it < 15);
if (converged) {
OpmLog::note("well converged iter: " + std::to_string(it));
const int nw = wells().number_of_wells;
{
// We will set the bhp primary variable to the new ones,
// but we do not change the derivatives here.
ADB::V new_bhp = Eigen::Map<ADB::V>(well_state.bhp().data(), nw);
// Avoiding the copy below would require a value setter method
// in AutoDiffBlock.
std::vector<ADB::M> old_derivs = state.bhp.derivative();
state.bhp = ADB::function(std::move(new_bhp), std::move(old_derivs));
}
{
// Need to reshuffle well rates, from phase running fastest
// to wells running fastest.
// The transpose() below switches the ordering.
const DataBlock wrates = Eigen::Map<const DataBlock>(well_state.wellRates().data(), nw, np).transpose();
ADB::V new_qs = Eigen::Map<const V>(wrates.data(), nw*np);
std::vector<ADB::M> old_derivs = state.qs.derivative();
state.qs = ADB::function(std::move(new_qs), std::move(old_derivs));
}
computeWellConnectionPressures(state, well_state);
}
if (!converged) {
well_state = well_state0;
}
const bool failed = false; // Not needed in this method.
const int linear_iters = 0; // Not needed in this method
return IterationReport{failed, converged, linear_iters, it};
}
void
addWellContributionToMassBalanceEq(const std::vector<ADB>& cq_s,
const SolutionState& state,
const WellState& xw)
{
if ( !localWellsActive() )
{
// If there are no wells in the subdomain of the proces then
// cq_s has zero size and will cause a segmentation fault below.
return;
}
// Add well contributions to mass balance equations
const int nc = Opm::AutoDiffGrid::numCells(grid_);
const int np = numPhases();
for (int phase = 0; phase < np; ++phase) {
residual_.material_balance_eq[phase] -= superset(cq_s[phase], wellModel().wellOps().well_cells, nc);
}
}
bool getWellConvergence(const int iteration)
{
const double tol_wells = param_.tolerance_wells_;
const int nc = Opm::AutoDiffGrid::numCells(grid_);
const int np = numPhases();
const V& pv = geo_.poreVolume();
std::vector<double> R_sum(np);
std::vector<double> B_avg(np);
std::vector<double> maxCoeff(np);
std::vector<double> maxNormWell(np);
Eigen::Array<V::Scalar, Eigen::Dynamic, Eigen::Dynamic> B(nc, np);
Eigen::Array<V::Scalar, Eigen::Dynamic, Eigen::Dynamic> R(nc, np);
Eigen::Array<V::Scalar, Eigen::Dynamic, Eigen::Dynamic> tempV(nc, np);
for ( int idx = 0; idx < np; ++idx )
{
const ADB& tempB = rq_[idx].b;
B.col(idx) = 1./tempB.value();
R.col(idx) = residual_.material_balance_eq[idx].value();
tempV.col(idx) = R.col(idx).abs()/pv;
}
convergenceReduction(B, tempV, R, R_sum, maxCoeff, B_avg, maxNormWell, nc);
std::vector<double> well_flux_residual(np);
bool converged_Well = true;
// Finish computation
for ( int idx = 0; idx < np; ++idx )
{
well_flux_residual[idx] = B_avg[idx] * maxNormWell[idx];
converged_Well = converged_Well && (well_flux_residual[idx] < tol_wells);
}
const double residualWell = detail::infinityNormWell(residual_.well_eq,
linsolver_.parallelInformation());
converged_Well = converged_Well && (residualWell < Opm::unit::barsa);
const bool converged = converged_Well;
// if one of the residuals is NaN, throw exception, so that the solver can be restarted
for (int phaseIdx = 0; phaseIdx < np; ++phaseIdx) {
const auto& phaseName = FluidSystem::phaseName(flowPhaseToEbosPhaseIdx(phaseIdx));
if (std::isnan(well_flux_residual[phaseIdx])) {
OPM_THROW(Opm::NumericalProblem, "NaN residual for phase " << phaseName);
}
if (well_flux_residual[phaseIdx] > maxResidualAllowed()) {
OPM_THROW(Opm::NumericalProblem, "Too large residual for phase " << phaseName);
}
}
if ( terminal_output_ )
{
// Only rank 0 does print to std::cout
if (iteration == 0) {
std::string msg;
msg = "Iter";
for (int phaseIdx = 0; phaseIdx < np; ++phaseIdx) {
const std::string& phaseName = FluidSystem::phaseName(flowPhaseToEbosPhaseIdx(phaseIdx));
msg += " W-FLUX(" + phaseName + ")";
}
OpmLog::note(msg);
}
std::ostringstream ss;
const std::streamsize oprec = ss.precision(3);
const std::ios::fmtflags oflags = ss.setf(std::ios::scientific);
ss << std::setw(4) << iteration;
for (int phaseIdx = 0; phaseIdx < np; ++phaseIdx) {
ss << std::setw(11) << well_flux_residual[phaseIdx];
}
ss.precision(oprec);
ss.flags(oflags);
OpmLog::note(ss.str());
}
return converged;
}
std::vector<ADB>
computePressures(const ADB& po,
const ADB& sw,
const ADB& so,
const ADB& sg) const
{
// convert the pressure offsets to the capillary pressures
std::vector<ADB> pressure = fluid_.capPress(sw, so, sg, cells_);
for (int phaseIdx = 0; phaseIdx < BlackoilPhases::MaxNumPhases; ++phaseIdx) {
// The reference pressure is always the liquid phase (oil) pressure.
if (phaseIdx == BlackoilPhases::Liquid)
continue;
if (active_[phaseIdx]) {
pressure[phaseIdx] = pressure[phaseIdx] - pressure[BlackoilPhases::Liquid];
}
}
// Since pcow = po - pw, but pcog = pg - po,
// we have
// pw = po - pcow
// pg = po + pcgo
// This is an unfortunate inconsistency, but a convention we must handle.
for (int phaseIdx = 0; phaseIdx < BlackoilPhases::MaxNumPhases; ++phaseIdx) {
if (active_[phaseIdx]) {
if (phaseIdx == BlackoilPhases::Aqua) {
pressure[phaseIdx] = po - pressure[phaseIdx];
} else {
pressure[phaseIdx] += po;
}
}
}
return pressure;
}
V computeGasPressure(const V& po,
const V& sw,
const V& so,
const V& sg) const
{
assert (active_[Gas]);
std::vector<ADB> cp = fluid_.capPress(ADB::constant(sw),
ADB::constant(so),
ADB::constant(sg),
cells_);
return cp[Gas].value() + po;
}
const std::vector<PhasePresence>
phaseCondition() const {return phaseCondition_;}
/// update the primal variable for Sg, Rv or Rs. The Gas phase must
/// be active to call this method.
void
updatePrimalVariableFromState(const ReservoirState& state)
{
updatePhaseCondFromPrimalVariable(state);
}
/// Update the phaseCondition_ member based on the primalVariable_ member.
/// Also updates isRs_, isRv_ and isSg_;
void
updatePhaseCondFromPrimalVariable(const ReservoirState& state)
{
const int nc = Opm::AutoDiffGrid::numCells(grid_);
isRs_ = V::Zero(nc);
isRv_ = V::Zero(nc);
isSg_ = V::Zero(nc);
if (! (active_[Gas] && active_[Oil])) {
// updatePhaseCondFromPrimarVariable() logic requires active gas and oil phase.
phaseCondition_.assign(nc, PhasePresence());
return;
}
for (int c = 0; c < nc; ++c) {
phaseCondition_[c] = PhasePresence(); // No free phases.
phaseCondition_[c].setFreeWater(); // Not necessary for property calculation usage.
switch (state.hydroCarbonState()[c]) {
case HydroCarbonState::GasAndOil:
phaseCondition_[c].setFreeOil();
phaseCondition_[c].setFreeGas();
isSg_[c] = 1;
break;
case HydroCarbonState::OilOnly:
phaseCondition_[c].setFreeOil();
isRs_[c] = 1;
break;
case HydroCarbonState::GasOnly:
phaseCondition_[c].setFreeGas();
isRv_[c] = 1;
break;
default:
OPM_THROW(std::logic_error, "Unknown primary variable enum value in cell " << c << ": " << state.hydroCarbonState()[c]);
}
}
}
// TODO: added since the interfaces of the function are different
// TODO: for StandardWells and MultisegmentWells
void
computeWellConnectionPressures(const SolutionState& state,
const WellState& well_state)
{
wellModel().computeWellConnectionPressures(state, well_state);
}
/// \brief Compute the reduction within the convergence check.
/// \param[in] B A matrix with MaxNumPhases columns and the same number rows
/// as the number of cells of the grid. B.col(i) contains the values
/// for phase i.
/// \param[in] tempV A matrix with MaxNumPhases columns and the same number rows
/// as the number of cells of the grid. tempV.col(i) contains the
/// values
/// for phase i.
/// \param[in] R A matrix with MaxNumPhases columns and the same number rows
/// as the number of cells of the grid. B.col(i) contains the values
/// for phase i.
/// \param[out] R_sum An array of size MaxNumPhases where entry i contains the sum
/// of R for the phase i.
/// \param[out] maxCoeff An array of size MaxNumPhases where entry i contains the
/// maximum of tempV for the phase i.
/// \param[out] B_avg An array of size MaxNumPhases where entry i contains the average
/// of B for the phase i.
/// \param[out] maxNormWell The maximum of the well flux equations for each phase.
/// \param[in] nc The number of cells of the local grid.
/// \return The total pore volume over all cells.
double
convergenceReduction(const Eigen::Array<double, Eigen::Dynamic, Eigen::Dynamic>& B,
const Eigen::Array<double, Eigen::Dynamic, Eigen::Dynamic>& tempV,
const Eigen::Array<double, Eigen::Dynamic, Eigen::Dynamic>& R,
std::vector<double>& R_sum,
std::vector<double>& maxCoeff,
std::vector<double>& B_avg,
std::vector<double>& maxNormWell,
int nc) const
{
const int np = numPhases();
const int nw = residual_.well_flux_eq.size() / np;
assert(nw * np == int(residual_.well_flux_eq.size()));
// Do the global reductions
#if HAVE_MPI
if ( linsolver_.parallelInformation().type() == typeid(ParallelISTLInformation) )
{
const ParallelISTLInformation& info =
boost::any_cast<const ParallelISTLInformation&>(linsolver_.parallelInformation());
// Compute the global number of cells and porevolume
std::vector<int> v(nc, 1);
auto nc_and_pv = std::tuple<int, double>(0, 0.0);
auto nc_and_pv_operators = std::make_tuple(Opm::Reduction::makeGlobalSumFunctor<int>(),
Opm::Reduction::makeGlobalSumFunctor<double>());
auto nc_and_pv_containers = std::make_tuple(v, geo_.poreVolume());
info.computeReduction(nc_and_pv_containers, nc_and_pv_operators, nc_and_pv);
for ( int idx = 0; idx < np; ++idx )
{
auto values = std::tuple<double,double,double>(0.0 ,0.0 ,0.0);
auto containers = std::make_tuple(B.col(idx),
tempV.col(idx),
R.col(idx));
auto operators = std::make_tuple(Opm::Reduction::makeGlobalSumFunctor<double>(),
Opm::Reduction::makeGlobalMaxFunctor<double>(),
Opm::Reduction::makeGlobalSumFunctor<double>());
info.computeReduction(containers, operators, values);
B_avg[idx] = std::get<0>(values)/std::get<0>(nc_and_pv);
maxCoeff[idx] = std::get<1>(values);
R_sum[idx] = std::get<2>(values);
assert(np >= np);
if (idx < np) {
maxNormWell[idx] = 0.0;
for ( int w = 0; w < nw; ++w ) {
maxNormWell[idx] = std::max(maxNormWell[idx], std::abs(residual_.well_flux_eq.value()[nw*idx + w]));
}
}
}
info.communicator().max(maxNormWell.data(), np);
// Compute pore volume
return std::get<1>(nc_and_pv);
}
else
#endif
{
B_avg.resize(np);
maxCoeff.resize(np);
R_sum.resize(np);
maxNormWell.resize(np);
for ( int idx = 0; idx < np; ++idx )
{
B_avg[idx] = B.col(idx).sum()/nc;
maxCoeff[idx] = tempV.col(idx).maxCoeff();
R_sum[idx] = R.col(idx).sum();
assert(np >= np);
if (idx < np) {
maxNormWell[idx] = 0.0;
for ( int w = 0; w < nw; ++w ) {
maxNormWell[idx] = std::max(maxNormWell[idx], std::abs(residual_.well_flux_eq.value()[nw*idx + w]));
}
}
}
// Compute total pore volume
return geo_.poreVolume().sum();
}
}
double dpMaxRel() const { return param_.dp_max_rel_; }
double dsMax() const { return param_.ds_max_; }
double drMaxRel() const { return param_.dr_max_rel_; }
double maxResidualAllowed() const { return param_.max_residual_allowed_; }
};
} // namespace Opm
#endif // OPM_BLACKOILMODELBASE_IMPL_HEADER_INCLUDED