opm-simulators/ebos/equil/RegionMapping.hpp
Andreas Lauser 6871e1cf88 move the hydrostatic equilibrium code to its proper location and make it compile
this just moves the hydrostatic equilibrium code from its historc
location at opm/core to ebos/equil and adds minimal changes to make it
compile. this allows to clean up that code without disturbing the
legacy simulators.
2018-01-02 14:28:06 +01:00

185 lines
5.3 KiB
C++

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
#ifndef OPM_REGIONMAPPING_HH
#define OPM_REGIONMAPPING_HH
#include <boost/range.hpp>
#include <unordered_map>
#include <vector>
namespace Ewoms
{
/**
* Forward and reverse mappings between cells and
* regions/partitions (e.g., the ECLIPSE-style 'SATNUM',
* 'PVTNUM', or 'EQUILNUM' arrays).
*
* \tparam Region Type of a forward region mapping. Expected
* to provide indexed access through
* operator[]() as well as inner types
* 'value_type', 'size_type', and
* 'const_iterator'.
*/
template < class Region = std::vector<int> >
class RegionMapping {
public:
/**
* Constructor.
*
* \param[in] reg Forward region mapping, restricted to
* active cells only.
*/
explicit
RegionMapping(const Region& reg)
: reg_(reg)
{
rev_.init(reg_);
}
/**
* Type of forward (cell-to-region) mapping result.
* Expected to be an integer.
*/
typedef typename Region::value_type RegionId;
/**
* Type of reverse (region-to-cell) mapping (element)
* result.
*/
typedef typename Region::size_type CellId;
/**
* Type of reverse region-to-cell range bounds and
* iterators.
*/
typedef typename std::vector<CellId>::const_iterator CellIter;
typedef boost::iterator_range<CellIter> Range;
/**
* Compute region number of given active cell.
*
* \param[in] c Active cell
* \return Region to which @c c belongs.
*/
RegionId
region(const CellId c) const { return reg_[c]; }
const std::vector<RegionId>&
activeRegions() const
{
return rev_.active;
}
/**
* Extract active cells in particular region.
*
* \param[in] r Region number
*
* \return Range of active cells in region @c r. Empty if @c r is
* not an active region.
*/
Range
cells(const RegionId r) const {
const auto id = rev_.binid.find(r);
if (id == rev_.binid.end()) {
// Region 'r' not an active region. Return empty.
return Range(rev_.c.end(), rev_.c.end());
}
const auto i = id->second;
return Range(rev_.c.begin() + rev_.p[i + 0],
rev_.c.begin() + rev_.p[i + 1]);
}
private:
/**
* Copy of forward region mapping (cell-to-region).
*/
Region reg_;
/**
* Reverse mapping (region-to-cell).
*/
struct {
typedef typename std::vector<CellId>::size_type Pos;
std::unordered_map<RegionId, Pos> binid;
std::vector<RegionId> active;
std::vector<Pos> p; /**< Region start pointers */
std::vector<CellId> c; /**< Region cells */
/**
* Compute reverse mapping. Standard linear insertion
* sort algorithm.
*/
void
init(const Region& reg)
{
binid.clear();
for (const auto& r : reg) {
++binid[r];
}
p .clear(); p.emplace_back(0);
active.clear();
{
Pos n = 0;
for (auto& id : binid) {
active.push_back(id.first);
p .push_back(id.second);
id.second = n++;
}
}
for (decltype(p.size()) i = 1, sz = p.size(); i < sz; ++i) {
p[0] += p[i];
p[i] = p[0] - p[i];
}
assert (p[0] == static_cast<Pos>(reg.size()));
c.resize(reg.size());
{
CellId i = 0;
for (const auto& r : reg) {
auto& pos = p[ binid[r] + 1 ];
c[ pos++ ] = i++;
}
}
p[0] = 0;
}
} rev_; /**< Reverse mapping instance */
};
} // namespace Opm
#endif // OPM_REGIONMAPPING_HEADER_INCLUDED