opm-simulators/opm/simulators/wells/StandardWellEquations.cpp
Arne Morten Kvarving 40640e9da6 added: StandardWellEquations::recoverSolutionWell()
this recovers the well solution from a solution vector.
use the new method in the well implementation.
2022-11-22 10:36:54 +01:00

192 lines
5.3 KiB
C++

/*
Copyright 2017 SINTEF Digital, Mathematics and Cybernetics.
Copyright 2017 Statoil ASA.
Copyright 2016 - 2017 IRIS AS.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#include <opm/simulators/wells/StandardWellEquations.hpp>
#include <opm/common/Exceptions.hpp>
#include <opm/simulators/linalg/matrixblock.hh>
namespace Opm
{
template<class Scalar, int numEq>
StandardWellEquations<Scalar,numEq>::
StandardWellEquations(const ParallelWellInfo& parallel_well_info)
: parallelB_(duneB_, parallel_well_info)
{
duneB_.setBuildMode(OffDiagMatWell::row_wise);
duneC_.setBuildMode(OffDiagMatWell::row_wise),
invDuneD_.setBuildMode(DiagMatWell::row_wise);
}
template<class Scalar, int numEq>
void StandardWellEquations<Scalar,numEq>::
init(const int num_cells,
const int numWellEq,
const int numPerfs,
const std::vector<int>& cells)
{
// setup sparsity pattern for the matrices
//[A C^T [x = [ res
// B D] x_well] res_well]
// set the size of the matrices
duneD_.setSize(1, 1, 1);
duneB_.setSize(1, num_cells, numPerfs);
duneC_.setSize(1, num_cells, numPerfs);
for (auto row = duneD_.createbegin(),
end = duneD_.createend(); row != end; ++row) {
// Add nonzeros for diagonal
row.insert(row.index());
}
// the block size is run-time determined now
duneD_[0][0].resize(numWellEq, numWellEq);
for (auto row = duneB_.createbegin(),
end = duneB_.createend(); row != end; ++row) {
for (int perf = 0 ; perf < numPerfs; ++perf) {
const int cell_idx = cells[perf];
row.insert(cell_idx);
}
}
for (int perf = 0 ; perf < numPerfs; ++perf) {
const int cell_idx = cells[perf];
// the block size is run-time determined now
duneB_[0][cell_idx].resize(numWellEq, numEq);
}
// make the C^T matrix
for (auto row = duneC_.createbegin(),
end = duneC_.createend(); row != end; ++row) {
for (int perf = 0; perf < numPerfs; ++perf) {
const int cell_idx = cells[perf];
row.insert(cell_idx);
}
}
for (int perf = 0; perf < numPerfs; ++perf) {
const int cell_idx = cells[perf];
duneC_[0][cell_idx].resize(numWellEq, numEq);
}
resWell_.resize(1);
// the block size of resWell_ is also run-time determined now
resWell_[0].resize(numWellEq);
// resize temporary class variables
Bx_.resize(duneB_.N());
for (unsigned i = 0; i < duneB_.N(); ++i) {
Bx_[i].resize(numWellEq);
}
invDrw_.resize(duneD_.N());
for (unsigned i = 0; i < duneD_.N(); ++i) {
invDrw_[i].resize(numWellEq);
}
}
template<class Scalar, int numEq>
void StandardWellEquations<Scalar,numEq>::clear()
{
duneB_ = 0.0;
duneC_ = 0.0;
duneD_ = 0.0;
resWell_ = 0.0;
}
template<class Scalar, int numEq>
void StandardWellEquations<Scalar,numEq>::apply(const BVector& x, BVector& Ax) const
{
assert(Bx_.size() == duneB_.N());
assert(invDrw_.size() == invDuneD_.N());
// Bx_ = duneB_ * x
parallelB_.mv(x, Bx_);
// invDBx = invDuneD_ * Bx_
// TODO: with this, we modified the content of the invDrw_.
// Is it necessary to do this to save some memory?
auto& invDBx = invDrw_;
invDuneD_.mv(Bx_, invDBx);
// Ax = Ax - duneC_^T * invDBx
duneC_.mmtv(invDBx, Ax);
}
template<class Scalar, int numEq>
void StandardWellEquations<Scalar,numEq>::apply(BVector& r) const
{
assert(invDrw_.size() == invDuneD_.N());
// invDrw_ = invDuneD_ * resWell_
invDuneD_.mv(resWell_, invDrw_);
// r = r - duneC_^T * invDrw_
duneC_.mmtv(invDrw_, r);
}
template<class Scalar, int numEq>
void StandardWellEquations<Scalar,numEq>::invert()
{
try {
invDuneD_ = duneD_; // Not strictly need if not cpr with well contributions is used
detail::invertMatrix(invDuneD_[0][0]);
} catch (NumericalProblem&) {
// for singular matrices, use identity as the inverse
invDuneD_[0][0] = 0.0;
for (size_t i = 0; i < invDuneD_[0][0].rows(); ++i) {
invDuneD_[0][0][i][i] = 1.0;
}
}
}
template<class Scalar, int numEq>
void StandardWellEquations<Scalar,numEq>::solve(BVectorWell& dx_well) const
{
invDuneD_.mv(resWell_, dx_well);
}
template<class Scalar, int numEq>
void StandardWellEquations<Scalar,numEq>::
recoverSolutionWell(const BVector& x, BVectorWell& xw) const
{
BVectorWell resWell = resWell_;
// resWell = resWell - B * x
parallelB_.mmv(x, resWell);
// xw = D^-1 * resWell
invDuneD_.mv(resWell, xw);
}
#define INSTANCE(N) \
template class StandardWellEquations<double,N>;
INSTANCE(1)
INSTANCE(2)
INSTANCE(3)
INSTANCE(4)
INSTANCE(5)
INSTANCE(6)
}