mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-13 09:51:57 -06:00
40640e9da6
this recovers the well solution from a solution vector. use the new method in the well implementation.
192 lines
5.3 KiB
C++
192 lines
5.3 KiB
C++
/*
|
|
Copyright 2017 SINTEF Digital, Mathematics and Cybernetics.
|
|
Copyright 2017 Statoil ASA.
|
|
Copyright 2016 - 2017 IRIS AS.
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <config.h>
|
|
#include <opm/simulators/wells/StandardWellEquations.hpp>
|
|
|
|
#include <opm/common/Exceptions.hpp>
|
|
|
|
#include <opm/simulators/linalg/matrixblock.hh>
|
|
|
|
namespace Opm
|
|
{
|
|
|
|
template<class Scalar, int numEq>
|
|
StandardWellEquations<Scalar,numEq>::
|
|
StandardWellEquations(const ParallelWellInfo& parallel_well_info)
|
|
: parallelB_(duneB_, parallel_well_info)
|
|
{
|
|
duneB_.setBuildMode(OffDiagMatWell::row_wise);
|
|
duneC_.setBuildMode(OffDiagMatWell::row_wise),
|
|
invDuneD_.setBuildMode(DiagMatWell::row_wise);
|
|
}
|
|
|
|
template<class Scalar, int numEq>
|
|
void StandardWellEquations<Scalar,numEq>::
|
|
init(const int num_cells,
|
|
const int numWellEq,
|
|
const int numPerfs,
|
|
const std::vector<int>& cells)
|
|
{
|
|
// setup sparsity pattern for the matrices
|
|
//[A C^T [x = [ res
|
|
// B D] x_well] res_well]
|
|
// set the size of the matrices
|
|
duneD_.setSize(1, 1, 1);
|
|
duneB_.setSize(1, num_cells, numPerfs);
|
|
duneC_.setSize(1, num_cells, numPerfs);
|
|
|
|
for (auto row = duneD_.createbegin(),
|
|
end = duneD_.createend(); row != end; ++row) {
|
|
// Add nonzeros for diagonal
|
|
row.insert(row.index());
|
|
}
|
|
// the block size is run-time determined now
|
|
duneD_[0][0].resize(numWellEq, numWellEq);
|
|
|
|
for (auto row = duneB_.createbegin(),
|
|
end = duneB_.createend(); row != end; ++row) {
|
|
for (int perf = 0 ; perf < numPerfs; ++perf) {
|
|
const int cell_idx = cells[perf];
|
|
row.insert(cell_idx);
|
|
}
|
|
}
|
|
|
|
for (int perf = 0 ; perf < numPerfs; ++perf) {
|
|
const int cell_idx = cells[perf];
|
|
// the block size is run-time determined now
|
|
duneB_[0][cell_idx].resize(numWellEq, numEq);
|
|
}
|
|
|
|
// make the C^T matrix
|
|
for (auto row = duneC_.createbegin(),
|
|
end = duneC_.createend(); row != end; ++row) {
|
|
for (int perf = 0; perf < numPerfs; ++perf) {
|
|
const int cell_idx = cells[perf];
|
|
row.insert(cell_idx);
|
|
}
|
|
}
|
|
|
|
for (int perf = 0; perf < numPerfs; ++perf) {
|
|
const int cell_idx = cells[perf];
|
|
duneC_[0][cell_idx].resize(numWellEq, numEq);
|
|
}
|
|
|
|
resWell_.resize(1);
|
|
// the block size of resWell_ is also run-time determined now
|
|
resWell_[0].resize(numWellEq);
|
|
|
|
// resize temporary class variables
|
|
Bx_.resize(duneB_.N());
|
|
for (unsigned i = 0; i < duneB_.N(); ++i) {
|
|
Bx_[i].resize(numWellEq);
|
|
}
|
|
|
|
invDrw_.resize(duneD_.N());
|
|
for (unsigned i = 0; i < duneD_.N(); ++i) {
|
|
invDrw_[i].resize(numWellEq);
|
|
}
|
|
}
|
|
|
|
template<class Scalar, int numEq>
|
|
void StandardWellEquations<Scalar,numEq>::clear()
|
|
{
|
|
duneB_ = 0.0;
|
|
duneC_ = 0.0;
|
|
duneD_ = 0.0;
|
|
resWell_ = 0.0;
|
|
}
|
|
|
|
template<class Scalar, int numEq>
|
|
void StandardWellEquations<Scalar,numEq>::apply(const BVector& x, BVector& Ax) const
|
|
{
|
|
assert(Bx_.size() == duneB_.N());
|
|
assert(invDrw_.size() == invDuneD_.N());
|
|
|
|
// Bx_ = duneB_ * x
|
|
parallelB_.mv(x, Bx_);
|
|
|
|
// invDBx = invDuneD_ * Bx_
|
|
// TODO: with this, we modified the content of the invDrw_.
|
|
// Is it necessary to do this to save some memory?
|
|
auto& invDBx = invDrw_;
|
|
invDuneD_.mv(Bx_, invDBx);
|
|
|
|
// Ax = Ax - duneC_^T * invDBx
|
|
duneC_.mmtv(invDBx, Ax);
|
|
}
|
|
|
|
template<class Scalar, int numEq>
|
|
void StandardWellEquations<Scalar,numEq>::apply(BVector& r) const
|
|
{
|
|
assert(invDrw_.size() == invDuneD_.N());
|
|
|
|
// invDrw_ = invDuneD_ * resWell_
|
|
invDuneD_.mv(resWell_, invDrw_);
|
|
// r = r - duneC_^T * invDrw_
|
|
duneC_.mmtv(invDrw_, r);
|
|
}
|
|
|
|
template<class Scalar, int numEq>
|
|
void StandardWellEquations<Scalar,numEq>::invert()
|
|
{
|
|
try {
|
|
invDuneD_ = duneD_; // Not strictly need if not cpr with well contributions is used
|
|
detail::invertMatrix(invDuneD_[0][0]);
|
|
} catch (NumericalProblem&) {
|
|
// for singular matrices, use identity as the inverse
|
|
invDuneD_[0][0] = 0.0;
|
|
for (size_t i = 0; i < invDuneD_[0][0].rows(); ++i) {
|
|
invDuneD_[0][0][i][i] = 1.0;
|
|
}
|
|
}
|
|
}
|
|
|
|
template<class Scalar, int numEq>
|
|
void StandardWellEquations<Scalar,numEq>::solve(BVectorWell& dx_well) const
|
|
{
|
|
invDuneD_.mv(resWell_, dx_well);
|
|
}
|
|
|
|
|
|
template<class Scalar, int numEq>
|
|
void StandardWellEquations<Scalar,numEq>::
|
|
recoverSolutionWell(const BVector& x, BVectorWell& xw) const
|
|
{
|
|
BVectorWell resWell = resWell_;
|
|
// resWell = resWell - B * x
|
|
parallelB_.mmv(x, resWell);
|
|
// xw = D^-1 * resWell
|
|
invDuneD_.mv(resWell, xw);
|
|
}
|
|
|
|
#define INSTANCE(N) \
|
|
template class StandardWellEquations<double,N>;
|
|
|
|
INSTANCE(1)
|
|
INSTANCE(2)
|
|
INSTANCE(3)
|
|
INSTANCE(4)
|
|
INSTANCE(5)
|
|
INSTANCE(6)
|
|
|
|
}
|