mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-16 23:41:55 -06:00
549 lines
23 KiB
C++
549 lines
23 KiB
C++
/*
|
|
Copyright 2013 SINTEF ICT, Applied Mathematics.
|
|
Copyright 2014 IRIS AS
|
|
Copyright 2015 Andreas Lauser
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <algorithm>
|
|
|
|
#include <opm/parser/eclipse/EclipseState/Schedule/Events.hpp>
|
|
|
|
namespace Opm
|
|
{
|
|
|
|
template <class Implementation>
|
|
SimulatorBase<Implementation>::SimulatorBase(const parameter::ParameterGroup& param,
|
|
const Grid& grid,
|
|
DerivedGeology& geo,
|
|
BlackoilPropsAdInterface& props,
|
|
const RockCompressibility* rock_comp_props,
|
|
NewtonIterationBlackoilInterface& linsolver,
|
|
const double* gravity,
|
|
const bool has_disgas,
|
|
const bool has_vapoil,
|
|
std::shared_ptr<EclipseState> eclipse_state,
|
|
OutputWriter& output_writer,
|
|
const std::vector<double>& threshold_pressures_by_face)
|
|
: param_(param),
|
|
model_param_(param),
|
|
solver_param_(param),
|
|
grid_(grid),
|
|
props_(props),
|
|
rock_comp_props_(rock_comp_props),
|
|
gravity_(gravity),
|
|
geo_(geo),
|
|
solver_(linsolver),
|
|
has_disgas_(has_disgas),
|
|
has_vapoil_(has_vapoil),
|
|
terminal_output_(param.getDefault("output_terminal", true)),
|
|
eclipse_state_(eclipse_state),
|
|
output_writer_(output_writer),
|
|
rateConverter_(props_, std::vector<int>(AutoDiffGrid::numCells(grid_), 0)),
|
|
threshold_pressures_by_face_(threshold_pressures_by_face),
|
|
is_parallel_run_( false )
|
|
{
|
|
// Misc init.
|
|
const int num_cells = AutoDiffGrid::numCells(grid);
|
|
allcells_.resize(num_cells);
|
|
for (int cell = 0; cell < num_cells; ++cell) {
|
|
allcells_[cell] = cell;
|
|
}
|
|
#if HAVE_MPI
|
|
if ( solver_.parallelInformation().type() == typeid(ParallelISTLInformation) )
|
|
{
|
|
const ParallelISTLInformation& info =
|
|
boost::any_cast<const ParallelISTLInformation&>(solver_.parallelInformation());
|
|
// Only rank 0 does print to std::cout
|
|
terminal_output_ = terminal_output_ && ( info.communicator().rank() == 0 );
|
|
is_parallel_run_ = ( info.communicator().size() > 1 );
|
|
}
|
|
#endif
|
|
}
|
|
|
|
template <class Implementation>
|
|
SimulatorReport SimulatorBase<Implementation>::run(SimulatorTimer& timer,
|
|
ReservoirState& state)
|
|
{
|
|
WellState prev_well_state;
|
|
|
|
|
|
if (output_writer_.isRestart()) {
|
|
// This is a restart, populate WellState and ReservoirState state objects from restart file
|
|
output_writer_.initFromRestartFile(props_.phaseUsage(), props_.permeability(), grid_, state, prev_well_state);
|
|
}
|
|
|
|
// Create timers and file for writing timing info.
|
|
Opm::time::StopWatch solver_timer;
|
|
double stime = 0.0;
|
|
Opm::time::StopWatch step_timer;
|
|
Opm::time::StopWatch total_timer;
|
|
total_timer.start();
|
|
std::string tstep_filename = output_writer_.outputDirectory() + "/step_timing.txt";
|
|
std::ofstream tstep_os(tstep_filename.c_str());
|
|
|
|
const auto& schedule = eclipse_state_->getSchedule();
|
|
const auto& events = schedule->getEvents();
|
|
|
|
// adaptive time stepping
|
|
std::unique_ptr< AdaptiveTimeStepping > adaptiveTimeStepping;
|
|
if( param_.getDefault("timestep.adaptive", true ) )
|
|
{
|
|
adaptiveTimeStepping.reset( new AdaptiveTimeStepping( param_, terminal_output_ ) );
|
|
}
|
|
|
|
// init output writer
|
|
output_writer_.writeInit( timer );
|
|
|
|
std::string restorefilename = param_.getDefault("restorefile", std::string("") );
|
|
if( ! restorefilename.empty() )
|
|
{
|
|
// -1 means that we'll take the last report step that was written
|
|
const int desiredRestoreStep = param_.getDefault("restorestep", int(-1) );
|
|
output_writer_.restore( timer, state, prev_well_state, restorefilename, desiredRestoreStep );
|
|
}
|
|
|
|
unsigned int totalNonlinearIterations = 0;
|
|
unsigned int totalLinearIterations = 0;
|
|
|
|
// Main simulation loop.
|
|
while (!timer.done()) {
|
|
// Report timestep.
|
|
step_timer.start();
|
|
if ( terminal_output_ )
|
|
{
|
|
timer.report(std::cout);
|
|
}
|
|
|
|
// Create wells and well state.
|
|
WellsManager wells_manager(eclipse_state_,
|
|
timer.currentStepNum(),
|
|
Opm::UgGridHelpers::numCells(grid_),
|
|
Opm::UgGridHelpers::globalCell(grid_),
|
|
Opm::UgGridHelpers::cartDims(grid_),
|
|
Opm::UgGridHelpers::dimensions(grid_),
|
|
Opm::UgGridHelpers::cell2Faces(grid_),
|
|
Opm::UgGridHelpers::beginFaceCentroids(grid_),
|
|
props_.permeability(),
|
|
is_parallel_run_);
|
|
const Wells* wells = wells_manager.c_wells();
|
|
WellState well_state;
|
|
well_state.init(wells, state, prev_well_state);
|
|
|
|
// give the polymer and surfactant simulators the chance to do their stuff
|
|
asImpl().handleAdditionalWellInflow(timer, wells_manager, well_state, wells);
|
|
|
|
// write simulation state at the report stage
|
|
output_writer_.writeTimeStep( timer, state, well_state );
|
|
|
|
|
|
// Max oil saturation (for VPPARS), hysteresis update.
|
|
props_.updateSatOilMax(state.saturation());
|
|
props_.updateSatHyst(state.saturation(), allcells_);
|
|
|
|
// Compute reservoir volumes for RESV controls.
|
|
asImpl().computeRESV(timer.currentStepNum(), wells, state, well_state);
|
|
|
|
// Run a multiple steps of the solver depending on the time step control.
|
|
solver_timer.start();
|
|
|
|
auto solver = asImpl().createSolver(wells);
|
|
|
|
// If sub stepping is enabled allow the solver to sub cycle
|
|
// in case the report steps are too large for the solver to converge
|
|
//
|
|
// \Note: The report steps are met in any case
|
|
// \Note: The sub stepping will require a copy of the state variables
|
|
if( adaptiveTimeStepping ) {
|
|
adaptiveTimeStepping->step( timer, *solver, state, well_state, output_writer_ );
|
|
}
|
|
else {
|
|
// solve for complete report step
|
|
solver->step(timer.currentStepLength(), state, well_state);
|
|
}
|
|
|
|
// update the derived geology (transmissibilities, pore volumes, etc) if the
|
|
// has geology changed for the next report step
|
|
const int nextTimeStepIdx = timer.currentStepNum() + 1;
|
|
if (nextTimeStepIdx < timer.numSteps()
|
|
&& events.hasEvent(ScheduleEvents::GEO_MODIFIER, nextTimeStepIdx)) {
|
|
// bring the contents of the keywords to the current state of the SCHEDULE
|
|
// section
|
|
//
|
|
// TODO (?): handle the parallel case (maybe this works out of the box)
|
|
DeckConstPtr miniDeck = schedule->getModifierDeck(nextTimeStepIdx);
|
|
eclipse_state_->applyModifierDeck(miniDeck);
|
|
geo_.update(grid_, props_, eclipse_state_, gravity_);
|
|
}
|
|
|
|
// take time that was used to solve system for this reportStep
|
|
solver_timer.stop();
|
|
|
|
// accumulate the number of nonlinear and linear Iterations
|
|
totalNonlinearIterations += solver->nonlinearIterations();
|
|
totalLinearIterations += solver->linearIterations();
|
|
|
|
// Report timing.
|
|
const double st = solver_timer.secsSinceStart();
|
|
|
|
// accumulate total time
|
|
stime += st;
|
|
|
|
if ( terminal_output_ )
|
|
{
|
|
std::cout << "Fully implicit solver took: " << st << " seconds. Total solver time taken: " << stime << " seconds." << std::endl;
|
|
}
|
|
|
|
if ( output_writer_.output() ) {
|
|
SimulatorReport step_report;
|
|
step_report.pressure_time = st;
|
|
step_report.total_time = step_timer.secsSinceStart();
|
|
step_report.reportParam(tstep_os);
|
|
}
|
|
|
|
// Increment timer, remember well state.
|
|
++timer;
|
|
prev_well_state = well_state;
|
|
}
|
|
|
|
// Write final simulation state.
|
|
output_writer_.writeTimeStep( timer, state, prev_well_state );
|
|
|
|
// Stop timer and create timing report
|
|
total_timer.stop();
|
|
SimulatorReport report;
|
|
report.pressure_time = stime;
|
|
report.transport_time = 0.0;
|
|
report.total_time = total_timer.secsSinceStart();
|
|
report.total_newton_iterations = totalNonlinearIterations;
|
|
report.total_linear_iterations = totalLinearIterations;
|
|
return report;
|
|
}
|
|
|
|
namespace SimFIBODetails {
|
|
typedef std::unordered_map<std::string, WellConstPtr> WellMap;
|
|
|
|
inline WellMap
|
|
mapWells(const std::vector<WellConstPtr>& wells)
|
|
{
|
|
WellMap wmap;
|
|
|
|
for (std::vector<WellConstPtr>::const_iterator
|
|
w = wells.begin(), e = wells.end();
|
|
w != e; ++w)
|
|
{
|
|
wmap.insert(std::make_pair((*w)->name(), *w));
|
|
}
|
|
|
|
return wmap;
|
|
}
|
|
|
|
inline int
|
|
resv_control(const WellControls* ctrl)
|
|
{
|
|
int i, n = well_controls_get_num(ctrl);
|
|
|
|
bool match = false;
|
|
for (i = 0; (! match) && (i < n); ++i) {
|
|
match = well_controls_iget_type(ctrl, i) == RESERVOIR_RATE;
|
|
}
|
|
|
|
if (! match) { i = 0; }
|
|
|
|
return i - 1; // -1 if no match, undo final "++" otherwise
|
|
}
|
|
|
|
inline bool
|
|
is_resv(const Wells& wells,
|
|
const int w)
|
|
{
|
|
return (0 <= resv_control(wells.ctrls[w]));
|
|
}
|
|
|
|
inline bool
|
|
is_resv(const WellMap& wmap,
|
|
const std::string& name,
|
|
const std::size_t step)
|
|
{
|
|
bool match = false;
|
|
|
|
WellMap::const_iterator i = wmap.find(name);
|
|
|
|
if (i != wmap.end()) {
|
|
WellConstPtr wp = i->second;
|
|
|
|
match = (wp->isProducer(step) &&
|
|
wp->getProductionProperties(step)
|
|
.hasProductionControl(WellProducer::RESV))
|
|
|| (wp->isInjector(step) &&
|
|
wp->getInjectionProperties(step)
|
|
.hasInjectionControl(WellInjector::RESV));
|
|
}
|
|
|
|
return match;
|
|
}
|
|
|
|
inline std::vector<int>
|
|
resvWells(const Wells* wells,
|
|
const std::size_t step,
|
|
const WellMap& wmap)
|
|
{
|
|
std::vector<int> resv_wells;
|
|
if( wells )
|
|
{
|
|
for (int w = 0, nw = wells->number_of_wells; w < nw; ++w) {
|
|
if (is_resv(*wells, w) ||
|
|
((wells->name[w] != 0) &&
|
|
is_resv(wmap, wells->name[w], step)))
|
|
{
|
|
resv_wells.push_back(w);
|
|
}
|
|
}
|
|
}
|
|
|
|
return resv_wells;
|
|
}
|
|
|
|
inline void
|
|
historyRates(const PhaseUsage& pu,
|
|
const WellProductionProperties& p,
|
|
std::vector<double>& rates)
|
|
{
|
|
assert (! p.predictionMode);
|
|
assert (rates.size() ==
|
|
std::vector<double>::size_type(pu.num_phases));
|
|
|
|
if (pu.phase_used[ BlackoilPhases::Aqua ]) {
|
|
const std::vector<double>::size_type
|
|
i = pu.phase_pos[ BlackoilPhases::Aqua ];
|
|
|
|
rates[i] = p.WaterRate;
|
|
}
|
|
|
|
if (pu.phase_used[ BlackoilPhases::Liquid ]) {
|
|
const std::vector<double>::size_type
|
|
i = pu.phase_pos[ BlackoilPhases::Liquid ];
|
|
|
|
rates[i] = p.OilRate;
|
|
}
|
|
|
|
if (pu.phase_used[ BlackoilPhases::Vapour ]) {
|
|
const std::vector<double>::size_type
|
|
i = pu.phase_pos[ BlackoilPhases::Vapour ];
|
|
|
|
rates[i] = p.GasRate;
|
|
}
|
|
}
|
|
} // namespace SimFIBODetails
|
|
|
|
template <class Implementation>
|
|
void SimulatorBase<Implementation>::handleAdditionalWellInflow(SimulatorTimer& /* timer */,
|
|
WellsManager& /* wells_manager */,
|
|
WellState& /* well_state */,
|
|
const Wells* /* wells */)
|
|
{ }
|
|
|
|
template <class Implementation>
|
|
auto SimulatorBase<Implementation>::createSolver(const Wells* wells)
|
|
-> std::unique_ptr<Solver>
|
|
{
|
|
auto model = std::unique_ptr<Model>(new Model(model_param_,
|
|
grid_,
|
|
props_,
|
|
geo_,
|
|
rock_comp_props_,
|
|
wells,
|
|
solver_,
|
|
eclipse_state_,
|
|
has_disgas_,
|
|
has_vapoil_,
|
|
terminal_output_));
|
|
|
|
if (!threshold_pressures_by_face_.empty()) {
|
|
model->setThresholdPressures(threshold_pressures_by_face_);
|
|
}
|
|
|
|
return std::unique_ptr<Solver>(new Solver(solver_param_, std::move(model)));
|
|
}
|
|
|
|
template <class Implementation>
|
|
void SimulatorBase<Implementation>::computeRESV(const std::size_t step,
|
|
const Wells* wells,
|
|
const BlackoilState& x,
|
|
WellState& xw)
|
|
{
|
|
typedef SimFIBODetails::WellMap WellMap;
|
|
|
|
const std::vector<WellConstPtr>& w_ecl = eclipse_state_->getSchedule()->getWells(step);
|
|
const WellMap& wmap = SimFIBODetails::mapWells(w_ecl);
|
|
|
|
const std::vector<int>& resv_wells = SimFIBODetails::resvWells(wells, step, wmap);
|
|
|
|
const std::size_t number_resv_wells = resv_wells.size();
|
|
std::size_t global_number_resv_wells = number_resv_wells;
|
|
#if HAVE_MPI
|
|
if ( solver_.parallelInformation().type() == typeid(ParallelISTLInformation) )
|
|
{
|
|
const auto& info =
|
|
boost::any_cast<const ParallelISTLInformation&>(solver_.parallelInformation());
|
|
global_number_resv_wells = info.communicator().sum(global_number_resv_wells);
|
|
if ( global_number_resv_wells )
|
|
{
|
|
// At least one process has resv wells. Therefore rate converter needs
|
|
// to calculate averages over regions that might cross process
|
|
// borders. This needs to be done by all processes and therefore
|
|
// outside of the next if statement.
|
|
rateConverter_.defineState(x, boost::any_cast<const ParallelISTLInformation&>(solver_.parallelInformation()));
|
|
}
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
if ( global_number_resv_wells )
|
|
{
|
|
rateConverter_.defineState(x);
|
|
}
|
|
}
|
|
|
|
if (! resv_wells.empty()) {
|
|
const PhaseUsage& pu = props_.phaseUsage();
|
|
const std::vector<double>::size_type np = props_.numPhases();
|
|
|
|
std::vector<double> distr (np);
|
|
std::vector<double> hrates(np);
|
|
std::vector<double> prates(np);
|
|
|
|
for (std::vector<int>::const_iterator
|
|
rp = resv_wells.begin(), e = resv_wells.end();
|
|
rp != e; ++rp)
|
|
{
|
|
WellControls* ctrl = wells->ctrls[*rp];
|
|
const bool is_producer = wells->type[*rp] == PRODUCER;
|
|
|
|
// RESV control mode, all wells
|
|
{
|
|
const int rctrl = SimFIBODetails::resv_control(ctrl);
|
|
|
|
if (0 <= rctrl) {
|
|
const std::vector<double>::size_type off = (*rp) * np;
|
|
|
|
if (is_producer) {
|
|
// Convert to positive rates to avoid issues
|
|
// in coefficient calculations.
|
|
std::transform(xw.wellRates().begin() + (off + 0*np),
|
|
xw.wellRates().begin() + (off + 1*np),
|
|
prates.begin(), std::negate<double>());
|
|
} else {
|
|
std::copy(xw.wellRates().begin() + (off + 0*np),
|
|
xw.wellRates().begin() + (off + 1*np),
|
|
prates.begin());
|
|
}
|
|
|
|
const int fipreg = 0; // Hack. Ignore FIP regions.
|
|
rateConverter_.calcCoeff(prates, fipreg, distr);
|
|
|
|
well_controls_iset_distr(ctrl, rctrl, & distr[0]);
|
|
}
|
|
}
|
|
|
|
// RESV control, WCONHIST wells. A bit of duplicate
|
|
// work, regrettably.
|
|
if (is_producer && wells->name[*rp] != 0) {
|
|
WellMap::const_iterator i = wmap.find(wells->name[*rp]);
|
|
|
|
if (i != wmap.end()) {
|
|
WellConstPtr wp = i->second;
|
|
|
|
const WellProductionProperties& p =
|
|
wp->getProductionProperties(step);
|
|
|
|
if (! p.predictionMode) {
|
|
// History matching (WCONHIST/RESV)
|
|
SimFIBODetails::historyRates(pu, p, hrates);
|
|
|
|
const int fipreg = 0; // Hack. Ignore FIP regions.
|
|
rateConverter_.calcCoeff(hrates, fipreg, distr);
|
|
|
|
// WCONHIST/RESV target is sum of all
|
|
// observed phase rates translated to
|
|
// reservoir conditions. Recall sign
|
|
// convention: Negative for producers.
|
|
const double target =
|
|
- std::inner_product(distr.begin(), distr.end(),
|
|
hrates.begin(), 0.0);
|
|
|
|
well_controls_clear(ctrl);
|
|
well_controls_assert_number_of_phases(ctrl, int(np));
|
|
|
|
static const double invalid_alq = -std::numeric_limits<double>::max();
|
|
static const int invalid_vfp = -std::numeric_limits<int>::max();
|
|
|
|
const int ok_resv =
|
|
well_controls_add_new(RESERVOIR_RATE, target,
|
|
invalid_alq, invalid_vfp,
|
|
& distr[0], ctrl);
|
|
|
|
// For WCONHIST the BHP limit is set to 1 atm.
|
|
// or a value specified using WELTARG
|
|
double bhp_limit = (p.BHPLimit > 0) ? p.BHPLimit : unit::convert::from(1.0, unit::atm);
|
|
const int ok_bhp =
|
|
well_controls_add_new(BHP, bhp_limit,
|
|
invalid_alq, invalid_vfp,
|
|
NULL, ctrl);
|
|
|
|
if (ok_resv != 0 && ok_bhp != 0) {
|
|
xw.currentControls()[*rp] = 0;
|
|
well_controls_set_current(ctrl, 0);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if( wells )
|
|
{
|
|
for (int w = 0, nw = wells->number_of_wells; w < nw; ++w) {
|
|
WellControls* ctrl = wells->ctrls[w];
|
|
const bool is_producer = wells->type[w] == PRODUCER;
|
|
if (!is_producer && wells->name[w] != 0) {
|
|
WellMap::const_iterator i = wmap.find(wells->name[w]);
|
|
if (i != wmap.end()) {
|
|
WellConstPtr wp = i->second;
|
|
const WellInjectionProperties& injector = wp->getInjectionProperties(step);
|
|
if (!injector.predictionMode) {
|
|
//History matching WCONINJEH
|
|
static const double invalid_alq = -std::numeric_limits<double>::max();
|
|
static const int invalid_vfp = -std::numeric_limits<int>::max();
|
|
// For WCONINJEH the BHP limit is set to a large number
|
|
// or a value specified using WELTARG
|
|
double bhp_limit = (injector.BHPLimit > 0) ? injector.BHPLimit : std::numeric_limits<double>::max();
|
|
const int ok_bhp =
|
|
well_controls_add_new(BHP, bhp_limit,
|
|
invalid_alq, invalid_vfp,
|
|
NULL, ctrl);
|
|
if (!ok_bhp) {
|
|
OPM_THROW(std::runtime_error, "Failed to add well control.");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} // namespace Opm
|