opm-simulators/opm/autodiff/SimulatorFullyImplicitBlackoil_impl.hpp
2014-10-20 14:47:33 +02:00

622 lines
24 KiB
C++

/*
Copyright 2013 SINTEF ICT, Applied Mathematics.
Copyright 2014 IRIS AS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <opm/autodiff/SimulatorFullyImplicitBlackoilOutput.hpp>
#include <opm/autodiff/SimulatorFullyImplicitBlackoil.hpp>
#include <opm/core/utility/parameters/ParameterGroup.hpp>
#include <opm/core/utility/ErrorMacros.hpp>
#include <opm/autodiff/GeoProps.hpp>
#include <opm/autodiff/FullyImplicitBlackoilSolver.hpp>
#include <opm/autodiff/BlackoilPropsAdInterface.hpp>
#include <opm/autodiff/WellStateFullyImplicitBlackoil.hpp>
#include <opm/autodiff/RateConverter.hpp>
#include <opm/core/grid.h>
#include <opm/core/wells.h>
#include <opm/core/well_controls.h>
#include <opm/core/pressure/flow_bc.h>
#include <opm/core/io/eclipse/EclipseWriter.hpp>
#include <opm/core/simulator/SimulatorReport.hpp>
#include <opm/core/simulator/SimulatorTimer.hpp>
#include <opm/core/simulator/AdaptiveSimulatorTimer.hpp>
#include <opm/core/utility/StopWatch.hpp>
#include <opm/core/io/vtk/writeVtkData.hpp>
#include <opm/core/utility/miscUtilities.hpp>
#include <opm/core/utility/miscUtilitiesBlackoil.hpp>
#include <opm/core/props/rock/RockCompressibility.hpp>
#include <opm/core/simulator/BlackoilState.hpp>
#include <opm/core/simulator/AdaptiveTimeStepping.hpp>
#include <opm/core/transport/reorder/TransportSolverCompressibleTwophaseReorder.hpp>
#include <opm/parser/eclipse/EclipseState/Schedule/Schedule.hpp>
#include <opm/parser/eclipse/EclipseState/Schedule/ScheduleEnums.hpp>
#include <opm/parser/eclipse/EclipseState/Schedule/Well.hpp>
#include <opm/parser/eclipse/EclipseState/Schedule/WellProductionProperties.hpp>
#include <boost/filesystem.hpp>
#include <boost/lexical_cast.hpp>
#include <algorithm>
#include <cstddef>
#include <cassert>
#include <functional>
#include <memory>
#include <numeric>
#include <fstream>
#include <iostream>
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
namespace Opm
{
template<class T>
class SimulatorFullyImplicitBlackoil<T>::Impl
{
public:
Impl(const parameter::ParameterGroup& param,
const Grid& grid,
const DerivedGeology& geo,
BlackoilPropsAdInterface& props,
const RockCompressibility* rock_comp_props,
NewtonIterationBlackoilInterface& linsolver,
const double* gravity,
bool has_disgas,
bool has_vapoil,
std::shared_ptr<EclipseState> eclipse_state,
EclipseWriter& output_writer,
const std::vector<double>& threshold_pressures_by_face);
SimulatorReport run(SimulatorTimer& timer,
BlackoilState& state);
private:
// Data.
typedef RateConverter::
SurfaceToReservoirVoidage< BlackoilPropsAdInterface,
std::vector<int> > RateConverterType;
const parameter::ParameterGroup param_;
// Parameters for output.
bool output_;
bool output_vtk_;
std::string output_dir_;
int output_interval_;
// Observed objects.
const Grid& grid_;
BlackoilPropsAdInterface& props_;
const RockCompressibility* rock_comp_props_;
const double* gravity_;
// Solvers
const DerivedGeology& geo_;
NewtonIterationBlackoilInterface& solver_;
// Misc. data
std::vector<int> allcells_;
const bool has_disgas_;
const bool has_vapoil_;
// eclipse_state
std::shared_ptr<EclipseState> eclipse_state_;
// output_writer
EclipseWriter& output_writer_;
RateConverterType rateConverter_;
// Threshold pressures.
std::vector<double> threshold_pressures_by_face_;
void
computeRESV(const std::size_t step,
const Wells* wells,
const BlackoilState& x,
WellStateFullyImplicitBlackoil& xw);
};
template<class T>
SimulatorFullyImplicitBlackoil<T>::SimulatorFullyImplicitBlackoil(const parameter::ParameterGroup& param,
const Grid& grid,
const DerivedGeology& geo,
BlackoilPropsAdInterface& props,
const RockCompressibility* rock_comp_props,
NewtonIterationBlackoilInterface& linsolver,
const double* gravity,
const bool has_disgas,
const bool has_vapoil,
std::shared_ptr<EclipseState> eclipse_state,
EclipseWriter& output_writer,
const std::vector<double>& threshold_pressures_by_face)
{
pimpl_.reset(new Impl(param, grid, geo, props, rock_comp_props, linsolver, gravity, has_disgas, has_vapoil,
eclipse_state, output_writer, threshold_pressures_by_face));
}
template<class T>
SimulatorReport SimulatorFullyImplicitBlackoil<T>::run(SimulatorTimer& timer,
BlackoilState& state)
{
return pimpl_->run(timer, state);
}
static void outputWellStateMatlab(const Opm::WellStateFullyImplicitBlackoil& well_state,
const int step,
const std::string& output_dir)
{
Opm::DataMap dm;
dm["bhp"] = &well_state.bhp();
dm["wellrates"] = &well_state.wellRates();
// Write data (not grid) in Matlab format
for (Opm::DataMap::const_iterator it = dm.begin(); it != dm.end(); ++it) {
std::ostringstream fname;
fname << output_dir << "/" << it->first;
boost::filesystem::path fpath = fname.str();
try {
create_directories(fpath);
}
catch (...) {
OPM_THROW(std::runtime_error,"Creating directories failed: " << fpath);
}
fname << "/" << std::setw(3) << std::setfill('0') << step << ".txt";
std::ofstream file(fname.str().c_str());
if (!file) {
OPM_THROW(std::runtime_error,"Failed to open " << fname.str());
}
file.precision(15);
const std::vector<double>& d = *(it->second);
std::copy(d.begin(), d.end(), std::ostream_iterator<double>(file, "\n"));
}
}
#if 0
static void outputWaterCut(const Opm::Watercut& watercut,
const std::string& output_dir)
{
// Write water cut curve.
std::string fname = output_dir + "/watercut.txt";
std::ofstream os(fname.c_str());
if (!os) {
OPM_THROW(std::runtime_error, "Failed to open " << fname);
}
watercut.write(os);
}
static void outputWellReport(const Opm::WellReport& wellreport,
const std::string& output_dir)
{
// Write well report.
std::string fname = output_dir + "/wellreport.txt";
std::ofstream os(fname.c_str());
if (!os) {
OPM_THROW(std::runtime_error, "Failed to open " << fname);
}
wellreport.write(os);
}
#endif
// \TODO: Treat bcs.
template<class T>
SimulatorFullyImplicitBlackoil<T>::Impl::Impl(const parameter::ParameterGroup& param,
const Grid& grid,
const DerivedGeology& geo,
BlackoilPropsAdInterface& props,
const RockCompressibility* rock_comp_props,
NewtonIterationBlackoilInterface& linsolver,
const double* gravity,
const bool has_disgas,
const bool has_vapoil,
std::shared_ptr<EclipseState> eclipse_state,
EclipseWriter& output_writer,
const std::vector<double>& threshold_pressures_by_face)
: param_(param),
grid_(grid),
props_(props),
rock_comp_props_(rock_comp_props),
gravity_(gravity),
geo_(geo),
solver_(linsolver),
has_disgas_(has_disgas),
has_vapoil_(has_vapoil),
eclipse_state_(eclipse_state),
output_writer_(output_writer),
rateConverter_(props_, std::vector<int>(AutoDiffGrid::numCells(grid_), 0)),
threshold_pressures_by_face_(threshold_pressures_by_face)
{
// For output.
output_ = param.getDefault("output", true);
if (output_) {
output_vtk_ = param.getDefault("output_vtk", true);
output_dir_ = param.getDefault("output_dir", std::string("output"));
// Ensure that output dir exists
boost::filesystem::path fpath(output_dir_);
try {
create_directories(fpath);
}
catch (...) {
OPM_THROW(std::runtime_error, "Creating directories failed: " << fpath);
}
output_interval_ = param.getDefault("output_interval", 1);
}
// Misc init.
const int num_cells = AutoDiffGrid::numCells(grid);
allcells_.resize(num_cells);
for (int cell = 0; cell < num_cells; ++cell) {
allcells_[cell] = cell;
}
}
template<class T>
SimulatorReport SimulatorFullyImplicitBlackoil<T>::Impl::run(SimulatorTimer& timer,
BlackoilState& state)
{
WellStateFullyImplicitBlackoil prev_well_state;
// Create timers and file for writing timing info.
Opm::time::StopWatch solver_timer;
double stime = 0.0;
Opm::time::StopWatch step_timer;
Opm::time::StopWatch total_timer;
total_timer.start();
std::string tstep_filename = output_dir_ + "/step_timing.txt";
std::ofstream tstep_os(tstep_filename.c_str());
typename FullyImplicitBlackoilSolver<T>::SolverParameter solverParam( param_ );
// adaptive time stepping
std::unique_ptr< AdaptiveTimeStepping > adaptiveTimeStepping;
if( param_.getDefault("timestep.adaptive", bool(false) ) )
{
adaptiveTimeStepping.reset( new AdaptiveTimeStepping( param_ ) );
}
// Main simulation loop.
while (!timer.done()) {
// Report timestep.
step_timer.start();
timer.report(std::cout);
// Create wells and well state.
WellsManager wells_manager(eclipse_state_,
timer.currentStepNum(),
Opm::UgGridHelpers::numCells(grid_),
Opm::UgGridHelpers::globalCell(grid_),
Opm::UgGridHelpers::cartDims(grid_),
Opm::UgGridHelpers::dimensions(grid_),
Opm::UgGridHelpers::beginCellCentroids(grid_),
Opm::UgGridHelpers::cell2Faces(grid_),
Opm::UgGridHelpers::beginFaceCentroids(grid_),
props_.permeability());
const Wells* wells = wells_manager.c_wells();
WellStateFullyImplicitBlackoil well_state;
well_state.init(wells, state);
if (timer.currentStepNum() != 0) {
// Transfer previous well state to current.
well_state.partialCopy(prev_well_state, *wells, prev_well_state.numWells());
}
// Output state at start of time step.
if (output_ && (timer.currentStepNum() % output_interval_ == 0)) {
if (output_vtk_) {
outputStateVtk(grid_, state, timer.currentStepNum(), output_dir_);
}
outputStateMatlab(grid_, state, timer.currentStepNum(), output_dir_);
outputWellStateMatlab(well_state,timer.currentStepNum(), output_dir_);
}
if (output_) {
if (timer.currentStepNum() == 0) {
output_writer_.writeInit(timer);
}
output_writer_.writeTimeStep(timer, state, well_state.basicWellState());
}
// Max oil saturation (for VPPARS), hysteresis update.
props_.updateSatOilMax(state.saturation());
props_.updateSatHyst(state.saturation(), allcells_);
// Compute reservoir volumes for RESV controls.
computeRESV(timer.currentStepNum(), wells, state, well_state);
// Run a multiple steps of the solver depending on the time step control.
solver_timer.start();
FullyImplicitBlackoilSolver<T> solver(solverParam, grid_, props_, geo_, rock_comp_props_, *wells, solver_, has_disgas_, has_vapoil_);
if (!threshold_pressures_by_face_.empty()) {
solver.setThresholdPressures(threshold_pressures_by_face_);
}
// If sub stepping is enabled allow the solver to sub cycle
// in case the report steps are to large for the solver to converge
//
// \Note: The report steps are met in any case
// \Note: The sub stepping will require a copy of the state variables
if( adaptiveTimeStepping ) {
adaptiveTimeStepping->step( solver, state, well_state,
timer.simulationTimeElapsed(), timer.currentStepLength() );
}
else {
// solve for complete report step
solver.step(timer.currentStepLength(), state, well_state);
}
// take time that was used to solve system for this reportStep
solver_timer.stop();
// Report timing.
const double st = solver_timer.secsSinceStart();
std::cout << "Fully implicit solver took: " << st << " seconds." << std::endl;
stime += st;
if (output_) {
SimulatorReport step_report;
step_report.pressure_time = st;
step_report.total_time = step_timer.secsSinceStart();
step_report.reportParam(tstep_os);
}
// Increment timer, remember well state.
++timer;
prev_well_state = well_state;
}
// Write final simulation state.
if (output_) {
if (output_vtk_) {
outputStateVtk(grid_, state, timer.currentStepNum(), output_dir_);
}
outputStateMatlab(grid_, state, timer.currentStepNum(), output_dir_);
outputWellStateMatlab(prev_well_state, timer.currentStepNum(), output_dir_);
output_writer_.writeTimeStep(timer, state, prev_well_state.basicWellState());
}
// Stop timer and create timing report
total_timer.stop();
SimulatorReport report;
report.pressure_time = stime;
report.transport_time = 0.0;
report.total_time = total_timer.secsSinceStart();
return report;
}
namespace SimFIBODetails {
typedef std::unordered_map<std::string, WellConstPtr> WellMap;
inline WellMap
mapWells(const std::vector<WellConstPtr>& wells)
{
WellMap wmap;
for (std::vector<WellConstPtr>::const_iterator
w = wells.begin(), e = wells.end();
w != e; ++w)
{
wmap.insert(std::make_pair((*w)->name(), *w));
}
return wmap;
}
inline int
resv_control(const WellControls* ctrl)
{
int i, n = well_controls_get_num(ctrl);
bool match = false;
for (i = 0; (! match) && (i < n); ++i) {
match = well_controls_iget_type(ctrl, i) == RESERVOIR_RATE;
}
if (! match) { i = 0; }
return i - 1; // -1 if no match, undo final "++" otherwise
}
inline bool
is_resv_prod(const Wells& wells,
const int w)
{
return ((wells.type[w] == PRODUCER) &&
(0 <= resv_control(wells.ctrls[w])));
}
inline bool
is_resv_prod(const WellMap& wmap,
const std::string& name,
const std::size_t step)
{
bool match = false;
WellMap::const_iterator i = wmap.find(name);
if (i != wmap.end()) {
WellConstPtr wp = i->second;
match = (wp->isProducer(step) &&
wp->getProductionProperties(step)
.hasProductionControl(WellProducer::RESV));
}
return match;
}
inline std::vector<int>
resvProducers(const Wells& wells,
const std::size_t step,
const WellMap& wmap)
{
std::vector<int> resv_prod;
for (int w = 0, nw = wells.number_of_wells; w < nw; ++w) {
if (is_resv_prod(wells, w) ||
((wells.name[w] != 0) &&
is_resv_prod(wmap, wells.name[w], step)))
{
resv_prod.push_back(w);
}
}
return resv_prod;
}
inline void
historyRates(const PhaseUsage& pu,
const WellProductionProperties& p,
std::vector<double>& rates)
{
assert (! p.predictionMode);
assert (rates.size() ==
std::vector<double>::size_type(pu.num_phases));
if (pu.phase_used[ BlackoilPhases::Aqua ]) {
const std::vector<double>::size_type
i = pu.phase_pos[ BlackoilPhases::Aqua ];
rates[i] = p.WaterRate;
}
if (pu.phase_used[ BlackoilPhases::Liquid ]) {
const std::vector<double>::size_type
i = pu.phase_pos[ BlackoilPhases::Liquid ];
rates[i] = p.OilRate;
}
if (pu.phase_used[ BlackoilPhases::Vapour ]) {
const std::vector<double>::size_type
i = pu.phase_pos[ BlackoilPhases::Vapour ];
rates[i] = p.GasRate;
}
}
} // namespace SimFIBODetails
template <class T>
void
SimulatorFullyImplicitBlackoil<T>::
Impl::computeRESV(const std::size_t step,
const Wells* wells,
const BlackoilState& x,
WellStateFullyImplicitBlackoil& xw)
{
typedef SimFIBODetails::WellMap WellMap;
const std::vector<WellConstPtr>& w_ecl = eclipse_state_->getSchedule()->getWells(step);
const WellMap& wmap = SimFIBODetails::mapWells(w_ecl);
const std::vector<int>& resv_prod =
SimFIBODetails::resvProducers(*wells, step, wmap);
if (! resv_prod.empty()) {
const PhaseUsage& pu = props_.phaseUsage();
const std::vector<double>::size_type np = props_.numPhases();
rateConverter_.defineState(x);
std::vector<double> distr (np);
std::vector<double> hrates(np);
std::vector<double> prates(np);
for (std::vector<int>::const_iterator
rp = resv_prod.begin(), e = resv_prod.end();
rp != e; ++rp)
{
WellControls* ctrl = wells->ctrls[*rp];
// RESV control mode, all wells
{
const int rctrl = SimFIBODetails::resv_control(ctrl);
if (0 <= rctrl) {
const std::vector<double>::size_type off = (*rp) * np;
// Convert to positive rates to avoid issues
// in coefficient calculations.
std::transform(xw.wellRates().begin() + (off + 0*np),
xw.wellRates().begin() + (off + 1*np),
prates.begin(), std::negate<double>());
const int fipreg = 0; // Hack. Ignore FIP regions.
rateConverter_.calcCoeff(prates, fipreg, distr);
well_controls_iset_distr(ctrl, rctrl, & distr[0]);
}
}
// RESV control, WCONHIST wells. A bit of duplicate
// work, regrettably.
if (wells->name[*rp] != 0) {
WellMap::const_iterator i = wmap.find(wells->name[*rp]);
if (i != wmap.end()) {
WellConstPtr wp = i->second;
const WellProductionProperties& p =
wp->getProductionProperties(step);
if (! p.predictionMode) {
// History matching (WCONHIST/RESV)
SimFIBODetails::historyRates(pu, p, hrates);
const int fipreg = 0; // Hack. Ignore FIP regions.
rateConverter_.calcCoeff(hrates, fipreg, distr);
// WCONHIST/RESV target is sum of all
// observed phase rates translated to
// reservoir conditions. Recall sign
// convention: Negative for producers.
const double target =
- std::inner_product(distr.begin(), distr.end(),
hrates.begin(), 0.0);
well_controls_clear(ctrl);
well_controls_assert_number_of_phases(ctrl, int(np));
const int ok =
well_controls_add_new(RESERVOIR_RATE, target,
& distr[0], ctrl);
if (ok != 0) {
xw.currentControls()[*rp] = 0;
well_controls_set_current(ctrl, 0);
}
}
}
}
}
}
}
} // namespace Opm