opm-simulators/opm/autodiff/GridHelpers.cpp

279 lines
7.4 KiB
C++

/*
Copyright 2014 Dr. Markus Blatt - HPC-Simulation-Software & Services.
Copyright 2014 Statoil AS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include "config.h"
#include <opm/autodiff/GridHelpers.hpp>
namespace Opm
{
namespace AutoDiffGrid
{
// Interface functions using Unstructured grid
/*
int numCells(const UnstructuredGrid& grid)
{
return grid.number_of_cells;
}
int numFaces(const UnstructuredGrid& grid)
{
return grid.number_of_faces;
}
int dimensions(const UnstructuredGrid& grid)
{
return grid.dimensions;
}
*/
Eigen::Array<int, Eigen::Dynamic, 2, Eigen::RowMajor>
faceCells(const UnstructuredGrid& grid)
{
typedef Eigen::Array<int, Eigen::Dynamic, 2, Eigen::RowMajor> TwoColInt;
return Eigen::Map<TwoColInt>(grid.face_cells, grid.number_of_faces, 2);
}
Eigen::Array<double, Eigen::Dynamic, 1>
cellCentroidsZ(const UnstructuredGrid& grid)
{
return Eigen::Map<Eigen::Array<double, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor> >
(grid.cell_centroids, grid.number_of_cells, grid.dimensions).rightCols<1>();
}
const double*
cellCentroid(const UnstructuredGrid& grid, int cell_index)
{
return grid.cell_centroids+(cell_index*grid.dimensions);
}
const double* faceCentroid(const UnstructuredGrid& grid, int face_index)
{
return grid.face_centroids+(face_index*grid.dimensions);
}
/*
SparseTableView cell2Faces(const UnstructuredGrid& grid)
{
return SparseTableView(grid.cell_faces, grid.cell_facepos, numCells(grid));
}
*/
double cellVolume(const UnstructuredGrid& grid, int cell_index)
{
return grid.cell_volumes[cell_index];
}
const double* beginCellVolumes(const UnstructuredGrid& grid)
{
return grid.cell_volumes;
}
const double* endCellVolumes(const UnstructuredGrid& grid)
{
return grid.cell_volumes+numCells(grid);
}
void extractInternalFaces(const UnstructuredGrid& grid,
Eigen::Array<int, Eigen::Dynamic, 1>& internal_faces,
Eigen::Array<int, Eigen::Dynamic, 2, Eigen::RowMajor>& nbi)
{
typedef Eigen::Array<bool, Eigen::Dynamic, 1> OneColBool;
typedef Eigen::Array<int, Eigen::Dynamic, 2, Eigen::RowMajor> TwoColInt;
typedef Eigen::Array<bool, Eigen::Dynamic, 2, Eigen::RowMajor> TwoColBool;
TwoColInt nb = faceCells(grid);
// std::cout << "nb = \n" << nb << std::endl;
// Extracts the internal faces of the grid.
// These are stored in internal_faces.
TwoColBool nbib = nb >= 0;
OneColBool ifaces = nbib.rowwise().all();
const int num_internal = ifaces.cast<int>().sum();
// std::cout << num_internal << " internal faces." << std::endl;
nbi.resize(num_internal, 2);
internal_faces.resize(num_internal);
int fi = 0;
int nf = numFaces(grid);
for (int f = 0; f < nf; ++f) {
if (ifaces[f]) {
internal_faces[fi] = f;
nbi.row(fi) = nb.row(f);
++fi;
}
}
}
} // end namespace AutoDiffHelpers
#ifdef HAVE_DUNE_CORNERPOINT
// Interface functions using CpGrid
namespace UgGridHelpers
{
int numCells(const Dune::CpGrid& grid)
{
return grid.numCells();
}
int numFaces(const Dune::CpGrid& grid)
{
return grid.numFaces();
}
int dimensions(const Dune::CpGrid&)
{
return Dune::CpGrid::dimension;
}
int numCellFaces(const Dune::CpGrid& grid)
{
return grid.numCellFaces();
}
const int* cartDims(const Dune::CpGrid& grid)
{
return &(grid.logicalCartesianSize()[0]);
}
const int* globalCell(const Dune::CpGrid& grid)
{
return &(grid.globalCell()[0]);
}
CellCentroidTraits<Dune::CpGrid>::IteratorType
beginCellCentroids(const Dune::CpGrid& grid)
{
return CellCentroidTraits<Dune::CpGrid>::IteratorType(grid, 0);
}
double cellCentroidCoordinate(const Dune::CpGrid& grid, int cell_index,
int coordinate)
{
return grid.cellCentroid(cell_index)[coordinate];
}
FaceCentroidTraits<Dune::CpGrid>::IteratorType
beginFaceCentroids(const Dune::CpGrid& grid)
{
return FaceCentroidTraits<Dune::CpGrid>::IteratorType(grid, 0);
}
FaceCentroidTraits<Dune::CpGrid>::ValueType
faceCentroid(const Dune::CpGrid& grid, int face_index)
{
return grid.faceCentroid(face_index);
}
Opm::AutoDiffGrid::Cell2FacesContainer cell2Faces(const Dune::CpGrid& grid)
{
return Opm::AutoDiffGrid::Cell2FacesContainer(&grid);
}
FaceCellTraits<Dune::CpGrid>::Type
faceCells(const Dune::CpGrid& grid)
{
return Opm::AutoDiffGrid::FaceCellsContainerProxy(&grid);
}
const double* faceNormal(const Dune::CpGrid& grid, int face_index)
{
return &(grid.faceNormal(face_index)[0]);
}
double faceArea(const Dune::CpGrid& grid, int face_index)
{
return grid.faceArea(face_index);
}
} // end namespace UgGridHelpers
namespace AutoDiffGrid
{
Eigen::Array<double, Eigen::Dynamic, 1>
cellCentroidsZ(const Dune::CpGrid& grid)
{
// Create an Eigen array of appropriate size
int rows=numCells(grid);
Eigen::Array<double, Eigen::Dynamic, 1> array(rows);
// Fill it with the z coordinate of the cell centroids.
for (int i=0; i<rows; ++i)
array[i]=cellCentroid(grid, i)[2];
return array;
}
const double* cellCentroid(const Dune::CpGrid& grid, int cell_index)
{
return &(grid.cellCentroid(cell_index)[0]);
}
const double* faceCentroid(const Dune::CpGrid& grid, int face_index)
{
return &(grid.faceCentroid(face_index)[0]);
}
double cellVolume(const Dune::CpGrid& grid, int cell_index)
{
return grid.cellVolume(cell_index);
}
void extractInternalFaces(const Dune::CpGrid& grid,
Eigen::Array<int, Eigen::Dynamic, 1>& internal_faces,
Eigen::Array<int, Eigen::Dynamic, 2, Eigen::RowMajor>& nbi)
{
typedef Eigen::Array<bool, Eigen::Dynamic, 1> OneColBool;
typedef Eigen::Array<int, Eigen::Dynamic, 2, Eigen::RowMajor> TwoColInt;
typedef Eigen::Array<bool, Eigen::Dynamic, 2, Eigen::RowMajor> TwoColBool;
ADFaceCellTraits<Dune::CpGrid>::Type nb = faceCells(grid);
// std::cout << "nb = \n" << nb << std::endl;
// Extracts the internal faces of the grid.
// These are stored in internal_faces.
int nf=numFaces(grid);
int num_internal=0;
for(int f=0; f<nf; ++f)
{
if(grid.faceCell(f, 0)<0 || grid.faceCell(f, 1)<0)
continue;
++num_internal;
}
// std::cout << num_internal << " internal faces." << std::endl;
nbi.resize(num_internal, 2);
internal_faces.resize(num_internal);
int fi = 0;
for (int f = 0; f < nf; ++f) {
if(grid.faceCell(f, 0)>=0 && grid.faceCell(f, 1)>=0) {
internal_faces[fi] = f;
nbi(fi,0) = grid.faceCell(f, 0);
nbi(fi,1) = grid.faceCell(f, 1);
++fi;
}
}
}
CellVolumeIterator beginCellVolumes(const Dune::CpGrid& grid)
{
return CellVolumeIterator(grid, 0);
}
CellVolumeIterator endCellVolumes(const Dune::CpGrid& grid)
{
return CellVolumeIterator(grid, numCells(grid));
}
#endif
}
}