opm-simulators/ebos/eclwellmanager.hh
Andreas Lauser 436c9f8791 rename the "grid manager" to "vanguard"
IMO the term "vanguard" expresses better what these classes are
supposed to do: level the ground for the cavalry. Normally this simply
means to create and distribute a grid object, but it can become quite
a bit more complicated, as exemplified by the vanguard classes of
ebos..
2018-02-08 16:26:58 +01:00

798 lines
31 KiB
C++

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/**
* \file
*
* \copydoc Ewoms::EclWellManager
*/
#ifndef EWOMS_ECL_WELL_MANAGER_HH
#define EWOMS_ECL_WELL_MANAGER_HH
#include "eclpeacemanwell.hh"
#include <ewoms/disc/common/fvbaseproperties.hh>
#include <opm/parser/eclipse/Deck/Deck.hpp>
#include <opm/parser/eclipse/EclipseState/EclipseState.hpp>
#include <opm/parser/eclipse/EclipseState/Schedule/Schedule.hpp>
#include <opm/parser/eclipse/EclipseState/Schedule/Events.hpp>
#include <opm/parser/eclipse/EclipseState/Schedule/CompletionSet.hpp>
#include <opm/parser/eclipse/EclipseState/Schedule/Well.hpp>
#include <opm/parser/eclipse/EclipseState/Schedule/TimeMap.hpp>
#include <opm/material/common/Exceptions.hpp>
#include <ewoms/common/propertysystem.hh>
#include <ewoms/parallel/threadedentityiterator.hh>
#include <dune/grid/common/gridenums.hh>
#include <map>
#include <string>
#include <vector>
namespace Ewoms {
namespace Properties {
NEW_PROP_TAG(Grid);
}
/*!
* \ingroup EclBlackOilSimulator
*
* \brief A class which handles well controls as specified by an
* Eclipse deck
*/
template <class TypeTag>
class EclWellManager
{
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
typedef typename GET_PROP_TYPE(TypeTag, Grid) Grid;
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, Evaluation) Evaluation;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
typedef typename GET_PROP_TYPE(TypeTag, RateVector) RateVector;
enum { numEq = GET_PROP_VALUE(TypeTag, NumEq) };
enum { numPhases = FluidSystem::numPhases };
typedef typename GridView::template Codim<0>::Entity Element;
typedef Ewoms::EclPeacemanWell<TypeTag> Well;
typedef std::map<int, std::pair<const Opm::Completion*, std::shared_ptr<Well> > > WellCompletionsMap;
typedef Dune::FieldVector<Evaluation, numEq> EvalEqVector;
public:
EclWellManager(Simulator& simulator)
: simulator_(simulator)
{ }
/*!
* \brief This sets up the basic properties of all wells.
*
* I.e., well positions, names etc...
*/
void init(const Opm::EclipseState& eclState,
const Opm::Schedule& deckSchedule)
{
// create the wells which intersect with the current process' grid
for (size_t deckWellIdx = 0; deckWellIdx < deckSchedule.numWells(); ++deckWellIdx)
{
const Opm::Well* deckWell = deckSchedule.getWells()[deckWellIdx];
const std::string& wellName = deckWell->name();
// set the name of the well but not much else. (i.e., if it is not completed,
// the well primarily serves as a placeholder.) The big rest of the well is
// specified by the updateWellCompletions_() method
auto well = std::make_shared<Well>(simulator_);
well->setName(wellName);
well->setWellStatus(Well::Shut);
wells_.push_back(well);
wellNameToIndex_[well->name()] = wells_.size() - 1;
}
}
/*!
* \brief This should be called the problem before each simulation
* episode to adapt the well controls.
*/
void beginEpisode(const Opm::EclipseState& eclState, const Opm::Schedule& deckSchedule, bool wasRestarted=false)
{
unsigned episodeIdx = simulator_.episodeIndex();
WellCompletionsMap wellCompMap;
computeWellCompletionsMap_(episodeIdx, wellCompMap);
if (wasRestarted || wellTopologyChanged_(eclState, deckSchedule, episodeIdx))
updateWellTopology_(episodeIdx, wellCompMap, gridDofIsPenetrated_);
// set those parameters of the wells which do not change the topology of the
// linearized system of equations
updateWellParameters_(episodeIdx, wellCompMap);
const std::vector<const Opm::Well*>& deckWells = deckSchedule.getWells(episodeIdx);
// set the injection data for the respective wells.
for (size_t deckWellIdx = 0; deckWellIdx < deckWells.size(); ++deckWellIdx) {
const Opm::Well* deckWell = deckWells[deckWellIdx];
if (!hasWell(deckWell->name()))
continue;
auto well = this->well(deckWell->name());
Opm::WellCommon::StatusEnum deckWellStatus = deckWell->getStatus(episodeIdx);
switch (deckWellStatus) {
case Opm::WellCommon::AUTO:
// TODO: for now, auto means open...
case Opm::WellCommon::OPEN:
well->setWellStatus(Well::Open);
break;
case Opm::WellCommon::STOP:
well->setWellStatus(Well::Closed);
break;
case Opm::WellCommon::SHUT:
well->setWellStatus(Well::Shut);
break;
}
// make sure that the well is either an injector or a
// producer for the current episode. (it is not allowed to
// be neither or to be both...)
assert((deckWell->isInjector(episodeIdx)?1:0) +
(deckWell->isProducer(episodeIdx)?1:0) == 1);
if (deckWell->isInjector(episodeIdx)) {
well->setWellType(Well::Injector);
const Opm::WellInjectionProperties& injectProperties =
deckWell->getInjectionProperties(episodeIdx);
switch (injectProperties.injectorType) {
case Opm::WellInjector::WATER:
well->setInjectedPhaseIndex(FluidSystem::waterPhaseIdx);
break;
case Opm::WellInjector::GAS:
well->setInjectedPhaseIndex(FluidSystem::gasPhaseIdx);
break;
case Opm::WellInjector::OIL:
well->setInjectedPhaseIndex(FluidSystem::oilPhaseIdx);
break;
case Opm::WellInjector::MULTI:
throw std::runtime_error("Not implemented: Multi-phase injector wells");
}
switch (injectProperties.controlMode) {
case Opm::WellInjector::RATE:
well->setControlMode(Well::ControlMode::VolumetricSurfaceRate);
break;
case Opm::WellInjector::RESV:
well->setControlMode(Well::ControlMode::VolumetricReservoirRate);
break;
case Opm::WellInjector::BHP:
well->setControlMode(Well::ControlMode::BottomHolePressure);
break;
case Opm::WellInjector::THP:
well->setControlMode(Well::ControlMode::TubingHeadPressure);
break;
case Opm::WellInjector::GRUP:
throw std::runtime_error("Not implemented: Well groups");
case Opm::WellInjector::CMODE_UNDEFINED:
std::cout << "Warning: Control mode of injection well " << well->name()
<< " is undefined. Assuming well to be shut.\n";
well->setWellStatus(Well::WellStatus::Shut);
continue;
}
switch (injectProperties.injectorType) {
case Opm::WellInjector::WATER:
well->setVolumetricPhaseWeights(/*oil=*/0.0, /*gas=*/0.0, /*water=*/1.0);
break;
case Opm::WellInjector::OIL:
well->setVolumetricPhaseWeights(/*oil=*/1.0, /*gas=*/0.0, /*water=*/0.0);
break;
case Opm::WellInjector::GAS:
well->setVolumetricPhaseWeights(/*oil=*/0.0, /*gas=*/1.0, /*water=*/0.0);
break;
case Opm::WellInjector::MULTI:
throw std::runtime_error("Not implemented: Multi-phase injection wells");
}
well->setMaximumSurfaceRate(injectProperties.surfaceInjectionRate);
well->setMaximumReservoirRate(injectProperties.reservoirInjectionRate);
well->setTargetBottomHolePressure(injectProperties.BHPLimit);
// TODO
well->setTargetTubingHeadPressure(1e30);
//well->setTargetTubingHeadPressure(injectProperties.THPLimit);
}
if (deckWell->isProducer(episodeIdx)) {
well->setWellType(Well::Producer);
const Opm::WellProductionProperties& producerProperties =
deckWell->getProductionProperties(episodeIdx);
switch (producerProperties.controlMode) {
case Opm::WellProducer::ORAT:
well->setControlMode(Well::ControlMode::VolumetricSurfaceRate);
well->setVolumetricPhaseWeights(/*oil=*/1.0, /*gas=*/0.0, /*water=*/0.0);
well->setMaximumSurfaceRate(producerProperties.OilRate);
break;
case Opm::WellProducer::GRAT:
well->setControlMode(Well::ControlMode::VolumetricSurfaceRate);
well->setVolumetricPhaseWeights(/*oil=*/0.0, /*gas=*/1.0, /*water=*/0.0);
well->setMaximumSurfaceRate(producerProperties.GasRate);
break;
case Opm::WellProducer::WRAT:
well->setControlMode(Well::ControlMode::VolumetricSurfaceRate);
well->setVolumetricPhaseWeights(/*oil=*/0.0, /*gas=*/0.0, /*water=*/1.0);
well->setMaximumSurfaceRate(producerProperties.WaterRate);
break;
case Opm::WellProducer::LRAT:
well->setControlMode(Well::ControlMode::VolumetricSurfaceRate);
well->setVolumetricPhaseWeights(/*oil=*/1.0, /*gas=*/0.0, /*water=*/1.0);
well->setMaximumSurfaceRate(producerProperties.LiquidRate);
break;
case Opm::WellProducer::CRAT:
throw std::runtime_error("Not implemented: Linearly combined rates");
case Opm::WellProducer::RESV:
well->setControlMode(Well::ControlMode::VolumetricReservoirRate);
well->setVolumetricPhaseWeights(/*oil=*/1.0, /*gas=*/1.0, /*water=*/1.0);
well->setMaximumSurfaceRate(producerProperties.ResVRate);
break;
case Opm::WellProducer::BHP:
well->setControlMode(Well::ControlMode::BottomHolePressure);
break;
case Opm::WellProducer::THP:
well->setControlMode(Well::ControlMode::TubingHeadPressure);
break;
case Opm::WellProducer::GRUP:
throw std::runtime_error("Not implemented: Well groups");
case Opm::WellProducer::NONE:
// fall-through
case Opm::WellProducer::CMODE_UNDEFINED:
std::cout << "Warning: Control mode of production well " << well->name()
<< " is undefined. Assuming well to be shut.";
well->setWellStatus(Well::WellStatus::Shut);
continue;
}
well->setTargetBottomHolePressure(producerProperties.BHPLimit);
// TODO
well->setTargetTubingHeadPressure(-1e30);
//well->setTargetTubingHeadPressure(producerProperties.THPLimit);
}
}
}
/*!
* \brief Return the number of wells considered by the EclWellManager.
*/
unsigned numWells() const
{ return wells_.size(); }
/*!
* \brief Return if a given well name is known to the wells manager
*/
bool hasWell(const std::string& wellName) const
{
return wellNameToIndex_.find( wellName ) != wellNameToIndex_.end();
}
/*!
* \brief Returns true iff a given degree of freedom is currently penetrated by any well.
*/
bool gridDofIsPenetrated(unsigned globalDofIdx) const
{ return gridDofIsPenetrated_[globalDofIdx]; }
/*!
* \brief Given a well name, return the corresponding index.
*
* A std::runtime_error will be thrown if the well name is unknown.
*/
unsigned wellIndex(const std::string& wellName) const
{
assert( hasWell( wellName ) );
const auto& it = wellNameToIndex_.find(wellName);
if (it == wellNameToIndex_.end())
throw std::runtime_error("No well called '"+wellName+"'found");
return it->second;
}
/*!
* \brief Given a well name, return the corresponding well.
*
* A std::runtime_error will be thrown if the well name is unknown.
*/
std::shared_ptr<const Well> well(const std::string& wellName) const
{ return wells_[wellIndex(wellName)]; }
/*!
* \brief Given a well name, return the corresponding well.
*
* A std::runtime_error will be thrown if the well name is unknown.
*/
std::shared_ptr<Well> well(const std::string& wellName)
{ return wells_[wellIndex(wellName)]; }
/*!
* \brief Given a well index, return the corresponding well.
*/
std::shared_ptr<const Well> well(size_t wellIdx) const
{ return wells_[wellIdx]; }
/*!
* \brief Given a well index, return the corresponding well.
*/
std::shared_ptr<Well> well(size_t wellIdx)
{ return wells_[wellIdx]; }
/*!
* \brief Informs the well manager that a time step has just begun.
*/
void beginTimeStep()
{
// iterate over all wells and notify them individually
for (size_t wellIdx = 0; wellIdx < wells_.size(); ++wellIdx)
wells_[wellIdx]->beginTimeStep();
}
/*!
* \brief Informs the well that an iteration has just begun.
*
* In this method, the well calculates the bottom hole and tubing head pressures, the
* actual unconstraint production and injection rates, etc.
*/
void beginIteration()
{
// call the preprocessing routines
const size_t wellSize = wells_.size();
for (size_t wellIdx = 0; wellIdx < wellSize; ++wellIdx)
wells_[wellIdx]->beginIterationPreProcess();
// call the accumulation routines
ThreadedEntityIterator<GridView, /*codim=*/0> threadedElemIt(simulator_.vanguard().gridView());
#ifdef _OPENMP
#pragma omp parallel
#endif
{
ElementContext elemCtx(simulator_);
auto elemIt = threadedElemIt.beginParallel();
for (; !threadedElemIt.isFinished(elemIt); elemIt = threadedElemIt.increment()) {
const Element& elem = *elemIt;
if (elem.partitionType() != Dune::InteriorEntity)
continue;
elemCtx.updatePrimaryStencil(elem);
elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
for (size_t wellIdx = 0; wellIdx < wellSize; ++wellIdx)
wells_[wellIdx]->beginIterationAccumulate(elemCtx, /*timeIdx=*/0);
}
}
// call the postprocessing routines
for (size_t wellIdx = 0; wellIdx < wellSize; ++wellIdx)
wells_[wellIdx]->beginIterationPostProcess();
}
/*!
* \brief Informs the well manager that an iteration has just been finished.
*/
void endIteration()
{
// iterate over all wells and notify them individually
const size_t wellSize = wells_.size();
for (size_t wellIdx = 0; wellIdx < wellSize; ++wellIdx)
wells_[wellIdx]->endIteration();
}
/*!
* \brief Informs the well manager that a time step has just been finished.
*/
void endTimeStep()
{
Scalar dt = simulator_.timeStepSize();
// iterate over all wells and notify them individually. also, update the
// production/injection totals for the active wells.
const size_t wellSize = wells_.size();
for (size_t wellIdx = 0; wellIdx < wellSize; ++wellIdx) {
auto well = wells_[wellIdx];
well->endTimeStep();
// update the surface volumes of the produced/injected fluids
std::array<Scalar, numPhases>* injectedVolume;
if (wellTotalInjectedVolume_.count(well->name()) == 0) {
injectedVolume = &wellTotalInjectedVolume_[well->name()];
std::fill(injectedVolume->begin(), injectedVolume->end(), 0.0);
}
else
injectedVolume = &wellTotalInjectedVolume_[well->name()];
std::array<Scalar, numPhases>* producedVolume;
if (wellTotalProducedVolume_.count(well->name()) == 0) {
producedVolume = &wellTotalProducedVolume_[well->name()];
std::fill(producedVolume->begin(), producedVolume->end(), 0.0);
}
else
producedVolume = &wellTotalProducedVolume_[well->name()];
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
// this assumes that the implicit Euler method is used for time
// integration. TODO: Once the time discretization becomes pluggable,
// this integration needs to be done by the time discretization code!
Scalar vol = dt * well->surfaceRate(phaseIdx);
if (vol < 0)
(*producedVolume)[phaseIdx] += -vol;
else
(*injectedVolume)[phaseIdx] += vol;
}
}
}
/*!
* \brief Informs the well manager that a simulation episode has just been finished.
*/
void endEpisode()
{ }
/*!
* \brief Returns the surface volume of a fluid phase produced by a well.
*/
Scalar totalProducedVolume(const std::string& wellName, unsigned phaseIdx) const
{
if (wellTotalProducedVolume_.count(wellName) == 0)
return 0.0; // well not yet seen
return wellTotalProducedVolume_.at(wellName)[phaseIdx];
}
/*!
* \brief Returns the surface volume of a fluid phase injected by a well.
*/
Scalar totalInjectedVolume(const std::string& wellName, unsigned phaseIdx) const
{
if (wellTotalInjectedVolume_.count(wellName) == 0)
return 0.0; // well not yet seen
return wellTotalInjectedVolume_.at(wellName)[phaseIdx];
}
/*!
* \brief Computes the source term due to wells for a degree of
* freedom.
*/
template <class Context>
void computeTotalRatesForDof(EvalEqVector& q,
const Context& context,
unsigned dofIdx,
unsigned timeIdx) const
{
q = 0.0;
if (!gridDofIsPenetrated(context.globalSpaceIndex(dofIdx, timeIdx)))
return;
RateVector wellRate;
// iterate over all wells and add up their individual rates
const size_t wellSize = wells_.size();
for (size_t wellIdx = 0; wellIdx < wellSize; ++wellIdx) {
wellRate = 0.0;
wells_[wellIdx]->computeTotalRatesForDof(wellRate, context, dofIdx, timeIdx);
for (unsigned eqIdx = 0; eqIdx < numEq; ++eqIdx)
q[eqIdx] += wellRate[eqIdx];
}
}
/*!
* \brief This method writes the complete state of all wells
* to the hard disk.
*/
template <class Restarter>
void serialize(Restarter& res OPM_UNUSED)
{
/* do nothing: Everything which we need here is provided by the deck->.. */
}
/*!
* \brief This method restores the complete state of the all wells
* from disk.
*
* It is the inverse of the serialize() method.
*/
template <class Restarter>
void deserialize(Restarter& res OPM_UNUSED)
{
// initialize the wells for the current episode
beginEpisode(simulator_.vanguard().eclState(), simulator_.vanguard().schedule(), /*wasRestarted=*/true);
}
/*!
* \brief Returns true if something in a well changed compared to the previous report
* step.
*
* "Something" can either be the well topology (i.e., which grid blocks are contained
* in which well) or it can be a well parameter like the bottom hole pressure...
*/
bool wellsChanged(const Opm::EclipseState& eclState,
const Opm::Schedule& schedule,
unsigned reportStepIdx) const
{
if (wellTopologyChanged_(eclState, reportStepIdx))
return true;
if (schedule.getTimeMap().numTimesteps() <= (unsigned) reportStepIdx)
// for the "until the universe dies" episode, the wells don't change
return false;
const Opm::Events& events = schedule.getEvents();
return events.hasEvent(Opm::ScheduleEvents::PRODUCTION_UPDATE |
Opm::ScheduleEvents::INJECTION_UPDATE |
Opm::ScheduleEvents::WELL_STATUS_CHANGE,
reportStepIdx);
}
protected:
bool wellTopologyChanged_(const Opm::EclipseState& eclState,
const Opm::Schedule& schedule,
unsigned reportStepIdx) const
{
if (reportStepIdx == 0) {
// the well topology has always been changed relative to before the
// simulation is started...
return true;
}
if (schedule.getTimeMap().numTimesteps() <= (unsigned) reportStepIdx)
// for the "until the universe dies" episode, the wells don't change
return false;
const Opm::Events& events = schedule.getEvents();
return events.hasEvent(Opm::ScheduleEvents::NEW_WELL |
Opm::ScheduleEvents::COMPLETION_CHANGE,
reportStepIdx);
}
void updateWellTopology_(unsigned reportStepIdx OPM_UNUSED,
const WellCompletionsMap& wellCompletions,
std::vector<bool>& gridDofIsPenetrated) const
{
auto& model = simulator_.model();
const auto& vanguard = simulator_.vanguard();
// first, remove all wells from the reservoir
model.clearAuxiliaryModules();
auto wellIt = wells_.begin();
const auto& wellEndIt = wells_.end();
for (; wellIt != wellEndIt; ++wellIt) {
(*wellIt)->clear();
(*wellIt)->beginSpec();
}
//////
// tell the active wells which DOFs they contain
const auto gridView = simulator_.vanguard().gridView();
gridDofIsPenetrated.resize(model.numGridDof());
std::fill(gridDofIsPenetrated.begin(), gridDofIsPenetrated.end(), false);
ElementContext elemCtx(simulator_);
auto elemIt = gridView.template begin</*codim=*/0>();
const auto elemEndIt = gridView.template end</*codim=*/0>();
std::set<std::shared_ptr<Well> > wells;
for (; elemIt != elemEndIt; ++elemIt) {
const auto& elem = *elemIt;
if (elem.partitionType() != Dune::InteriorEntity)
continue; // non-local entities need to be skipped
elemCtx.updateStencil(elem);
for (unsigned dofIdx = 0; dofIdx < elemCtx.numPrimaryDof(/*timeIdx=*/0); ++ dofIdx) {
unsigned globalDofIdx = elemCtx.globalSpaceIndex(dofIdx, /*timeIdx=*/0);
unsigned cartesianDofIdx = vanguard.cartesianIndex(globalDofIdx);
if (wellCompletions.count(cartesianDofIdx) == 0)
// the current DOF is not contained in any well, so we must skip
// it...
continue;
gridDofIsPenetrated[globalDofIdx] = true;
auto eclWell = wellCompletions.at(cartesianDofIdx).second;
eclWell->addDof(elemCtx, dofIdx);
wells.insert(eclWell);
}
//////
}
// register all wells at the model as auxiliary equations
wellIt = wells_.begin();
for (; wellIt != wellEndIt; ++wellIt) {
(*wellIt)->endSpec();
model.addAuxiliaryModule(*wellIt);
}
}
void computeWellCompletionsMap_(unsigned reportStepIdx OPM_UNUSED, WellCompletionsMap& cartesianIdxToCompletionMap)
{
const auto& deckSchedule = simulator_.vanguard().schedule();
#ifndef NDEBUG
const auto& eclState = simulator_.vanguard().eclState();
const auto& eclGrid = eclState.getInputGrid();
assert( int(eclGrid.getNX()) == simulator_.vanguard().cartesianDimensions()[ 0 ] );
assert( int(eclGrid.getNY()) == simulator_.vanguard().cartesianDimensions()[ 1 ] );
assert( int(eclGrid.getNZ()) == simulator_.vanguard().cartesianDimensions()[ 2 ] );
#endif
// compute the mapping from logically Cartesian indices to the well the
// respective completion.
const std::vector<const Opm::Well*>& deckWells = deckSchedule.getWells(reportStepIdx);
for (size_t deckWellIdx = 0; deckWellIdx < deckWells.size(); ++deckWellIdx) {
const Opm::Well* deckWell = deckWells[deckWellIdx];
const std::string& wellName = deckWell->name();
if (!hasWell(wellName))
{
#ifndef NDEBUG
if( simulator_.vanguard().grid().comm().size() == 1 )
{
std::cout << "Well '" << wellName << "' suddenly appears in the completions "
<< "for the report step, but has not been previously specified. "
<< "Ignoring.\n";
}
#endif
continue;
}
std::array<int, 3> cartesianCoordinate;
// set the well parameters defined by the current set of completions
const auto& completionSet = deckWell->getCompletions(reportStepIdx);
for (size_t complIdx = 0; complIdx < completionSet.size(); complIdx ++) {
const auto& completion = completionSet.get(complIdx);
cartesianCoordinate[ 0 ] = completion.getI();
cartesianCoordinate[ 1 ] = completion.getJ();
cartesianCoordinate[ 2 ] = completion.getK();
unsigned cartIdx = simulator_.vanguard().cartesianIndex( cartesianCoordinate );
// in this code we only support each cell to be part of at most a single
// well. TODO (?) change this?
assert(cartesianIdxToCompletionMap.count(cartIdx) == 0);
auto eclWell = wells_[wellIndex(wellName)];
cartesianIdxToCompletionMap[cartIdx] = std::make_pair(&completion, eclWell);
}
}
}
void updateWellParameters_(unsigned reportStepIdx, const WellCompletionsMap& wellCompletions)
{
const auto& deckSchedule = simulator_.vanguard().schedule();
const std::vector<const Opm::Well*>& deckWells = deckSchedule.getWells(reportStepIdx);
// set the reference depth for all wells
for (size_t deckWellIdx = 0; deckWellIdx < deckWells.size(); ++deckWellIdx) {
const Opm::Well* deckWell = deckWells[deckWellIdx];
const std::string& wellName = deckWell->name();
if( hasWell( wellName ) )
{
wells_[wellIndex(wellName)]->clear();
wells_[wellIndex(wellName)]->setReferenceDepth(deckWell->getRefDepth());
}
}
// associate the well completions with grid cells and register them in the
// Peaceman well object
const auto& vanguard = simulator_.vanguard();
const GridView gridView = vanguard.gridView();
ElementContext elemCtx(simulator_);
auto elemIt = gridView.template begin</*codim=*/0>();
const auto elemEndIt = gridView.template end</*codim=*/0>();
for (; elemIt != elemEndIt; ++elemIt) {
const auto& elem = *elemIt;
if (elem.partitionType() != Dune::InteriorEntity)
continue; // non-local entities need to be skipped
elemCtx.updateStencil(elem);
for (unsigned dofIdx = 0; dofIdx < elemCtx.numPrimaryDof(/*timeIdx=*/0); ++ dofIdx)
{
assert( elemCtx.numPrimaryDof(/*timeIdx=*/0) == 1 );
unsigned globalDofIdx = elemCtx.globalSpaceIndex(dofIdx, /*timeIdx=*/0);
unsigned cartesianDofIdx = vanguard.cartesianIndex(globalDofIdx);
if (wellCompletions.count(cartesianDofIdx) == 0)
// the current DOF is not contained in any well, so we must skip
// it...
continue;
const auto& compInfo = wellCompletions.at(cartesianDofIdx);
const Opm::Completion* completion = compInfo.first;
std::shared_ptr<Well> eclWell = compInfo.second;
eclWell->addDof(elemCtx, dofIdx);
// the catch is a hack for a ideosyncrasy of opm-parser with regard to
// defaults handling: if the deck did not specify a radius for the
// completion, there seems to be no other way to detect this except for
// catching the exception
try {
eclWell->setRadius(elemCtx, dofIdx, 0.5*completion->getDiameter());
}
catch (const std::logic_error& e)
{}
// overwrite the automatically computed effective
// permeability by the one specified in the deck-> Note: this
// is not implemented by opm-parser yet...
/*
Scalar Kh = completion->getEffectivePermeability();
if (std::isfinite(Kh) && Kh > 0.0)
eclWell->setEffectivePermeability(elemCtx, dofIdx, Kh);
*/
// overwrite the automatically computed connection
// transmissibilty factor by the one specified in the deck->
const auto& ctf = completion->getConnectionTransmissibilityFactorAsValueObject();
if (ctf.hasValue() && ctf.getValue() > 0.0)
eclWell->setConnectionTransmissibilityFactor(elemCtx, dofIdx, ctf.getValue());
}
}
}
Simulator& simulator_;
std::vector<std::shared_ptr<Well> > wells_;
std::vector<bool> gridDofIsPenetrated_;
std::map<std::string, int> wellNameToIndex_;
std::map<std::string, std::array<Scalar, numPhases> > wellTotalInjectedVolume_;
std::map<std::string, std::array<Scalar, numPhases> > wellTotalProducedVolume_;
};
} // namespace Ewoms
#endif