mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-01 12:06:54 -06:00
706 lines
27 KiB
C++
706 lines
27 KiB
C++
/*
|
|
Copyright 2014, 2015 Dr. Markus Blatt - HPC-Simulation-Software & Services
|
|
Copyright 2014, 2015 Statoil ASA
|
|
Copyright 2015 NTNU
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
#ifndef OPM_PARALLELISTLINFORMTION_HEADER_INCLUDED
|
|
#define OPM_PARALLELISTLINFORMTION_HEADER_INCLUDED
|
|
|
|
|
|
#include <opm/grid/UnstructuredGrid.h>
|
|
#include <opm/common/ErrorMacros.hpp>
|
|
#include <any>
|
|
#include <exception>
|
|
|
|
#include <algorithm>
|
|
#include <functional>
|
|
#include <limits>
|
|
#include <numeric>
|
|
#include <type_traits>
|
|
#include <vector>
|
|
|
|
#if HAVE_MPI && HAVE_DUNE_ISTL
|
|
|
|
#include <opm/common/utility/platform_dependent/disable_warnings.h>
|
|
#include <mpi.h>
|
|
#include <dune/istl/owneroverlapcopy.hh>
|
|
#include <dune/common/parallel/interface.hh>
|
|
#include <dune/common/parallel/communicator.hh>
|
|
#include <dune/common/enumset.hh>
|
|
#include <opm/common/utility/platform_dependent/reenable_warnings.h>
|
|
|
|
#include <opm/simulators/utils/ParallelCommunication.hpp>
|
|
|
|
namespace Opm
|
|
{
|
|
namespace
|
|
{
|
|
|
|
template<class T>
|
|
struct is_tuple
|
|
: std::integral_constant<bool, false>
|
|
{};
|
|
template<typename... T>
|
|
struct is_tuple<std::tuple<T...> >
|
|
: std::integral_constant<bool, true>
|
|
{};
|
|
}
|
|
|
|
/// \brief Class that encapsulates the parallelization information needed by the
|
|
/// ISTL solvers.
|
|
class ParallelISTLInformation
|
|
{
|
|
public:
|
|
/// \brief The type of the parallel index set used.
|
|
typedef Dune::OwnerOverlapCopyCommunication<int, int>::ParallelIndexSet ParallelIndexSet;
|
|
/// \brief The type of the remote indices information used.
|
|
typedef Dune::OwnerOverlapCopyCommunication<int, int>::RemoteIndices RemoteIndices;
|
|
|
|
/// \brief Constructs an empty parallel information object using MPI_COMM_WORLD
|
|
ParallelISTLInformation()
|
|
: indexSet_(new ParallelIndexSet),
|
|
remoteIndices_(new RemoteIndices(*indexSet_, *indexSet_, MPI_COMM_WORLD)),
|
|
communicator_(MPI_COMM_WORLD)
|
|
{}
|
|
/// \brief Constructs an empty parallel information object using a communicator.
|
|
/// \param communicator The communicator to use.
|
|
ParallelISTLInformation(MPI_Comm communicator)
|
|
: indexSet_(new ParallelIndexSet),
|
|
remoteIndices_(new RemoteIndices(*indexSet_, *indexSet_, communicator)),
|
|
communicator_(communicator)
|
|
{}
|
|
/// \brief Constructs a parallel information object from the specified information.
|
|
/// \param indexSet The parallel index set to use.
|
|
/// \param remoteIndices The remote indices information to use.
|
|
/// \param communicator The communicator to use.
|
|
ParallelISTLInformation(const std::shared_ptr<ParallelIndexSet>& indexSet,
|
|
const std::shared_ptr<RemoteIndices>& remoteIndices,
|
|
MPI_Comm communicator)
|
|
: indexSet_(indexSet), remoteIndices_(remoteIndices), communicator_(communicator)
|
|
{}
|
|
/// \brief Copy constructor.
|
|
///
|
|
/// The information will be shared by the the two objects.
|
|
ParallelISTLInformation(const ParallelISTLInformation& other)
|
|
: indexSet_(other.indexSet_), remoteIndices_(other.remoteIndices_),
|
|
communicator_(other.communicator_)
|
|
{}
|
|
/// \brief Get a pointer to the underlying index set.
|
|
std::shared_ptr<ParallelIndexSet> indexSet() const
|
|
{
|
|
return indexSet_;
|
|
}
|
|
/// \brief Get a pointer to the remote indices information.
|
|
std::shared_ptr<RemoteIndices> remoteIndices() const
|
|
{
|
|
return remoteIndices_;
|
|
}
|
|
/// \brief Get the Collective MPI communicator that we use.
|
|
Parallel::Communication communicator() const
|
|
{
|
|
return communicator_;
|
|
}
|
|
/// \brief Copy the information stored to the specified objects.
|
|
/// \param[out] indexSet The object to store the index set in.
|
|
/// \param[out] remoteIndices The object to store the remote indices information in.
|
|
void copyValuesTo(ParallelIndexSet& indexSet, RemoteIndices& remoteIndices,
|
|
std::size_t local_component_size = 0, std::size_t num_components = 1) const
|
|
{
|
|
ParallelIndexSet::GlobalIndex global_component_size = local_component_size;
|
|
if ( num_components > 1 )
|
|
{
|
|
ParallelIndexSet::GlobalIndex max_gi = 0;
|
|
// component the max global index
|
|
for( auto i = indexSet_->begin(), end = indexSet_->end(); i != end; ++i )
|
|
{
|
|
max_gi = std::max(max_gi, i->global());
|
|
}
|
|
global_component_size = max_gi+1;
|
|
global_component_size = communicator_.max(global_component_size);
|
|
}
|
|
indexSet.beginResize();
|
|
IndexSetInserter<ParallelIndexSet> inserter(indexSet, global_component_size,
|
|
local_component_size, num_components);
|
|
std::for_each(indexSet_->begin(), indexSet_->end(), inserter);
|
|
indexSet.endResize();
|
|
remoteIndices.rebuild<false>();
|
|
}
|
|
/// \brief Communcate the dofs owned by us to the other process.
|
|
///
|
|
/// Afterwards all associated dofs will contain the same data.
|
|
template<class T>
|
|
void copyOwnerToAll (const T& source, T& dest) const
|
|
{
|
|
typedef Dune::Combine<Dune::EnumItem<Dune::OwnerOverlapCopyAttributeSet::AttributeSet,Dune::OwnerOverlapCopyAttributeSet::owner>,Dune::EnumItem<Dune::OwnerOverlapCopyAttributeSet::AttributeSet,Dune::OwnerOverlapCopyAttributeSet::overlap>,Dune::OwnerOverlapCopyAttributeSet::AttributeSet> OwnerOverlapSet;
|
|
typedef Dune::EnumItem<Dune::OwnerOverlapCopyAttributeSet::AttributeSet,Dune::OwnerOverlapCopyAttributeSet::owner> OwnerSet;
|
|
typedef Dune::Combine<OwnerOverlapSet, Dune::EnumItem<Dune::OwnerOverlapCopyAttributeSet::AttributeSet,Dune::OwnerOverlapCopyAttributeSet::copy>,Dune::OwnerOverlapCopyAttributeSet::AttributeSet> AllSet;
|
|
OwnerSet sourceFlags;
|
|
AllSet destFlags;
|
|
Dune::Interface interface(communicator_);
|
|
if( !remoteIndices_->isSynced() )
|
|
{
|
|
remoteIndices_->rebuild<false>();
|
|
}
|
|
interface.build(*remoteIndices_,sourceFlags,destFlags);
|
|
Dune::BufferedCommunicator communicator;
|
|
communicator.template build<T>(interface);
|
|
communicator.template forward<CopyGatherScatter<T> >(source,dest);
|
|
communicator.free();
|
|
}
|
|
template<class T>
|
|
const std::vector<double>& updateOwnerMask(const T& container) const
|
|
{
|
|
if( ! indexSet_ )
|
|
{
|
|
OPM_THROW(std::runtime_error, "Trying to update owner mask without parallel information!");
|
|
}
|
|
if( static_cast<std::size_t>(container.size())!= ownerMask_.size() )
|
|
{
|
|
ownerMask_.resize(container.size(), 1.);
|
|
for( auto i=indexSet_->begin(), end=indexSet_->end(); i!=end; ++i )
|
|
{
|
|
if (i->local().attribute()!=Dune::OwnerOverlapCopyAttributeSet::owner)
|
|
{
|
|
ownerMask_[i->local().local()] = 0.;
|
|
}
|
|
}
|
|
}
|
|
return ownerMask_;
|
|
}
|
|
|
|
/// \brief Get the owner Mask.
|
|
///
|
|
/// \return A vector with entries 0, and 1. 0 marks an index that we cannot
|
|
/// compute correct results for. 1 marks an index that this process
|
|
/// is responsible for and computes correct results in parallel.
|
|
const std::vector<double>& getOwnerMask() const
|
|
{
|
|
return ownerMask_;
|
|
}
|
|
|
|
/// \brief Compute one or more global reductions.
|
|
///
|
|
/// This function can either be used with a container, an operator, and an initial value
|
|
/// to compute a reduction. Or with tuples of them to compute multiple reductions with only
|
|
/// one global communication.
|
|
/// The possible functors needed can be constructed with Opm::Reduction::makeGlobalMaxFunctor(),
|
|
/// Opm::Reduction::makeLInfinityNormFunctor(),
|
|
/// Opm::Reduction::makeGlobalMinFunctor(), and
|
|
/// Opm::Reduction::makeGlobalSumFunctor().
|
|
/// \tparam type of the container or the tuple of containers.
|
|
/// \tparam tyoe of the operator or a tuple of operators, examples are e.g.
|
|
/// Reduction::MaskIDOperator, Reduction::MaskToMinOperator,
|
|
/// and Reduction::MaskToMaxOperator. Has to provide an operator() that takes three
|
|
/// arguments (the last one is the mask value: 1 for a dof that we own, 0 otherwise),
|
|
/// a method maskValue that takes a value and mask value, and localOperator that
|
|
/// returns the underlying binary operator.
|
|
/// \param container A container or tuple of containers.
|
|
/// \param binaryOperator An operator doing the reduction of two values.
|
|
/// \param value The initial value or a tuple of them.
|
|
template<typename Container, typename BinaryOperator, typename T>
|
|
void computeReduction(const Container& container, BinaryOperator binaryOperator,
|
|
T& value) const
|
|
{
|
|
computeReduction(container, binaryOperator, value, is_tuple<Container>());
|
|
}
|
|
private:
|
|
/// \brief compute the reductions for tuples.
|
|
///
|
|
/// This is a helper function to prepare for calling computeTupleReduction.
|
|
template<typename Container, typename BinaryOperator, typename T>
|
|
void computeReduction(const Container& container, BinaryOperator binaryOperator,
|
|
T& value, std::integral_constant<bool,true>) const
|
|
{
|
|
computeTupleReduction(container, binaryOperator, value);
|
|
}
|
|
/// \brief compute the reductions for non-tuples.
|
|
///
|
|
/// This is a helper function to prepare for calling computeTupleReduction.
|
|
template<typename Container, typename BinaryOperator, typename T>
|
|
void computeReduction(const Container& container, BinaryOperator binaryOperator,
|
|
T& value, std::integral_constant<bool,false>) const
|
|
{
|
|
std::tuple<const Container&> containers=std::tuple<const Container&>(container);
|
|
auto values=std::make_tuple(value);
|
|
auto operators=std::make_tuple(binaryOperator);
|
|
computeTupleReduction(containers, operators, values);
|
|
value=std::get<0>(values);
|
|
}
|
|
/// \brief Compute the reductions for tuples.
|
|
template<typename... Containers, typename... BinaryOperators, typename... ReturnValues>
|
|
void computeTupleReduction(const std::tuple<Containers...>& containers,
|
|
std::tuple<BinaryOperators...>& operators,
|
|
std::tuple<ReturnValues...>& values) const
|
|
{
|
|
static_assert(std::tuple_size<std::tuple<Containers...> >::value==
|
|
std::tuple_size<std::tuple<BinaryOperators...> >::value,
|
|
"We need the same number of containers and binary operators");
|
|
static_assert(std::tuple_size<std::tuple<Containers...> >::value==
|
|
std::tuple_size<std::tuple<ReturnValues...> >::value,
|
|
"We need the same number of containers and return values");
|
|
if( std::tuple_size<std::tuple<Containers...> >::value==0 )
|
|
{
|
|
return;
|
|
}
|
|
// Copy the initial values.
|
|
std::tuple<ReturnValues...> init=values;
|
|
updateOwnerMask(std::get<0>(containers));
|
|
computeLocalReduction(containers, operators, values);
|
|
std::vector<std::tuple<ReturnValues...> > receivedValues(communicator_.size());
|
|
communicator_.allgather(&values, 1, &(receivedValues[0]));
|
|
values=init;
|
|
for( auto rvals=receivedValues.begin(), endvals=receivedValues.end(); rvals!=endvals;
|
|
++rvals )
|
|
{
|
|
computeGlobalReduction(*rvals, operators, values);
|
|
}
|
|
}
|
|
/// \brief TMP for computing the the global reduction after receiving the local ones.
|
|
///
|
|
/// End of recursion.
|
|
template<int I=0, typename... BinaryOperators, typename... ReturnValues>
|
|
typename std::enable_if<I == sizeof...(BinaryOperators), void>::type
|
|
computeGlobalReduction(const std::tuple<ReturnValues...>&,
|
|
std::tuple<BinaryOperators...>&,
|
|
std::tuple<ReturnValues...>&) const
|
|
{}
|
|
/// \brief TMP for computing the the global reduction after receiving the local ones.
|
|
template<int I=0, typename... BinaryOperators, typename... ReturnValues>
|
|
typename std::enable_if<I !=sizeof...(BinaryOperators), void>::type
|
|
computeGlobalReduction(const std::tuple<ReturnValues...>& receivedValues,
|
|
std::tuple<BinaryOperators...>& operators,
|
|
std::tuple<ReturnValues...>& values) const
|
|
{
|
|
auto& val=std::get<I>(values);
|
|
val = std::get<I>(operators).localOperator()(val, std::get<I>(receivedValues));
|
|
computeGlobalReduction<I+1>(receivedValues, operators, values);
|
|
}
|
|
/// \brief TMP for computing the the local reduction on the DOF that the process owns.
|
|
///
|
|
/// End of recursion.
|
|
template<int I=0, typename... Containers, typename... BinaryOperators, typename... ReturnValues>
|
|
typename std::enable_if<I==sizeof...(Containers), void>::type
|
|
computeLocalReduction(const std::tuple<Containers...>&,
|
|
std::tuple<BinaryOperators...>&,
|
|
std::tuple<ReturnValues...>&) const
|
|
{}
|
|
/// \brief TMP for computing the the local reduction on the DOF that the process owns.
|
|
template<int I=0, typename... Containers, typename... BinaryOperators, typename... ReturnValues>
|
|
typename std::enable_if<I!=sizeof...(Containers), void>::type
|
|
computeLocalReduction(const std::tuple<Containers...>& containers,
|
|
std::tuple<BinaryOperators...>& operators,
|
|
std::tuple<ReturnValues...>& values) const
|
|
{
|
|
const auto& container = std::get<I>(containers);
|
|
if( container.size() )
|
|
{
|
|
auto& reduceOperator = std::get<I>(operators);
|
|
// Eigen:Block does not support STL iterators!!!!
|
|
// Therefore we need to rely on the harder random-access
|
|
// property of the containers. But this should be save, too.
|
|
// Just commenting out code in the hope that Eigen might improve
|
|
// in this regard in the future.
|
|
//auto newVal = container.begin();
|
|
auto mask = ownerMask_.begin();
|
|
auto& value = std::get<I>(values);
|
|
value = reduceOperator.getInitialValue();
|
|
|
|
for( auto endVal=ownerMask_.end(); mask!=endVal;
|
|
/*++newVal,*/ ++mask )
|
|
{
|
|
value = reduceOperator(value, container[mask-ownerMask_.begin()], *mask);
|
|
}
|
|
}
|
|
computeLocalReduction<I+1>(containers, operators, values);
|
|
}
|
|
/** \brief gather/scatter callback for communcation */
|
|
template<typename T>
|
|
struct CopyGatherScatter
|
|
{
|
|
typedef typename Dune::CommPolicy<T>::IndexedType V;
|
|
|
|
static V gather(const T& a, std::size_t i)
|
|
{
|
|
return a[i];
|
|
}
|
|
|
|
static void scatter(T& a, V v, std::size_t i)
|
|
{
|
|
a[i] = v;
|
|
}
|
|
};
|
|
template<class T>
|
|
class IndexSetInserter
|
|
{
|
|
public:
|
|
typedef T ParallelIndexSet;
|
|
typedef typename ParallelIndexSet::LocalIndex LocalIndex;
|
|
typedef typename ParallelIndexSet::GlobalIndex GlobalIndex;
|
|
|
|
IndexSetInserter(ParallelIndexSet& indexSet, const GlobalIndex& component_size,
|
|
std::size_t local_component_size, std::size_t num_components)
|
|
: indexSet_(&indexSet), component_size_(component_size),
|
|
local_component_size_(local_component_size),
|
|
num_components_(num_components)
|
|
{}
|
|
void operator()(const typename ParallelIndexSet::IndexPair& pair)
|
|
{
|
|
for(std::size_t i = 0; i < num_components_; i++)
|
|
indexSet_->add(i * component_size_ + pair.global(),
|
|
LocalIndex(i * local_component_size_ + pair.local(),
|
|
pair.local().attribute()));
|
|
}
|
|
private:
|
|
ParallelIndexSet* indexSet_;
|
|
/// \brief The global number of unknowns per component/equation.
|
|
GlobalIndex component_size_;
|
|
/// \brief The local number of unknowns per component/equation.
|
|
std::size_t local_component_size_;
|
|
/// \brief The number of components/equations.
|
|
std::size_t num_components_;
|
|
};
|
|
std::shared_ptr<ParallelIndexSet> indexSet_;
|
|
std::shared_ptr<RemoteIndices> remoteIndices_;
|
|
Dune::CollectiveCommunication<MPI_Comm> communicator_;
|
|
mutable std::vector<double> ownerMask_;
|
|
};
|
|
|
|
namespace Reduction
|
|
{
|
|
/// \brief An operator that only uses values where mask is 1.
|
|
///
|
|
/// Could be used to compute a global sum
|
|
/// \tparam BinaryOperator The wrapped binary operator that specifies
|
|
// the reduction operation.
|
|
template<typename BinaryOperator>
|
|
struct MaskIDOperator
|
|
{
|
|
// This is a real nice one: numeric limits needs a type without const
|
|
// or reference qualifier. Otherwise we get complete nonesense.
|
|
typedef typename std::remove_cv<
|
|
typename std::remove_reference<typename BinaryOperator::result_type>::type
|
|
>::type Result;
|
|
/// \brief Apply the underlying binary operator according to the mask.
|
|
///
|
|
/// The BinaryOperator will be called with t1, and mask*t2.
|
|
/// \param t1 first value
|
|
/// \param t2 second value (might be modified).
|
|
/// \param mask The mask (0 or 1).
|
|
template<class T, class T1>
|
|
T operator()(const T& t1, const T& t2, const T1& mask)
|
|
{
|
|
return b_(t1, maskValue(t2, mask));
|
|
}
|
|
template<class T, class T1>
|
|
T maskValue(const T& t, const T1& mask)
|
|
{
|
|
return t*mask;
|
|
}
|
|
BinaryOperator& localOperator()
|
|
{
|
|
return b_;
|
|
}
|
|
Result getInitialValue()
|
|
{
|
|
return Result();
|
|
}
|
|
private:
|
|
BinaryOperator b_;
|
|
};
|
|
|
|
/// \brief An operator for computing a parallel inner product.
|
|
template<class T>
|
|
struct InnerProductFunctor
|
|
{
|
|
/// \brief Apply the underlying binary operator according to the mask.
|
|
///
|
|
/// The BinaryOperator will be called with t1, and mask*t2.
|
|
/// \param t1 first value
|
|
/// \param t2 second value (might be modified).
|
|
/// \param mask The mask (0 or 1).
|
|
template<class T1>
|
|
T operator()(const T& t1, const T& t2, const T1& mask)
|
|
{
|
|
T masked = maskValue(t2, mask);
|
|
return t1 + masked * masked;
|
|
}
|
|
template<class T1>
|
|
T maskValue(const T& t, const T1& mask)
|
|
{
|
|
return t*mask;
|
|
}
|
|
std::plus<T> localOperator()
|
|
{
|
|
return std::plus<T>();
|
|
}
|
|
T getInitialValue()
|
|
{
|
|
return T();
|
|
}
|
|
};
|
|
|
|
/// \brief An operator that converts the values where mask is 0 to the minimum value
|
|
///
|
|
/// Could be used to compute a global maximum.
|
|
/// \tparam BinaryOperator The wrapped binary operator that specifies
|
|
// the reduction operation.
|
|
template<typename BinaryOperator>
|
|
struct MaskToMinOperator
|
|
{
|
|
// This is a real nice one: numeric limits has to a type without const
|
|
// or reference. Otherwise we get complete nonesense.
|
|
typedef typename std::remove_reference<
|
|
typename std::remove_const<typename BinaryOperator::result_type>::type
|
|
>::type Result;
|
|
|
|
MaskToMinOperator(BinaryOperator b)
|
|
: b_(b)
|
|
{}
|
|
/// \brief Apply the underlying binary operator according to the mask.
|
|
///
|
|
/// If mask is 0 then t2 will be substituted by the lowest value,
|
|
/// else t2 will be used.
|
|
/// \param t1 first value
|
|
/// \param t2 second value (might be modified).
|
|
template<class T, class T1>
|
|
T operator()(const T& t1, const T& t2, const T1& mask)
|
|
{
|
|
return b_(t1, maskValue(t2, mask));
|
|
}
|
|
template<class T, class T1>
|
|
T maskValue(const T& t, const T1& mask)
|
|
{
|
|
if( mask )
|
|
{
|
|
return t;
|
|
}
|
|
else
|
|
{
|
|
return getInitialValue();
|
|
}
|
|
}
|
|
Result getInitialValue()
|
|
{
|
|
//g++-4.4 does not support std::numeric_limits<T>::lowest();
|
|
// we rely on IEE 754 for floating point values and use min()
|
|
// for integral types.
|
|
if( std::is_integral<Result>::value )
|
|
{
|
|
return std::numeric_limits<Result>::min();
|
|
}
|
|
else
|
|
{
|
|
return -std::numeric_limits<Result>::max();
|
|
}
|
|
}
|
|
/// \brief Get the underlying binary operator.
|
|
///
|
|
/// This might be needed to compute the reduction after each processor
|
|
/// has computed its local one.
|
|
BinaryOperator& localOperator()
|
|
{
|
|
return b_;
|
|
}
|
|
private:
|
|
BinaryOperator b_;
|
|
};
|
|
|
|
/// \brief An operator that converts the values where mask is 0 to the maximum value
|
|
///
|
|
/// Could be used to compute a global minimum.
|
|
template<typename BinaryOperator>
|
|
struct MaskToMaxOperator
|
|
{
|
|
// This is a real nice one: numeric limits has to a type without const
|
|
// or reference. Otherwise we get complete nonesense.
|
|
typedef typename std::remove_cv<
|
|
typename std::remove_reference<typename BinaryOperator::result_type>::type
|
|
>::type Result;
|
|
|
|
MaskToMaxOperator(BinaryOperator b)
|
|
: b_(b)
|
|
{}
|
|
/// \brief Apply the underlying binary operator according to the mask.
|
|
///
|
|
/// If mask is 0 then t2 will be substituted by the maximum value,
|
|
/// else t2 will be used.
|
|
/// \param t1 first value
|
|
/// \param t2 second value (might be modified).
|
|
template<class T, class T1>
|
|
T operator()(const T& t1, const T& t2, const T1& mask)
|
|
{
|
|
return b_(t1, maskValue(t2, mask));
|
|
}
|
|
template<class T, class T1>
|
|
T maskValue(const T& t, const T1& mask)
|
|
{
|
|
if( mask )
|
|
{
|
|
return t;
|
|
}
|
|
else
|
|
{
|
|
return std::numeric_limits<T>::max();
|
|
}
|
|
}
|
|
BinaryOperator& localOperator()
|
|
{
|
|
return b_;
|
|
}
|
|
Result getInitialValue()
|
|
{
|
|
return std::numeric_limits<Result>::max();
|
|
}
|
|
private:
|
|
BinaryOperator b_;
|
|
};
|
|
/// \brief Create a functor for computing a global sum.
|
|
///
|
|
/// To be used with ParallelISTLInformation::computeReduction.
|
|
template<class T>
|
|
MaskIDOperator<std::plus<T> >
|
|
makeGlobalSumFunctor()
|
|
{
|
|
return MaskIDOperator<std::plus<T> >();
|
|
}
|
|
/// \brief Create a functor for computing a global maximum.
|
|
///
|
|
/// To be used with ParallelISTLInformation::computeReduction.
|
|
template<class T>
|
|
auto makeGlobalMaxFunctor()
|
|
{
|
|
struct MaxOp
|
|
{
|
|
using result_type = T;
|
|
const result_type& operator()(const T& t1, const T& t2)
|
|
{
|
|
return std::max(t1, t2);
|
|
}
|
|
};
|
|
return MaskToMinOperator(MaxOp());
|
|
}
|
|
|
|
namespace detail
|
|
{
|
|
/// \brief Computes the maximum of the absolute values of two values.
|
|
template<typename T, typename Enable = void>
|
|
struct MaxAbsFunctor
|
|
{
|
|
using result_type = T;
|
|
result_type operator()(const T& t1,
|
|
const T& t2)
|
|
{
|
|
return std::max(std::abs(t1), std::abs(t2));
|
|
}
|
|
};
|
|
|
|
// Specialization for unsigned integers. They need their own
|
|
// version since abs(x) is ambiguous (as well as somewhat
|
|
// meaningless).
|
|
template<typename T>
|
|
struct MaxAbsFunctor<T, typename std::enable_if<std::is_unsigned<T>::value>::type>
|
|
{
|
|
using result_type = T;
|
|
result_type operator()(const T& t1,
|
|
const T& t2)
|
|
{
|
|
return std::max(t1, t2);
|
|
}
|
|
};
|
|
}
|
|
|
|
/// \brief Create a functor for computing a global L infinity norm
|
|
///
|
|
/// To be used with ParallelISTLInformation::computeReduction.
|
|
template<class T>
|
|
MaskIDOperator<detail::MaxAbsFunctor<T> >
|
|
makeLInfinityNormFunctor()
|
|
{
|
|
return MaskIDOperator<detail::MaxAbsFunctor<T> >();
|
|
}
|
|
/// \brief Create a functor for computing a global minimum.
|
|
///
|
|
/// To be used with ParallelISTLInformation::computeReduction.
|
|
template<class T>
|
|
auto
|
|
makeGlobalMinFunctor()
|
|
{
|
|
struct MinOp
|
|
{
|
|
using result_type = T;
|
|
const result_type& operator()(const T& t1, const T& t2)
|
|
{
|
|
return std::min(t1, t2);
|
|
}
|
|
};
|
|
return MaskToMaxOperator(MinOp());
|
|
}
|
|
template<class T>
|
|
InnerProductFunctor<T>
|
|
makeInnerProductFunctor()
|
|
{
|
|
return InnerProductFunctor<T>();
|
|
}
|
|
} // end namespace Reduction
|
|
} // end namespace Opm
|
|
|
|
#endif
|
|
|
|
namespace Opm
|
|
{
|
|
/// \brief Extracts the information about the data decomposition from the grid for dune-istl
|
|
///
|
|
/// In the case that grid is a parallel grid this method will query it to get the information
|
|
/// about the data decompoisition and convert it to the format expected by the linear algebra
|
|
/// of dune-istl.
|
|
/// \warn for UnstructuredGrid this function doesn't do anything.
|
|
/// \param anyComm The handle to store the information in. If grid is a parallel grid
|
|
/// then this will ecapsulate an instance of ParallelISTLInformation.
|
|
/// \param grid The grid to inspect.
|
|
|
|
inline void extractParallelGridInformationToISTL(std::any& anyComm, const UnstructuredGrid& grid)
|
|
{
|
|
(void)anyComm; (void)grid;
|
|
}
|
|
|
|
/// \brief Accumulates entries masked with 1.
|
|
/// \param container The container whose values to accumulate.
|
|
/// \param maskContainer null pointer or a pointer to a container
|
|
/// with entries 0 and 1. Only values at indices with a 1 stored
|
|
/// will be accumulated. If null then all values will be accumulated
|
|
/// \return the summ of all entries that should be represented.
|
|
template<class T1>
|
|
auto
|
|
accumulateMaskedValues(const T1& container, const std::vector<double>* maskContainer)
|
|
-> decltype(container[0]*(*maskContainer)[0])
|
|
{
|
|
decltype(container[0]*(*maskContainer)[0]) initial = 0;
|
|
|
|
if( maskContainer )
|
|
{
|
|
return std::inner_product(container.begin(), container.end(), maskContainer->begin(),
|
|
initial);
|
|
}else
|
|
{
|
|
return std::accumulate(container.begin(), container.end(), initial);
|
|
}
|
|
}
|
|
} // end namespace Opm
|
|
|
|
#endif
|