opm-simulators/tests/test_RestartSerialization.cpp

541 lines
20 KiB
C++

/*
Copyright 2019 SINTEF Digital, Mathematics and Cybernetics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#include "TestTypeTag.hpp"
#include <opm/common/utility/Serializer.hpp>
#include <opm/input/eclipse/Schedule/Action/State.hpp>
#include <opm/input/eclipse/EclipseState/SummaryConfig/SummaryConfig.hpp>
#include <opm/input/eclipse/Schedule/SummaryState.hpp>
#include <opm/input/eclipse/Schedule/UDQ/UDQState.hpp>
#include <opm/output/eclipse/Inplace.hpp>
#include <opm/input/eclipse/EclipseState/WagHysteresisConfig.hpp>
#include <opm/material/fluidmatrixinteractions/EclHysteresisTwoPhaseLawParams.hpp>
#include <opm/models/blackoil/blackoilprimaryvariables.hh>
#include <opm/simulators/flow/FemCpGridCompat.hpp>
#include <opm/simulators/flow/FlowGenericVanguard.hpp>
#include <opm/simulators/flow/FlowProblem.hpp>
#include <opm/simulators/timestepping/AdaptiveTimeStepping.hpp>
#include <opm/simulators/timestepping/SimulatorReport.hpp>
#include <opm/simulators/timestepping/SimulatorTimer.hpp>
#include <opm/simulators/timestepping/TimeStepControl.hpp>
#include <opm/simulators/utils/SerializationPackers.hpp>
#include <opm/simulators/wells/ALQState.hpp>
#include <opm/simulators/wells/BlackoilWellModelGeneric.hpp>
#include <opm/simulators/wells/GroupState.hpp>
#include <opm/simulators/wells/PerfData.hpp>
#include <opm/simulators/wells/SegmentState.hpp>
#include <opm/simulators/wells/SingleWellState.hpp>
#define BOOST_TEST_MODULE TestRestartSerialization
#define BOOST_TEST_NO_MAIN
#include <boost/date_time/gregorian/gregorian.hpp>
#include <boost/test/unit_test.hpp>
#include <algorithm>
namespace Opm::Properties {
namespace TTag {
struct TestRestartTypeTag {
using InheritsFrom = std::tuple<TestTypeTag, FlowTimeSteppingParameters>;
};
}
template<>
struct LinearSolverBackend<TTag::TestRestartTypeTag, TTag::FlowIstlSolverParams> {
using type = ISTLSolver<TTag::TestRestartTypeTag>;
};
}
template<class T>
std::tuple<T,int,int> PackUnpack(T& in)
{
Opm::Serialization::MemPacker packer;
Opm::Serializer ser(packer);
ser.pack(in);
const size_t pos1 = ser.position();
T out{};
ser.unpack(out);
const size_t pos2 = ser.position();
return std::make_tuple(std::move(out), pos1, pos2);
}
#define TEST_FOR_TYPE_NAMED_OBJ(TYPE, NAME, OBJ) \
BOOST_AUTO_TEST_CASE(NAME) \
{ \
auto val1 = Opm::TYPE::OBJ(); \
auto val2 = PackUnpack(val1); \
BOOST_CHECK_MESSAGE(std::get<1>(val2) == std::get<2>(val2), "Packed size differ from unpack size for " #TYPE); \
BOOST_CHECK_MESSAGE(val1 == std::get<0>(val2), "Deserialized " #TYPE " differ"); \
}
#define TEST_FOR_TYPE_NAMED(TYPE, NAME) \
TEST_FOR_TYPE_NAMED_OBJ(TYPE, NAME, serializationTestObject)
#define TEST_FOR_TYPE(TYPE) \
TEST_FOR_TYPE_NAMED(TYPE, TYPE)
TEST_FOR_TYPE(ALQState)
TEST_FOR_TYPE(GroupState)
TEST_FOR_TYPE(HardcodedTimeStepControl)
TEST_FOR_TYPE(Inplace)
TEST_FOR_TYPE(PerfData)
TEST_FOR_TYPE(PIDAndIterationCountTimeStepControl)
TEST_FOR_TYPE(PIDTimeStepControl)
TEST_FOR_TYPE(SegmentState)
TEST_FOR_TYPE(SimpleIterationCountTimeStepControl)
TEST_FOR_TYPE(SimulatorReport)
TEST_FOR_TYPE(SimulatorReportSingle)
TEST_FOR_TYPE(SimulatorTimer)
namespace Opm { using ATS = AdaptiveTimeStepping<Properties::TTag::TestTypeTag>; }
TEST_FOR_TYPE_NAMED_OBJ(ATS, AdaptiveTimeSteppingHardcoded, serializationTestObjectHardcoded)
TEST_FOR_TYPE_NAMED_OBJ(ATS, AdaptiveTimeSteppingPID, serializationTestObjectPID)
TEST_FOR_TYPE_NAMED_OBJ(ATS, AdaptiveTimeSteppingPIDIt, serializationTestObjectPIDIt)
TEST_FOR_TYPE_NAMED_OBJ(ATS, AdaptiveTimeSteppingSimple, serializationTestObjectSimple)
namespace Opm { using BPV = BlackOilPrimaryVariables<Properties::TTag::TestTypeTag>; }
TEST_FOR_TYPE_NAMED(BPV, BlackoilPrimaryVariables)
namespace Opm {
struct DummyMaterial {
struct Params {
struct Traits {
using Scalar = double;
};
};
};
using HystParam = EclHysteresisTwoPhaseLawParams<DummyMaterial>;
}
TEST_FOR_TYPE_NAMED(HystParam, EclHysteresisTwoPhaseLawParams)
namespace Opm {
using Disc = Opm::FvBaseDiscretization<Opm::Properties::TTag::TestTypeTag>;
using BVec = typename Disc::BlockVectorWrapper;
}
TEST_FOR_TYPE_NAMED(BVec, BlockVectorWrapper)
BOOST_AUTO_TEST_CASE(SingleWellState)
{
Opm::ParallelWellInfo dummy;
auto data_out = Opm::SingleWellState::serializationTestObject(dummy);
Opm::Serialization::MemPacker packer;
Opm::Serializer ser(packer);
ser.pack(data_out);
const size_t pos1 = ser.position();
decltype(data_out) data_in("", dummy, false, 0.0, {}, Opm::PhaseUsage{}, 0.0);
ser.unpack(data_in);
const size_t pos2 = ser.position();
BOOST_CHECK_MESSAGE(pos1 == pos2, "Packed size differ from unpack size for SingleWellState");
BOOST_CHECK_MESSAGE(data_out == data_in, "Deserialized SingleWellState differ");
}
BOOST_AUTO_TEST_CASE(WellContainer)
{
auto data_out = Opm::WellContainer<double>::serializationTestObject(1.0);
Opm::Serialization::MemPacker packer;
Opm::Serializer ser(packer);
ser.pack(data_out);
const size_t pos1 = ser.position();
decltype(data_out) data_in;
ser.unpack(data_in);
const size_t pos2 = ser.position();
BOOST_CHECK_MESSAGE(pos1 == pos2, "Packed size differ from unpack size for WellContainer");
BOOST_CHECK_MESSAGE(data_out == data_in, "Deserialized WellContainer differ");
}
BOOST_AUTO_TEST_CASE(WellState)
{
Opm::ParallelWellInfo dummy;
auto data_out = Opm::WellState::serializationTestObject(dummy);
Opm::Serialization::MemPacker packer;
Opm::Serializer ser(packer);
ser.pack(data_out);
const size_t pos1 = ser.position();
decltype(data_out) data_in(dummy);
ser.unpack(data_in);
const size_t pos2 = ser.position();
BOOST_CHECK_MESSAGE(pos1 == pos2, "Packed size differ from unpack size for WellState");
BOOST_CHECK_MESSAGE(data_out == data_in, "Deserialized WellState differ");
}
BOOST_AUTO_TEST_CASE(WGState)
{
Opm::ParallelWellInfo dummy;
auto data_out = Opm::WGState::serializationTestObject(dummy);
Opm::Serialization::MemPacker packer;
Opm::Serializer ser(packer);
ser.pack(data_out);
const size_t pos1 = ser.position();
decltype(data_out) data_in(Opm::PhaseUsage{});
data_in.well_state = Opm::WellState(dummy);
ser.unpack(data_in);
const size_t pos2 = ser.position();
BOOST_CHECK_MESSAGE(pos1 == pos2, "Packed size differ from unpack size for WGState");
BOOST_CHECK_MESSAGE(data_out == data_in, "Deserialized WGState differ");
}
BOOST_AUTO_TEST_CASE(EclGenericVanguard)
{
auto in_params = Opm::FlowGenericVanguard::serializationTestParams();
Opm::FlowGenericVanguard val1(std::move(in_params));
Opm::Serialization::MemPacker packer;
Opm::Serializer ser(packer);
ser.pack(val1);
const size_t pos1 = ser.position();
Opm::FlowGenericVanguard::SimulationModelParams out_params;
out_params.setupTime_ = 0.0;
out_params.actionState_ = std::make_unique<Opm::Action::State>();
out_params.udqState_ = std::make_unique<Opm::UDQState>();
out_params.eclSchedule_ = std::make_shared<Opm::Schedule>();
out_params.summaryState_ = std::make_unique<Opm::SummaryState>();
Opm::FlowGenericVanguard val2(std::move(out_params));
ser.unpack(val2);
const size_t pos2 = ser.position();
BOOST_CHECK_MESSAGE(pos1 == pos2, "Packed size differ from unpack size for FlowGenericVanguard");
BOOST_CHECK_MESSAGE(val1 == val2, "Deserialized FlowGenericVanguard differ");
}
BOOST_AUTO_TEST_CASE(EclGenericProblem)
{
Opm::EclipseState eclState;
Opm::Schedule schedule;
Dune::CpGrid grid;
#if HAVE_DUNE_FEM
using GridPart = Dune::Fem::AdaptiveLeafGridPart<Dune::CpGrid, Dune::PartitionIteratorType(4), false>;
using GridView = Dune::GridView<Dune::Fem::GridPart2GridViewTraits<GridPart>>;
auto gridPart = GridPart(grid);
auto gridView = GridView(static_cast<GridView>(gridPart));
#else
using GridView = Dune::GridView<Dune::DefaultLeafGridViewTraits<Dune::CpGrid>>;
auto gridView = grid.leafGridView();
#endif // HAVE_DUNE_FEM
auto data_out
= Opm::FlowGenericProblem<GridView, Opm::BlackOilFluidSystem<double, Opm::BlackOilDefaultIndexTraits>>::
serializationTestObject(eclState, schedule, gridView);
Opm::Serialization::MemPacker packer;
Opm::Serializer ser(packer);
ser.pack(data_out);
const size_t pos1 = ser.position();
decltype(data_out) data_in(eclState, schedule, gridView);
ser.unpack(data_in);
const size_t pos2 = ser.position();
BOOST_CHECK_MESSAGE(pos1 == pos2, "Packed size differ from unpack size for EclGenericProblem");
BOOST_CHECK_MESSAGE(data_out == data_in, "Deserialized EclGenericProblem differ");
}
namespace Opm {
class BlackoilWellModelGenericTest : public BlackoilWellModelGeneric
{
public:
BlackoilWellModelGenericTest(Schedule& schedule,
const SummaryState& summaryState,
const EclipseState& eclState,
const PhaseUsage& phase_usage,
const Parallel::Communication& comm,
bool deserialize)
: BlackoilWellModelGeneric(schedule, summaryState,
eclState, phase_usage, comm)
{
if (deserialize) {
active_wgstate_.well_state = WellState(dummy);
last_valid_wgstate_.well_state = WellState(dummy);
nupcol_wgstate_.well_state = WellState(dummy);
}
}
void setSerializationTestData()
{
initial_step_ = true;
report_step_starts_ = true;
last_run_wellpi_ = 1;
local_shut_wells_ = {2, 3};
closed_this_step_ = {"test1", "test2"};
guideRate_.setSerializationTestData();
node_pressures_ = {{"test3", 4.0}};
active_wgstate_ = WGState::serializationTestObject(dummy);
last_valid_wgstate_ = WGState::serializationTestObject(dummy);
nupcol_wgstate_ = WGState::serializationTestObject(dummy);
last_glift_opt_time_ = 5.0;
switched_prod_groups_ = {{"test4", "test5"}};
switched_inj_groups_ = {{{"test4", Phase::SOLVENT}, "test5"}};
}
void calcRates(const int, const int, const std::vector<double>&, std::vector<double>&) override
{}
void calcInjRates(const int, const int, std::vector<double>&) override
{}
void computePotentials(const std::size_t,
const WellState&,
std::string&,
ExceptionType::ExcEnum&,
DeferredLogger&) override
{}
void createWellContainer(const int) override
{}
void initWellContainer(const int) override
{}
void calculateProductivityIndexValuesShutWells(const int,
DeferredLogger&) override
{}
void calculateProductivityIndexValues(DeferredLogger&) override
{}
int compressedIndexForInterior(int) const override
{
return 0;
}
private:
ParallelWellInfo dummy;
};
}
BOOST_AUTO_TEST_CASE(BlackoilWellModelGeneric)
{
Opm::Schedule schedule{};
Opm::SummaryState summaryState{};
Opm::EclipseState eclState{};
Opm::PhaseUsage phase_usage{};
Opm::Parallel::Communication comm{};
Opm::BlackoilWellModelGenericTest data_out(schedule, summaryState,
eclState, phase_usage, comm, false);
data_out.setSerializationTestData();
Opm::Serialization::MemPacker packer;
Opm::Serializer ser(packer);
ser.pack(data_out);
const size_t pos1 = ser.position();
Opm::BlackoilWellModelGenericTest data_in(schedule, summaryState,
eclState, phase_usage, comm, true);
ser.unpack(data_in);
const size_t pos2 = ser.position();
BOOST_CHECK_MESSAGE(pos1 == pos2, "Packed size differ from unpack size for BlackoilWellModelGeneric");
BOOST_CHECK_MESSAGE(data_out == data_in, "Deserialized BlackoilWellModelGeneric differ");
}
template<class Grid, class GridView, class DofMapper, class Stencil, class Scalar>
class GenericTracerModelTest : public Opm::GenericTracerModel<Grid,GridView,DofMapper,Stencil,Scalar>
{
using Base = Opm::GenericTracerModel<Grid,GridView,DofMapper,Stencil,Scalar>;
public:
GenericTracerModelTest(const GridView& gridView,
const Opm::EclipseState& eclState,
const Dune::CartesianIndexMapper<Grid>& cartMapper,
const DofMapper& dofMapper,
const std::function<std::array<double,Grid::dimensionworld>(int)> centroids) :
Base(gridView, eclState, cartMapper, dofMapper, centroids)
{}
static GenericTracerModelTest
serializationTestObject(const GridView& gridView,
const Opm::EclipseState& eclState,
const Dune::CartesianIndexMapper<Grid>& cartMapper,
const DofMapper& dofMapper,
const std::function<std::array<double,Grid::dimensionworld>(int)> centroids)
{
GenericTracerModelTest result(gridView, eclState, cartMapper, dofMapper, centroids);
result.tracerConcentration_ = {{1.0}, {2.0}, {3.0}};
result.wellTracerRate_.insert({{"foo", "bar"}, 4.0});
return result;
}
bool operator==(const GenericTracerModelTest& rhs) const
{
if (this->tracerConcentration_.size() != rhs.tracerConcentration_.size()) {
return false;
}
for (size_t i = 0; i < this->tracerConcentration_.size(); ++i) {
if (!std::equal(this->tracerConcentration_[i].begin(),
this->tracerConcentration_[i].end(),
rhs.tracerConcentration_[i].begin(),
rhs.tracerConcentration_[i].end())) {
return false;
}
}
return this->wellTracerRate_ == rhs.wellTracerRate_;
}
};
BOOST_AUTO_TEST_CASE(EclGenericTracerModel)
{
Dune::CpGrid grid;
Opm::EclipseState eclState;
Dune::CartesianIndexMapper<Dune::CpGrid> mapper(grid);
auto centroids = [](int) { return std::array<double,Dune::CpGrid::dimensionworld>{}; };
#if HAVE_DUNE_FEM
using GridPart = Dune::Fem::AdaptiveLeafGridPart<Dune::CpGrid, Dune::PartitionIteratorType(4), false>;
using GridView = Dune::GridView<Dune::Fem::GridPart2GridViewTraits<GridPart>>;
auto gridPart = GridPart(grid);
auto gridView = GridView(static_cast<GridView>(gridPart));
#else
using GridView = Dune::GridView<Dune::DefaultLeafGridViewTraits<Dune::CpGrid>>;
auto gridView = grid.leafGridView();
#endif // HAVE_DUNE_FEM
Dune::MultipleCodimMultipleGeomTypeMapper<GridView> dofMapper(gridView, Dune::mcmgElementLayout());
auto data_out = GenericTracerModelTest<Dune::CpGrid,
GridView,
Dune::MultipleCodimMultipleGeomTypeMapper<GridView>,
Opm::EcfvStencil<double, GridView, false, false>,
double>
::serializationTestObject(gridView, eclState, mapper, dofMapper, centroids);
Opm::Serialization::MemPacker packer;
Opm::Serializer ser(packer);
ser.pack(data_out);
const size_t pos1 = ser.position();
decltype(data_out) data_in(gridView, eclState, mapper, dofMapper, centroids);
ser.unpack(data_in);
const size_t pos2 = ser.position();
BOOST_CHECK_MESSAGE(pos1 == pos2, "Packed size differ from unpack size for EclGenericTracerModel");
BOOST_CHECK_MESSAGE(data_out == data_in, "Deserialized EclGenericTracerModel differ");
}
namespace Opm {
class TBatchExport : public TracerModel<Properties::TTag::TestTypeTag> {
public:
using TBatch = TracerBatch<double>;
};
}
TEST_FOR_TYPE_NAMED(TBatchExport::TBatch, TracerBatch)
namespace {
struct AquiferFixture {
AquiferFixture() {
using namespace Opm;
using TT = Properties::TTag::TestRestartTypeTag;
const char* argv[] = {
"test_RestartSerialization",
"--ecl-deck-file-name=GLIFT1.DATA"
};
AdaptiveTimeStepping<TT>::registerParameters();
BlackoilModelParameters<TT>::registerParameters();
EWOMS_REGISTER_PARAM(TT, bool, EnableTerminalOutput, "Do *NOT* use!");
setupParameters_<TT>(2, argv, /*registerParams=*/true);
FlowGenericVanguard::setCommunication(std::make_unique<Opm::Parallel::Communication>());
}
};
}
BOOST_GLOBAL_FIXTURE(AquiferFixture);
#define TEST_FOR_AQUIFER(TYPE) \
BOOST_AUTO_TEST_CASE(TYPE) \
{ \
using TT = Opm::Properties::TTag::TestRestartTypeTag; \
Opm::FlowGenericVanguard::readDeck("GLIFT1.DATA"); \
using Simulator = Opm::GetPropType<TT, Opm::Properties::Simulator>; \
Simulator sim; \
auto data_out = Opm::TYPE<TT>::serializationTestObject(sim); \
Opm::Serialization::MemPacker packer; \
Opm::Serializer ser(packer); \
ser.pack(data_out); \
const size_t pos1 = ser.position(); \
decltype(data_out) data_in({}, sim, {}); \
ser.unpack(data_in); \
const size_t pos2 = ser.position(); \
BOOST_CHECK_MESSAGE(pos1 == pos2, "Packed size differ from unpack size for " #TYPE); \
BOOST_CHECK_MESSAGE(data_out == data_in, "Deserialized " #TYPE " differ"); \
}
TEST_FOR_AQUIFER(AquiferCarterTracy)
TEST_FOR_AQUIFER(AquiferFetkovich)
BOOST_AUTO_TEST_CASE(AquiferNumerical)
{
using TT = Opm::Properties::TTag::TestRestartTypeTag;
Opm::FlowGenericVanguard::readDeck("GLIFT1.DATA");
using Simulator = Opm::GetPropType<TT, Opm::Properties::Simulator>;
Simulator sim;
auto data_out = Opm::AquiferNumerical<TT>::serializationTestObject(sim);
Opm::Serialization::MemPacker packer;
Opm::Serializer ser(packer);
ser.pack(data_out);
const size_t pos1 = ser.position();
decltype(data_out) data_in({}, sim);
ser.unpack(data_in);
const size_t pos2 = ser.position();
BOOST_CHECK_MESSAGE(pos1 == pos2, "Packed size differ from unpack size for AquiferNumerical");
BOOST_CHECK_MESSAGE(data_out == data_in, "Deserialized AquiferNumerical differ");
}
BOOST_AUTO_TEST_CASE(AquiferConstantFlux)
{
using TT = Opm::Properties::TTag::TestRestartTypeTag;
Opm::FlowGenericVanguard::readDeck("GLIFT1.DATA");
using Simulator = Opm::GetPropType<TT, Opm::Properties::Simulator>;
Simulator sim;
auto data_out = Opm::AquiferConstantFlux<TT>::serializationTestObject(sim);
Opm::Serialization::MemPacker packer;
Opm::Serializer ser(packer);
ser.pack(data_out);
const size_t pos1 = ser.position();
decltype(data_out) data_in({}, sim, {});
ser.unpack(data_in);
const size_t pos2 = ser.position();
BOOST_CHECK_MESSAGE(pos1 == pos2, "Packed size differ from unpack size for AquiferConstantFlux");
BOOST_CHECK_MESSAGE(data_out == data_in, "Deserialized AquiferConstantFlux differ");
}
bool init_unit_test_func()
{
return true;
}
int main(int argc, char** argv)
{
// MPI setup.
int argcDummy = 1;
const char *tmp[] = {"test_RestartSerialization"};
char **argvDummy = const_cast<char**>(tmp);
#if HAVE_DUNE_FEM
Dune::Fem::MPIManager::initialize(argcDummy, argvDummy);
#else
Dune::MPIHelper::instance(argcDummy, argvDummy);
#endif
return boost::unit_test::unit_test_main(&init_unit_test_func, argc, argv);
}