mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-16 17:51:57 -06:00
243 lines
7.7 KiB
C++
243 lines
7.7 KiB
C++
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
|
// vi: set et ts=4 sw=4 sts=4:
|
|
/*
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
Consult the COPYING file in the top-level source directory of this
|
|
module for the precise wording of the license and the list of
|
|
copyright holders.
|
|
*/
|
|
/*!
|
|
* \file
|
|
* \copydoc Opm::Linear::CombinedCriterion
|
|
*/
|
|
#ifndef EWOMS_COMBINED_CRITERION_HH
|
|
#define EWOMS_COMBINED_CRITERION_HH
|
|
|
|
#include "convergencecriterion.hh"
|
|
|
|
#include <iostream>
|
|
|
|
namespace Opm {
|
|
namespace Linear {
|
|
|
|
/*! \addtogroup Linear
|
|
* \{
|
|
*/
|
|
|
|
/*!
|
|
* \brief Convergence criterion which looks at the absolute value of the residual and
|
|
* fails if the linear solver stagnates.
|
|
*
|
|
* For the CombinedCriterion, the error of the solution is defined as \f[ e^k = \max_i\{
|
|
* \left| r^k_i \right| \}\;, \f]
|
|
*
|
|
* where \f$r^k = \mathbf{A} x^k - b \f$ is the residual for the k-th iterative solution
|
|
* vector \f$x^k\f$.
|
|
*
|
|
* In addition, to the reduction of the maximum residual, the linear solver is aborted
|
|
* early if the residual goes below or above absolute limits.
|
|
*/
|
|
template <class Vector, class CollectiveCommunication>
|
|
class CombinedCriterion : public ConvergenceCriterion<Vector>
|
|
{
|
|
using Scalar = typename Vector::field_type;
|
|
using BlockType = typename Vector::block_type;
|
|
|
|
public:
|
|
CombinedCriterion(const CollectiveCommunication& comm)
|
|
: comm_(comm)
|
|
{}
|
|
|
|
CombinedCriterion(const CollectiveCommunication& comm,
|
|
Scalar residualReductionTolerance,
|
|
Scalar absResidualTolerance = 0.0,
|
|
Scalar maxResidual = 0.0)
|
|
: comm_(comm),
|
|
residualReductionTolerance_(residualReductionTolerance),
|
|
absResidualTolerance_(absResidualTolerance),
|
|
maxResidual_(maxResidual)
|
|
{ }
|
|
|
|
/*!
|
|
* \brief Sets the residual reduction tolerance.
|
|
*/
|
|
void setResidualReductionTolerance(Scalar tol)
|
|
{ residualReductionTolerance_ = tol; }
|
|
|
|
/*!
|
|
* \brief Returns the tolerance of the residual reduction of the solution.
|
|
*/
|
|
Scalar residualReductionTolerance() const
|
|
{ return residualReductionTolerance_; }
|
|
|
|
/*!
|
|
* \brief Returns the reduction of the maximum of the residual compared to the
|
|
* initial solution.
|
|
*/
|
|
Scalar residualReduction() const
|
|
{ return residualError_/std::max<Scalar>(1e-20, initialResidualError_); }
|
|
|
|
/*!
|
|
* \brief Sets the maximum absolute tolerated residual.
|
|
*/
|
|
void setAbsResidualTolerance(Scalar tol)
|
|
{ absResidualTolerance_ = tol; }
|
|
|
|
/*!
|
|
* \brief Returns the tolerated maximum of the the infinity norm of the absolute
|
|
* residual.
|
|
*/
|
|
Scalar absResidualTolerance() const
|
|
{ return absResidualTolerance_; }
|
|
|
|
/*!
|
|
* \brief Returns the infinity norm of the absolute residual.
|
|
*/
|
|
Scalar absResidual() const
|
|
{ return residualError_; }
|
|
|
|
/*!
|
|
* \copydoc ConvergenceCriterion::setInitial(const Vector& , const Vector& )
|
|
*/
|
|
void setInitial(const Vector& curSol, const Vector& curResid) override
|
|
{
|
|
updateErrors_(curSol, curSol, curResid);
|
|
stagnates_ = false;
|
|
|
|
// to avoid divisions by zero, make sure that we don't use an initial error of 0
|
|
residualError_ = std::max<Scalar>(residualError_,
|
|
std::numeric_limits<Scalar>::min()*1e10);
|
|
initialResidualError_ = residualError_;
|
|
lastResidualError_ = residualError_;
|
|
}
|
|
|
|
/*!
|
|
* \copydoc ConvergenceCriterion::update(const Vector&, const Vector&, const Vector&)
|
|
*/
|
|
void update(const Vector& curSol, const Vector& changeIndicator, const Vector& curResid) override
|
|
{ updateErrors_(curSol, changeIndicator, curResid); }
|
|
|
|
/*!
|
|
* \copydoc ConvergenceCriterion::converged()
|
|
*/
|
|
bool converged() const override
|
|
{
|
|
// we're converged if the solution is better than the tolerance
|
|
// fix-point and residual tolerance.
|
|
return
|
|
residualReduction() <= residualReductionTolerance() ||
|
|
absResidual() <= absResidualTolerance();
|
|
}
|
|
|
|
/*!
|
|
* \copydoc ConvergenceCriterion::failed()
|
|
*/
|
|
bool failed() const override
|
|
{ return !converged() && (stagnates_ || residualError_ > maxResidual_); }
|
|
|
|
/*!
|
|
* \copydoc ConvergenceCriterion::accuracy()
|
|
*
|
|
* For the accuracy we only take the residual into account,
|
|
*/
|
|
Scalar accuracy() const override
|
|
{ return residualError_/initialResidualError_; }
|
|
|
|
/*!
|
|
* \copydoc ConvergenceCriterion::printInitial()
|
|
*/
|
|
void printInitial(std::ostream& os = std::cout) const override
|
|
{
|
|
os << std::setw(20) << "iteration ";
|
|
os << std::setw(20) << "residual ";
|
|
os << std::setw(20) << "reduction ";
|
|
os << std::setw(20) << "rate ";
|
|
os << std::endl;
|
|
}
|
|
|
|
/*!
|
|
* \copydoc ConvergenceCriterion::print()
|
|
*/
|
|
void print(Scalar iter, std::ostream& os = std::cout) const override
|
|
{
|
|
const Scalar eps = std::numeric_limits<Scalar>::min()*1e10;
|
|
|
|
os << std::setw(20) << iter << " ";
|
|
os << std::setw(20) << absResidual() << " ";
|
|
os << std::setw(20) << accuracy() << " ";
|
|
os << std::setw(20) << lastResidualError_/std::max<Scalar>(residualError_, eps) << " ";
|
|
os << std::endl << std::flush;
|
|
}
|
|
|
|
private:
|
|
// update the weighted absolute residual
|
|
void updateErrors_(const Vector& curSol OPM_UNUSED, const Vector& changeIndicator, const Vector& curResid)
|
|
{
|
|
lastResidualError_ = residualError_;
|
|
residualError_ = 0.0;
|
|
stagnates_ = true;
|
|
for (size_t i = 0; i < curResid.size(); ++i) {
|
|
for (unsigned j = 0; j < BlockType::dimension; ++j) {
|
|
residualError_ =
|
|
std::max<Scalar>(residualError_,
|
|
std::abs(curResid[i][j]));
|
|
|
|
if (stagnates_ && changeIndicator[i][j] != 0.0)
|
|
// only stagnation means that we've failed!
|
|
stagnates_ = false;
|
|
}
|
|
}
|
|
|
|
residualError_ = comm_.max(residualError_);
|
|
|
|
// the linear solver only stagnates if all processes stagnate
|
|
stagnates_ = comm_.min(stagnates_);
|
|
}
|
|
|
|
const CollectiveCommunication& comm_;
|
|
|
|
// the infinity norm of the residual of the last iteration
|
|
Scalar lastResidualError_;
|
|
|
|
// the infinity norm of the residual of the current iteration
|
|
Scalar residualError_;
|
|
|
|
// the infinity norm of the residual of the initial solution
|
|
Scalar initialResidualError_;
|
|
|
|
// the minimum reduction of the residual norm where the solution is to be considered
|
|
// converged
|
|
Scalar residualReductionTolerance_;
|
|
|
|
// the maximum residual norm for the residual for the solution to be considered to be
|
|
// converged
|
|
Scalar absResidualTolerance_;
|
|
|
|
// The maximum error which is tolerated before we fail.
|
|
Scalar maxResidual_;
|
|
|
|
// does the linear solver seem to stagnate, i.e. were the last two solutions
|
|
// identical?
|
|
bool stagnates_;
|
|
};
|
|
|
|
//! \} end documentation
|
|
|
|
}} // end namespace Linear, Opm
|
|
|
|
#endif
|