mirror of
https://github.com/OPM/opm-simulators.git
synced 2024-12-25 16:51:00 -06:00
2f208962f0
that class is not used by flow_ebos anymore...
737 lines
21 KiB
C++
737 lines
21 KiB
C++
/*
|
|
Copyright 2014, 2015 SINTEF ICT, Applied Mathematics.
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#ifndef OPM_AUTODIFFMATRIX_HEADER_INCLUDED
|
|
#define OPM_AUTODIFFMATRIX_HEADER_INCLUDED
|
|
|
|
#include <opm/common/utility/platform_dependent/disable_warnings.h>
|
|
|
|
#include <Eigen/Eigen>
|
|
#include <Eigen/Sparse>
|
|
|
|
#include <opm/common/utility/platform_dependent/reenable_warnings.h>
|
|
|
|
#include <opm/common/ErrorMacros.hpp>
|
|
#include <opm/autodiff/fastSparseOperations.hpp>
|
|
#include <vector>
|
|
|
|
|
|
namespace Opm
|
|
{
|
|
|
|
/**
|
|
* AutoDiffMatrix is a wrapper class that optimizes matrix operations.
|
|
* Internally, an AutoDiffMatrix can be either Zero, Identity, Diagonal,
|
|
* or Sparse, and we utilize this to perform faster matrix operations.
|
|
*/
|
|
class AutoDiffMatrix
|
|
{
|
|
public:
|
|
typedef std::vector<double> DiagRep;
|
|
typedef Eigen::SparseMatrix<double> SparseRep;
|
|
|
|
|
|
/**
|
|
* Creates an empty zero matrix
|
|
*/
|
|
AutoDiffMatrix()
|
|
: type_(Zero),
|
|
rows_(0),
|
|
cols_(0),
|
|
diag_(),
|
|
sparse_()
|
|
{
|
|
}
|
|
|
|
|
|
/**
|
|
* Creates a zero matrix with num_rows x num_cols entries
|
|
*/
|
|
AutoDiffMatrix(const int num_rows, const int num_cols)
|
|
: type_(Zero),
|
|
rows_(num_rows),
|
|
cols_(num_cols),
|
|
diag_(),
|
|
sparse_()
|
|
{
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
* Creates an identity matrix with num_rows_cols x num_rows_cols entries
|
|
*/
|
|
static AutoDiffMatrix createIdentity(const int num_rows_cols)
|
|
{
|
|
return AutoDiffMatrix(Identity, num_rows_cols, num_rows_cols);
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
* Creates a diagonal matrix from an Eigen diagonal matrix
|
|
*/
|
|
explicit AutoDiffMatrix(const Eigen::DiagonalMatrix<double, Eigen::Dynamic>& d)
|
|
: type_(Diagonal),
|
|
rows_(d.rows()),
|
|
cols_(d.cols()),
|
|
diag_(d.diagonal().array().data(), d.diagonal().array().data() + d.rows()),
|
|
sparse_()
|
|
{
|
|
assert(rows_ == cols_);
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
* Creates a sparse matrix from an Eigen sparse matrix
|
|
*/
|
|
explicit AutoDiffMatrix(const Eigen::SparseMatrix<double>& s)
|
|
: type_(Sparse),
|
|
rows_(s.rows()),
|
|
cols_(s.cols()),
|
|
diag_(),
|
|
sparse_(s)
|
|
{
|
|
}
|
|
|
|
|
|
|
|
AutoDiffMatrix(const AutoDiffMatrix& other) = default;
|
|
AutoDiffMatrix& operator=(const AutoDiffMatrix& other) = default;
|
|
|
|
|
|
|
|
AutoDiffMatrix(AutoDiffMatrix&& other)
|
|
: type_(Zero),
|
|
rows_(0),
|
|
cols_(0),
|
|
diag_(),
|
|
sparse_()
|
|
{
|
|
swap(other);
|
|
}
|
|
|
|
|
|
|
|
AutoDiffMatrix& operator=(AutoDiffMatrix&& other)
|
|
{
|
|
swap(other);
|
|
return *this;
|
|
}
|
|
|
|
|
|
|
|
void swap(AutoDiffMatrix& other)
|
|
{
|
|
std::swap(type_, other.type_);
|
|
std::swap(rows_, other.rows_);
|
|
std::swap(cols_, other.cols_);
|
|
diag_.swap(other.diag_);
|
|
sparse_.swap(other.sparse_);
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
* Adds two AutoDiffMatrices. Internally, this function optimizes
|
|
* the addition operation based on the structure of the matrix, e.g.,
|
|
* adding two zero matrices will obviously yield a zero matrix, and
|
|
* so on.
|
|
*/
|
|
AutoDiffMatrix operator+(const AutoDiffMatrix& rhs) const
|
|
{
|
|
assert(rows_ == rhs.rows_);
|
|
assert(cols_ == rhs.cols_);
|
|
switch (type_) {
|
|
case Zero:
|
|
return rhs;
|
|
case Identity:
|
|
switch (rhs.type_) {
|
|
case Zero:
|
|
return *this;
|
|
case Identity:
|
|
return addII(*this, rhs);
|
|
case Diagonal:
|
|
return addDI(rhs, *this);
|
|
case Sparse:
|
|
return addSI(rhs, *this);
|
|
default:
|
|
OPM_THROW(std::logic_error, "Invalid AutoDiffMatrix type encountered: " << rhs.type_);
|
|
}
|
|
case Diagonal:
|
|
switch (rhs.type_) {
|
|
case Zero:
|
|
return *this;
|
|
case Identity:
|
|
return addDI(*this, rhs);
|
|
case Diagonal:
|
|
return addDD(*this, rhs);
|
|
case Sparse:
|
|
return addSD(rhs, *this);
|
|
default:
|
|
OPM_THROW(std::logic_error, "Invalid AutoDiffMatrix type encountered: " << rhs.type_);
|
|
}
|
|
case Sparse:
|
|
switch (rhs.type_) {
|
|
case Zero:
|
|
return *this;
|
|
case Identity:
|
|
return addSI(*this, rhs);
|
|
case Diagonal:
|
|
return addSD(*this, rhs);
|
|
case Sparse:
|
|
return addSS(*this, rhs);
|
|
default:
|
|
OPM_THROW(std::logic_error, "Invalid AutoDiffMatrix type encountered: " << rhs.type_);
|
|
}
|
|
default:
|
|
OPM_THROW(std::logic_error, "Invalid AutoDiffMatrix type encountered: " << rhs.type_);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
* Multiplies two AutoDiffMatrices. Internally, this function optimizes
|
|
* the multiplication operation based on the structure of the matrix, e.g.,
|
|
* multiplying M with a zero matrix will obviously yield a zero matrix.
|
|
*/
|
|
AutoDiffMatrix operator*(const AutoDiffMatrix& rhs) const
|
|
{
|
|
assert(cols_ == rhs.rows_);
|
|
switch (type_) {
|
|
case Zero:
|
|
return AutoDiffMatrix(rows_, rhs.cols_);
|
|
case Identity:
|
|
return rhs;
|
|
case Diagonal:
|
|
switch (rhs.type_) {
|
|
case Zero:
|
|
return AutoDiffMatrix(rows_, rhs.cols_);
|
|
case Identity:
|
|
return *this;
|
|
case Diagonal:
|
|
return mulDD(*this, rhs);
|
|
case Sparse:
|
|
return mulDS(*this, rhs);
|
|
default:
|
|
OPM_THROW(std::logic_error, "Invalid AutoDiffMatrix type encountered: " << rhs.type_);
|
|
}
|
|
case Sparse:
|
|
switch (rhs.type_) {
|
|
case Zero:
|
|
return AutoDiffMatrix(rows_, rhs.cols_);
|
|
case Identity:
|
|
return *this;
|
|
case Diagonal:
|
|
return mulSD(*this, rhs);
|
|
case Sparse:
|
|
return mulSS(*this, rhs);
|
|
default:
|
|
OPM_THROW(std::logic_error, "Invalid AutoDiffMatrix type encountered: " << rhs.type_);
|
|
}
|
|
default:
|
|
OPM_THROW(std::logic_error, "Invalid AutoDiffMatrix type encountered: " << rhs.type_);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
AutoDiffMatrix& operator+=(const AutoDiffMatrix& rhs)
|
|
{
|
|
if( type_ == Sparse && rhs.type_ == Sparse )
|
|
{
|
|
fastSparseAdd( sparse_, rhs.sparse_ );
|
|
}
|
|
else {
|
|
*this = *this + rhs;
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
AutoDiffMatrix& operator-=(const AutoDiffMatrix& rhs)
|
|
{
|
|
if( type_ == Sparse && rhs.type_ == Sparse )
|
|
{
|
|
fastSparseSubstract( sparse_, rhs.sparse_ );
|
|
}
|
|
else {
|
|
*this = *this + (rhs * -1.0);
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
* Multiplies an AutoDiffMatrix with a scalar. Optimizes internally
|
|
* by exploiting that e.g., an identity matrix multiplied by a scalar x
|
|
* yields a diagonal matrix with x the diagonal.
|
|
*/
|
|
AutoDiffMatrix operator*(const double rhs) const
|
|
{
|
|
switch (type_) {
|
|
case Zero:
|
|
return *this;
|
|
case Identity:
|
|
{
|
|
AutoDiffMatrix retval(*this);
|
|
retval.type_ = Diagonal;
|
|
retval.diag_.assign(rows_, rhs);
|
|
return retval;
|
|
}
|
|
case Diagonal:
|
|
{
|
|
AutoDiffMatrix retval(*this);
|
|
for (double& elem : retval.diag_) {
|
|
elem *= rhs;
|
|
}
|
|
return retval;
|
|
}
|
|
case Sparse:
|
|
{
|
|
AutoDiffMatrix retval(*this);
|
|
retval.sparse_ *= rhs;
|
|
return retval;
|
|
}
|
|
default:
|
|
OPM_THROW(std::logic_error, "Invalid AutoDiffMatrix type encountered: " << type_);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
* Divides an AutoDiffMatrix by a scalar. Optimizes internally
|
|
* by exploiting that e.g., an identity matrix divided by a scalar x
|
|
* yields a diagonal matrix with 1/x on the diagonal.
|
|
*/
|
|
AutoDiffMatrix operator/(const double rhs) const
|
|
{
|
|
switch (type_) {
|
|
case Zero:
|
|
return *this;
|
|
case Identity:
|
|
{
|
|
AutoDiffMatrix retval(*this);
|
|
retval.type_ = Diagonal;
|
|
retval.diag_.assign(rows_, 1.0/rhs);
|
|
return retval;
|
|
}
|
|
case Diagonal:
|
|
{
|
|
AutoDiffMatrix retval(*this);
|
|
for (double& elem : retval.diag_) {
|
|
elem /= rhs;
|
|
}
|
|
return retval;
|
|
}
|
|
case Sparse:
|
|
{
|
|
AutoDiffMatrix retval(*this);
|
|
retval.sparse_ /= rhs;
|
|
return retval;
|
|
}
|
|
default:
|
|
OPM_THROW(std::logic_error, "Invalid AutoDiffMatrix type encountered: " << type_);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
* Multiplies an AutoDiffMatrix with a vector. Optimizes internally
|
|
* by exploiting that e.g., an identity matrix multiplied by a vector
|
|
* yields the vector itself.
|
|
*/
|
|
Eigen::VectorXd operator*(const Eigen::VectorXd& rhs) const
|
|
{
|
|
assert(cols_ == rhs.size());
|
|
switch (type_) {
|
|
case Zero:
|
|
return Eigen::VectorXd::Zero(rows_);
|
|
case Identity:
|
|
return rhs;
|
|
case Diagonal:
|
|
{
|
|
const Eigen::VectorXd d = Eigen::Map<const Eigen::VectorXd>(diag_.data(), rows_);
|
|
return d.cwiseProduct(rhs);
|
|
}
|
|
case Sparse:
|
|
return sparse_ * rhs;
|
|
default:
|
|
OPM_THROW(std::logic_error, "Invalid AutoDiffMatrix type encountered: " << type_);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Add identity to identity
|
|
static AutoDiffMatrix addII(const AutoDiffMatrix& lhs, const AutoDiffMatrix& rhs)
|
|
{
|
|
assert(lhs.type_ == Identity);
|
|
assert(rhs.type_ == Identity);
|
|
AutoDiffMatrix retval;
|
|
retval.type_ = Diagonal;
|
|
retval.rows_ = lhs.rows_;
|
|
retval.cols_ = rhs.cols_;
|
|
retval.diag_.assign(lhs.rows_, 2.0);
|
|
return retval;
|
|
}
|
|
|
|
// Add diagonal to identity
|
|
static AutoDiffMatrix addDI(const AutoDiffMatrix& lhs, const AutoDiffMatrix& rhs)
|
|
{
|
|
static_cast<void>(rhs); // Silence release-mode warning.
|
|
assert(lhs.type_ == Diagonal);
|
|
assert(rhs.type_ == Identity);
|
|
AutoDiffMatrix retval = lhs;
|
|
for (int r = 0; r < lhs.rows_; ++r) {
|
|
retval.diag_[r] += 1.0;
|
|
}
|
|
return retval;
|
|
}
|
|
|
|
// Add diagonal to diagonal
|
|
static AutoDiffMatrix addDD(const AutoDiffMatrix& lhs, const AutoDiffMatrix& rhs)
|
|
{
|
|
assert(lhs.type_ == Diagonal);
|
|
assert(rhs.type_ == Diagonal);
|
|
AutoDiffMatrix retval = lhs;
|
|
for (int r = 0; r < lhs.rows_; ++r) {
|
|
retval.diag_[r] += rhs.diag_[r];
|
|
}
|
|
return retval;
|
|
}
|
|
|
|
// Add sparse to identity
|
|
static AutoDiffMatrix addSI(const AutoDiffMatrix& lhs, const AutoDiffMatrix& rhs)
|
|
{
|
|
static_cast<void>(rhs); // Silence release-mode warning.
|
|
assert(lhs.type_ == Sparse);
|
|
assert(rhs.type_ == Identity);
|
|
AutoDiffMatrix retval = lhs;
|
|
retval.sparse_ += spdiag(Eigen::VectorXd::Ones(lhs.rows_));;
|
|
return retval;
|
|
}
|
|
|
|
// Add sparse to diagonal
|
|
static AutoDiffMatrix addSD(const AutoDiffMatrix& lhs, const AutoDiffMatrix& rhs)
|
|
{
|
|
assert(lhs.type_ == Sparse);
|
|
assert(rhs.type_ == Diagonal);
|
|
AutoDiffMatrix retval = lhs;
|
|
retval.sparse_ += spdiag(rhs.diag_);
|
|
return retval;
|
|
}
|
|
|
|
// Add sparse to sparse
|
|
static AutoDiffMatrix addSS(const AutoDiffMatrix& lhs, const AutoDiffMatrix& rhs)
|
|
{
|
|
assert(lhs.type_ == Sparse);
|
|
assert(rhs.type_ == Sparse);
|
|
AutoDiffMatrix retval = lhs;
|
|
retval.sparse_ += rhs.sparse_;
|
|
return retval;
|
|
}
|
|
|
|
|
|
|
|
|
|
// Multiply diagonal with diagonal
|
|
static AutoDiffMatrix mulDD(const AutoDiffMatrix& lhs, const AutoDiffMatrix& rhs)
|
|
{
|
|
assert(lhs.type_ == Diagonal);
|
|
assert(rhs.type_ == Diagonal);
|
|
AutoDiffMatrix retval = lhs;
|
|
for (int r = 0; r < lhs.rows_; ++r) {
|
|
retval.diag_[r] *= rhs.diag_[r];
|
|
}
|
|
return retval;
|
|
}
|
|
|
|
// Multiply diagonal with sparse
|
|
static AutoDiffMatrix mulDS(const AutoDiffMatrix& lhs, const AutoDiffMatrix& rhs)
|
|
{
|
|
assert(lhs.type_ == Diagonal);
|
|
assert(rhs.type_ == Sparse);
|
|
AutoDiffMatrix retval;
|
|
retval.type_ = Sparse;
|
|
retval.rows_ = lhs.rows_;
|
|
retval.cols_ = rhs.cols_;
|
|
fastDiagSparseProduct(lhs.diag_, rhs.sparse_, retval.sparse_);
|
|
return retval;
|
|
}
|
|
|
|
// Multiply sparse with diagonal
|
|
static AutoDiffMatrix mulSD(const AutoDiffMatrix& lhs, const AutoDiffMatrix& rhs)
|
|
{
|
|
assert(lhs.type_ == Sparse);
|
|
assert(rhs.type_ == Diagonal);
|
|
AutoDiffMatrix retval;
|
|
retval.type_ = Sparse;
|
|
retval.rows_ = lhs.rows_;
|
|
retval.cols_ = rhs.cols_;
|
|
fastSparseDiagProduct(lhs.sparse_, rhs.diag_, retval.sparse_);
|
|
return retval;
|
|
}
|
|
|
|
// Multiply sparse with sparse
|
|
static AutoDiffMatrix mulSS(const AutoDiffMatrix& lhs, const AutoDiffMatrix& rhs)
|
|
{
|
|
assert(lhs.type_ == Sparse);
|
|
assert(rhs.type_ == Sparse);
|
|
AutoDiffMatrix retval;
|
|
retval.type_ = Sparse;
|
|
retval.rows_ = lhs.rows_;
|
|
retval.cols_ = rhs.cols_;
|
|
fastSparseProduct(lhs.sparse_, rhs.sparse_, retval.sparse_);
|
|
return retval;
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
* Converts the AutoDiffMatrix to an Eigen SparseMatrix.This might be
|
|
* an expensive operation to perform for e.g., an identity matrix or a
|
|
* diagonal matrix.
|
|
*/
|
|
template<class Scalar, int Options, class Index>
|
|
void toSparse(Eigen::SparseMatrix<Scalar, Options, Index>& s) const
|
|
{
|
|
switch (type_) {
|
|
case Zero:
|
|
s = Eigen::SparseMatrix<Scalar, Options, Index>(rows_, cols_);
|
|
return;
|
|
case Identity:
|
|
s = spdiag(Eigen::VectorXd::Ones(rows_));
|
|
return;
|
|
case Diagonal:
|
|
s = spdiag(diag_);
|
|
return;
|
|
case Sparse:
|
|
s = sparse_;
|
|
return;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
* Returns number of rows in the matrix
|
|
*/
|
|
int rows() const
|
|
{
|
|
return rows_;
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
* Returns number of columns in the matrix
|
|
*/
|
|
int cols() const
|
|
{
|
|
return cols_;
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
* Returns number of non-zero elements in the matrix. Optimizes internally
|
|
* by exploiting that e.g., an n*n identity matrix has n non-zeros.
|
|
* Note that an n*n diagonal matrix is defined to have n non-zeros, even though
|
|
* several diagonal elements might be 0.0.
|
|
*/
|
|
int nonZeros() const
|
|
{
|
|
switch (type_) {
|
|
case Zero:
|
|
return 0;
|
|
case Identity:
|
|
return rows_;
|
|
case Diagonal:
|
|
return rows_;
|
|
case Sparse:
|
|
return sparse_.nonZeros();
|
|
default:
|
|
OPM_THROW(std::logic_error, "Invalid AutoDiffMatrix type encountered: " << type_);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
* Returns element (row, col) in the matrix
|
|
*/
|
|
double coeff(const int row, const int col) const
|
|
{
|
|
switch (type_) {
|
|
case Zero:
|
|
return 0.0;
|
|
case Identity:
|
|
return (row == col) ? 1.0 : 0.0;
|
|
case Diagonal:
|
|
return (row == col) ? diag_[row] : 0.0;
|
|
case Sparse:
|
|
return sparse_.coeff(row, col);
|
|
default:
|
|
OPM_THROW(std::logic_error, "Invalid AutoDiffMatrix type encountered: " << type_);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
* Returns the sparse representation of this matrix. Note that this might
|
|
* be an expensive operation to perform if the internal structure is not
|
|
* sparse.
|
|
*/
|
|
const SparseRep& getSparse() const {
|
|
if (type_ != Sparse) {
|
|
/**
|
|
* If we are not a sparse matrix, our internal variable sparse_
|
|
* is undefined, and hence changing it so that it happens to be
|
|
* a sparse representation of our true data does not change our
|
|
* true data, and hence justifies that we do not really violate
|
|
* the const qualifier.
|
|
*/
|
|
SparseRep& mutable_sparse = const_cast<SparseRep&>(sparse_);
|
|
toSparse(mutable_sparse);
|
|
}
|
|
return sparse_;
|
|
}
|
|
|
|
|
|
private:
|
|
enum AudoDiffMatrixType { Zero, Identity, Diagonal, Sparse };
|
|
|
|
AudoDiffMatrixType type_; //< Type of matrix
|
|
int rows_; //< Number of rows
|
|
int cols_; //< Number of columns
|
|
DiagRep diag_; //< Diagonal representation (only if type==Diagonal)
|
|
SparseRep sparse_; //< Sparse representation (only if type==Sparse)
|
|
|
|
|
|
|
|
/**
|
|
* Constructor which sets all members
|
|
*/
|
|
AutoDiffMatrix(AudoDiffMatrixType type, int rows_arg, int cols_arg,
|
|
DiagRep diag=DiagRep(), SparseRep sparse=SparseRep())
|
|
: type_(type),
|
|
rows_(rows_arg),
|
|
cols_(cols_arg),
|
|
diag_(diag),
|
|
sparse_(sparse)
|
|
{
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
* Creates a sparse diagonal matrix from d.
|
|
* Typical use is to convert a standard vector to an
|
|
* Eigen sparse matrix.
|
|
*/
|
|
template <class V>
|
|
static inline
|
|
SparseRep
|
|
spdiag(const V& d)
|
|
{
|
|
const int n = d.size();
|
|
SparseRep mat(n, n);
|
|
mat.reserve(Eigen::ArrayXi::Ones(n, 1));
|
|
for (SparseRep::Index i = 0; i < n; ++i) {
|
|
if (d[i] != 0.0) {
|
|
mat.insert(i, i) = d[i];
|
|
}
|
|
}
|
|
|
|
return mat;
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
/**
|
|
* Utility function to lessen code changes required elsewhere.
|
|
*/
|
|
inline void fastSparseProduct(const AutoDiffMatrix& lhs, const AutoDiffMatrix& rhs, AutoDiffMatrix& res)
|
|
{
|
|
res = lhs * rhs;
|
|
}
|
|
|
|
|
|
/**
|
|
* Utility function to lessen code changes required elsewhere.
|
|
*/
|
|
inline void fastSparseProduct(const Eigen::SparseMatrix<double>& lhs, const AutoDiffMatrix& rhs, AutoDiffMatrix& res)
|
|
{
|
|
res = AutoDiffMatrix(lhs) * rhs;
|
|
}
|
|
|
|
|
|
/**
|
|
* Multiplies an Eigen sparse matrix with an AutoDiffMatrix.
|
|
*/
|
|
inline AutoDiffMatrix operator*(const Eigen::SparseMatrix<double>& lhs, const AutoDiffMatrix& rhs)
|
|
{
|
|
AutoDiffMatrix retval;
|
|
fastSparseProduct(lhs, rhs, retval);
|
|
return retval;
|
|
}
|
|
|
|
} // namespace Opm
|
|
|
|
|
|
#endif // OPM_AUTODIFFMATRIX_HEADER_INCLUDED
|