opm-simulators/examples/problems/fingerproblem.hh
Robert Kloefkorn 47c9b39e3b FingerProblem: bug fix, store pointers of MaterialLaw since copying seems not ot work.
LensProblem: use structuredgridmanager from ewoms/io.
2016-01-08 12:08:04 -07:00

533 lines
17 KiB
C++

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
Copyright (C) 2008-2013 by Andreas Lauser
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
/*!
* \file
*
* \copydoc Ewoms::FingerProblem
*/
#ifndef EWOMS_FINGER_PROBLEM_HH
#define EWOMS_FINGER_PROBLEM_HH
// uncomment to run problem in 3d
// #define GRIDDIM 3
#include <ewoms/io/structuredgridmanager.hh>
#include <opm/material/fluidmatrixinteractions/RegularizedVanGenuchten.hpp>
#include <opm/material/fluidmatrixinteractions/LinearMaterial.hpp>
#include <opm/material/fluidmatrixinteractions/EffToAbsLaw.hpp>
#include <opm/material/fluidmatrixinteractions/ParkerLenhard.hpp>
#include <opm/material/fluidmatrixinteractions/MaterialTraits.hpp>
#include <opm/material/fluidsystems/TwoPhaseImmiscibleFluidSystem.hpp>
#include <opm/material/fluidstates/ImmiscibleFluidState.hpp>
#include <opm/material/components/SimpleH2O.hpp>
#include <opm/material/components/Air.hpp>
#include <ewoms/models/immiscible/immiscibleproperties.hh>
#include <ewoms/disc/common/restrictprolong.hh>
#include <dune/common/version.hh>
#include <dune/common/fvector.hh>
#include <dune/common/fmatrix.hh>
#include <dune/grid/utility/persistentcontainer.hh>
#include <vector>
#include <string>
namespace Ewoms {
template <class TypeTag>
class FingerProblem;
namespace Properties {
NEW_TYPE_TAG(FingerBaseProblem, INHERITS_FROM(StructuredGridManager));
// declare the properties used by the finger problem
NEW_PROP_TAG(InitialWaterSaturation);
// Set the problem property
SET_TYPE_PROP(FingerBaseProblem, Problem, Ewoms::FingerProblem<TypeTag>);
// Set the wetting phase
SET_PROP(FingerBaseProblem, WettingPhase)
{
private:
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
public:
typedef Opm::LiquidPhase<Scalar, Opm::SimpleH2O<Scalar> > type;
};
// Set the non-wetting phase
SET_PROP(FingerBaseProblem, NonwettingPhase)
{
private:
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
public:
typedef Opm::GasPhase<Scalar, Opm::Air<Scalar> > type;
};
// Set the material Law
SET_PROP(FingerBaseProblem, MaterialLaw)
{
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef Opm::TwoPhaseMaterialTraits<Scalar,
/*wettingPhaseIdx=*/FluidSystem::wettingPhaseIdx,
/*nonWettingPhaseIdx=*/FluidSystem::nonWettingPhaseIdx> Traits;
// use the parker-lenhard hysteresis law
typedef Opm::ParkerLenhard<Traits> ParkerLenhard;
typedef ParkerLenhard type;
};
// Write the solutions of individual newton iterations?
SET_BOOL_PROP(FingerBaseProblem, NewtonWriteConvergence, false);
// Use forward differences instead of central differences
SET_INT_PROP(FingerBaseProblem, NumericDifferenceMethod, +1);
// Enable constraints
SET_INT_PROP(FingerBaseProblem, EnableConstraints, true);
// Enable gravity
SET_BOOL_PROP(FingerBaseProblem, EnableGravity, true);
// define the properties specific for the finger problem
SET_SCALAR_PROP(FingerBaseProblem, DomainSizeX, 0.1);
SET_SCALAR_PROP(FingerBaseProblem, DomainSizeY, 0.3);
SET_SCALAR_PROP(FingerBaseProblem, DomainSizeZ, 0.1);
SET_SCALAR_PROP(FingerBaseProblem, InitialWaterSaturation, 0.01);
SET_INT_PROP(FingerBaseProblem, CellsX, 20);
SET_INT_PROP(FingerBaseProblem, CellsY, 70);
SET_INT_PROP(FingerBaseProblem, CellsZ, 1);
// The default for the end time of the simulation
SET_SCALAR_PROP(FingerBaseProblem, EndTime, 215);
// The default for the initial time step size of the simulation
SET_SCALAR_PROP(FingerBaseProblem, InitialTimeStepSize, 10);
} // namespace Properties
/*!
* \ingroup TestProblems
*
* \brief Two-phase problem featuring some gravity-driven saturation
* fingers.
*
* The domain of this problem is sized 10cm times 1m and is initially
* dry. Water is then injected at three locations on the top of the
* domain which leads to gravity fingering. The boundary conditions
* used are no-flow for the left and right and top of the domain and
* free-flow at the bottom. This problem uses the Parker-Lenhard
* hystersis model which might lead to non-monotonic saturation in the
* fingers if the right material parameters is chosen and the spatial
* discretization is fine enough.
*/
template <class TypeTag>
class FingerProblem : public GET_PROP_TYPE(TypeTag, BaseProblem)
{
//!\cond SKIP_THIS
typedef typename GET_PROP_TYPE(TypeTag, BaseProblem) ParentType;
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
typedef typename GET_PROP_TYPE(TypeTag, Indices) Indices;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef typename GET_PROP_TYPE(TypeTag, WettingPhase) WettingPhase;
typedef typename GET_PROP_TYPE(TypeTag, NonwettingPhase) NonwettingPhase;
typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) PrimaryVariables;
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
typedef typename GET_PROP_TYPE(TypeTag, Constraints) Constraints;
typedef typename GET_PROP_TYPE(TypeTag, Model) Model;
enum {
// number of phases
// phase indices
wettingPhaseIdx = FluidSystem::wettingPhaseIdx,
nonWettingPhaseIdx = FluidSystem::nonWettingPhaseIdx,
// equation indices
contiWettingEqIdx = Indices::conti0EqIdx + wettingPhaseIdx,
// Grid and world dimension
dim = GridView::dimension,
dimWorld = GridView::dimensionworld
};
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
typedef typename GET_PROP_TYPE(TypeTag, Stencil) Stencil;
enum { codim = Stencil::Entity::codimension };
typedef typename GET_PROP_TYPE(TypeTag, EqVector) EqVector;
typedef typename GET_PROP_TYPE(TypeTag, RateVector) RateVector;
typedef typename GET_PROP_TYPE(TypeTag, BoundaryRateVector) BoundaryRateVector;
typedef typename GET_PROP(TypeTag, MaterialLaw)::ParkerLenhard ParkerLenhard;
typedef typename GET_PROP_TYPE(TypeTag, MaterialLaw) MaterialLaw;
typedef typename GET_PROP_TYPE(TypeTag, MaterialLawParams) MaterialLawParams;
typedef typename GridView::ctype CoordScalar;
typedef Dune::FieldVector<CoordScalar, dimWorld> GlobalPosition;
typedef Dune::FieldMatrix<Scalar, dimWorld, dimWorld> DimMatrix;
typedef typename GridView :: Grid Grid;
typedef Dune::PersistentContainer< Grid, MaterialLawParams* > MaterialLawParamsContainer;
//!\endcond
public:
typedef CopyRestrictProlong< Grid, MaterialLawParamsContainer > RestrictProlongOperator;
/*!
* \copydoc Doxygen::defaultProblemConstructor
*/
FingerProblem(Simulator &simulator)
: ParentType(simulator),
materialParams_( simulator.gridManager().grid(), codim )
{
}
/*!
* \name Auxiliary methods
*/
//! \{
/*!
* \brief \copydoc FvBaseProblem::restrictProlongOperator
*/
RestrictProlongOperator restrictProlongOperator()
{
return RestrictProlongOperator( materialParams_ );
}
/*!
* \copydoc FvBaseProblem::name
*/
std::string name() const
{ return
std::string("finger") +
"_" + Model::name() +
"_" + Model::discretizationName() +
(this->model().enableGridAdaptation()?"_adaptive":"");
}
/*!
* \copydoc FvBaseMultiPhaseProblem::registerParameters
*/
static void registerParameters()
{
ParentType::registerParameters();
EWOMS_REGISTER_PARAM(TypeTag, Scalar, InitialWaterSaturation,
"The initial saturation in the domain [] of the "
"wetting phase");
}
/*!
* \copydoc FvBaseProblem::finishInit()
*/
void finishInit()
{
ParentType::finishInit();
eps_ = 3e-6;
temperature_ = 273.15 + 20; // -> 20°C
FluidSystem::init();
// parameters for the Van Genuchten law of the main imbibition
// and the main drainage curves.
micParams_.setVgAlpha(0.0037);
micParams_.setVgN(4.7);
micParams_.finalize();
mdcParams_.setVgAlpha(0.0037);
mdcParams_.setVgN(4.7);
mdcParams_.finalize();
// initialize the material parameter objects of the individual
// finite volumes, resize will resize the container to the number of elements
materialParams_.resize( (MaterialLawParams*) 0 );
for (auto it = materialParams_.begin(),
end = materialParams_.end(); it != end; ++it ) {
MaterialLawParams* materialParams = *it ;
if( ! materialParams )
{
materialParams = new MaterialLawParams();
materialParams->setMicParams(&micParams_);
materialParams->setMdcParams(&mdcParams_);
materialParams->setSwr(0.0);
materialParams->setSnr(0.1);
materialParams->finalize();
ParkerLenhard::reset(*materialParams);
*it = materialParams;
}
}
K_ = this->toDimMatrix_(4.6e-10);
setupInitialFluidState_();
}
/*!
* \copydoc FvBaseProblem::endTimeStep
*/
void endTimeStep()
{
#ifndef NDEBUG
// checkConservativeness() does not include the effect of constraints, so we
// disable it for this problem...
//this->model().checkConservativeness();
// Calculate storage terms
EqVector storage;
this->model().globalStorage(storage);
// Write mass balance information for rank 0
if (this->gridView().comm().rank() == 0) {
std::cout << "Storage: " << storage << std::endl << std::flush;
}
#endif // NDEBUG
// update the history of the hysteresis law
ElementContext elemCtx(this->simulator());
auto elemIt = this->gridView().template begin<0>();
const auto &elemEndIt = this->gridView().template end<0>();
for (; elemIt != elemEndIt; ++elemIt) {
const auto& elem = *elemIt;
elemCtx.updateAll( elem );
const int numDofs = elemCtx.numDof(/*timeIdx=*/0);
for (int scvIdx = 0; scvIdx < numDofs; ++scvIdx)
{
MaterialLawParams& materialParam = materialLawParams( elemCtx, scvIdx, /*timeIdx=*/0 );
const auto &fs = elemCtx.intensiveQuantities(scvIdx, /*timeIdx=*/0).fluidState();
ParkerLenhard::update(materialParam, fs);
}
}
}
//! \}
/*!
* \name Soil parameters
*/
//! \{
/*!
* \copydoc FvBaseMultiPhaseProblem::temperature
*/
template <class Context>
Scalar temperature(const Context &context, unsigned spaceIdx, unsigned timeIdx) const
{ return temperature_; }
/*!
* \copydoc FvBaseMultiPhaseProblem::intrinsicPermeability
*/
template <class Context>
const DimMatrix &intrinsicPermeability(const Context &context, unsigned spaceIdx,
unsigned timeIdx) const
{ return K_; }
/*!
* \copydoc FvBaseMultiPhaseProblem::porosity
*/
template <class Context>
Scalar porosity(const Context &context, unsigned spaceIdx, unsigned timeIdx) const
{ return 0.4; }
/*!
* \copydoc FvBaseMultiPhaseProblem::materialLawParams
*/
template <class Context>
MaterialLawParams &materialLawParams(const Context &context,
const int spaceIdx, const int timeIdx)
{
const auto& entity = context.stencil(timeIdx).entity( spaceIdx );
MaterialLawParams* params = materialParams_[ entity ];
assert( params );
return *params;
}
/*!
* \copydoc FvBaseMultiPhaseProblem::materialLawParams
*/
template <class Context>
const MaterialLawParams &materialLawParams(const Context &context,
const int spaceIdx, const int timeIdx) const
{
const auto& entity = context.stencil(timeIdx).entity( spaceIdx );
const MaterialLawParams* params = materialParams_[ entity ];
assert( params );
return *params;
}
//! \}
/*!
* \name Boundary conditions
*/
//! \{
/*!
* \copydoc FvBaseProblem::boundary
*/
template <class Context>
void boundary(BoundaryRateVector &values, const Context &context,
unsigned spaceIdx, unsigned timeIdx) const
{
const GlobalPosition &pos = context.pos(spaceIdx, timeIdx);
if (onLeftBoundary_(pos) || onRightBoundary_(pos) || onLowerBoundary_(pos))
values.setNoFlow();
else {
assert(onUpperBoundary_(pos));
values.setFreeFlow(context, spaceIdx, timeIdx, initialFluidState_);
}
// override the value for the liquid phase by forced
// imbibition of water on inlet boundary segments
if (onInlet_(pos)) {
values[contiWettingEqIdx] = -0.001; // [kg/(m^2 s)]
}
}
//! \}
/*!
* \name Volumetric terms
*/
//! \{
/*!
* \copydoc FvBaseProblem::initial
*/
template <class Context>
void initial(PrimaryVariables &values, const Context &context, unsigned spaceIdx,
unsigned timeIdx) const
{
// assign the primary variables
values.assignNaive(initialFluidState_);
}
/*!
* \copydoc FvBaseProblem::constraints
*/
template <class Context>
void constraints(Constraints &constraints, const Context &context,
unsigned spaceIdx, unsigned timeIdx) const
{
const GlobalPosition &pos = context.pos(spaceIdx, timeIdx);
if (onUpperBoundary_(pos) && !onInlet_(pos)) {
constraints.setActive(true);
constraints.assignNaive(initialFluidState_);
}
else if (onLowerBoundary_(pos)) {
constraints.setActive(true);
constraints.assignNaive(initialFluidState_);
}
}
/*!
* \copydoc FvBaseProblem::source
*
* For this problem, the source term of all components is 0
* everywhere.
*/
template <class Context>
void source(RateVector &rate, const Context &context, unsigned spaceIdx,
unsigned timeIdx) const
{ rate = Scalar(0.0); }
//! \}
private:
bool onLeftBoundary_(const GlobalPosition &pos) const
{ return pos[0] < this->boundingBoxMin()[0] + eps_; }
bool onRightBoundary_(const GlobalPosition &pos) const
{ return pos[0] > this->boundingBoxMax()[0] - eps_; }
bool onLowerBoundary_(const GlobalPosition &pos) const
{ return pos[1] < this->boundingBoxMin()[1] + eps_; }
bool onUpperBoundary_(const GlobalPosition &pos) const
{ return pos[1] > this->boundingBoxMax()[1] - eps_; }
bool onInlet_(const GlobalPosition &pos) const
{
Scalar width = this->boundingBoxMax()[0] - this->boundingBoxMin()[0];
Scalar lambda = (this->boundingBoxMax()[0] - pos[0]) / width;
if (!onUpperBoundary_(pos))
return false;
Scalar xInject[] = { 0.25, 0.75 };
Scalar injectLen[] = { 0.1, 0.1 };
for (unsigned i = 0; i < sizeof(xInject) / sizeof(Scalar); ++i) {
if (xInject[i] - injectLen[i] / 2 < lambda
&& lambda < xInject[i] + injectLen[i] / 2)
return true;
}
return false;
}
void setupInitialFluidState_()
{
auto &fs = initialFluidState_;
fs.setPressure(wettingPhaseIdx, /*pressure=*/1e5);
Scalar Sw = EWOMS_GET_PARAM(TypeTag, Scalar, InitialWaterSaturation);
fs.setSaturation(wettingPhaseIdx, Sw);
fs.setSaturation(nonWettingPhaseIdx, 1 - Sw);
fs.setTemperature(temperature_);
// set the absolute pressures
Scalar pn = 1e5;
fs.setPressure(nonWettingPhaseIdx, pn);
fs.setPressure(wettingPhaseIdx, pn);
}
DimMatrix K_;
typename MaterialLawParams::VanGenuchtenParams micParams_;
typename MaterialLawParams::VanGenuchtenParams mdcParams_;
MaterialLawParamsContainer materialParams_;
Opm::ImmiscibleFluidState<Scalar, FluidSystem> initialFluidState_;
Scalar temperature_;
Scalar eps_;
};
} // namespace Ewoms
#endif