opm-simulators/opm/simulators/wells/BlackoilWellModel_impl.hpp
2023-02-13 16:04:03 +01:00

1964 lines
76 KiB
C++

/*
Copyright 2016 - 2019 SINTEF Digital, Mathematics & Cybernetics.
Copyright 2016 - 2018 Equinor ASA.
Copyright 2017 Dr. Blatt - HPC-Simulation-Software & Services
Copyright 2016 - 2018 Norce AS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <opm/simulators/utils/DeferredLoggingErrorHelpers.hpp>
#include <opm/core/props/phaseUsageFromDeck.hpp>
#include <opm/grid/utility/cartesianToCompressed.hpp>
#include <opm/input/eclipse/Units/UnitSystem.hpp>
#include <opm/simulators/wells/BlackoilWellModelConstraints.hpp>
#include <opm/simulators/wells/VFPProperties.hpp>
#include <opm/simulators/utils/MPIPacker.hpp>
#include <opm/simulators/linalg/bda/WellContributions.hpp>
#if HAVE_MPI
#include <ebos/eclmpiserializer.hh>
#endif
#include <algorithm>
#include <utility>
#include <fmt/format.h>
namespace Opm {
template<typename TypeTag>
BlackoilWellModel<TypeTag>::
BlackoilWellModel(Simulator& ebosSimulator, const PhaseUsage& phase_usage)
: BlackoilWellModelGeneric(ebosSimulator.vanguard().schedule(),
ebosSimulator.vanguard().summaryState(),
ebosSimulator.vanguard().eclState(),
phase_usage,
ebosSimulator.gridView().comm())
, ebosSimulator_(ebosSimulator)
{
terminal_output_ = ((ebosSimulator.gridView().comm().rank() == 0) &&
EWOMS_GET_PARAM(TypeTag, bool, EnableTerminalOutput));
local_num_cells_ = ebosSimulator_.gridView().size(0);
// Number of cells the global grid view
global_num_cells_ = ebosSimulator_.vanguard().globalNumCells();
{
auto& parallel_wells = ebosSimulator.vanguard().parallelWells();
this->parallel_well_info_.reserve(parallel_wells.size());
for( const auto& name_bool : parallel_wells) {
this->parallel_well_info_.emplace_back(name_bool, grid().comm());
}
}
this->alternative_well_rate_init_ =
EWOMS_GET_PARAM(TypeTag, bool, AlternativeWellRateInit);
}
template<typename TypeTag>
BlackoilWellModel<TypeTag>::
BlackoilWellModel(Simulator& ebosSimulator) :
BlackoilWellModel(ebosSimulator, phaseUsageFromDeck(ebosSimulator.vanguard().eclState()))
{}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
init()
{
extractLegacyCellPvtRegionIndex_();
extractLegacyDepth_();
gravity_ = ebosSimulator_.problem().gravity()[2];
initial_step_ = true;
// add the eWoms auxiliary module for the wells to the list
ebosSimulator_.model().addAuxiliaryModule(this);
is_cell_perforated_.resize(local_num_cells_, false);
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
initWellContainer(const int reportStepIdx)
{
const uint64_t effective_events_mask = ScheduleEvents::WELL_STATUS_CHANGE
+ ScheduleEvents::NEW_WELL;
const auto& events = schedule()[reportStepIdx].wellgroup_events();
for (auto& wellPtr : this->well_container_) {
const bool well_opened_this_step = report_step_starts_ && events.hasEvent(wellPtr->name(), effective_events_mask);
wellPtr->init(&this->phase_usage_, this->depth_, this->gravity_,
this->local_num_cells_, this->B_avg_, well_opened_this_step);
}
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
addNeighbors(std::vector<NeighborSet>& neighbors) const
{
if (!param_.matrix_add_well_contributions_) {
return;
}
// Create cartesian to compressed mapping
const auto& schedule_wells = schedule().getWellsatEnd();
// initialize the additional cell connections introduced by wells.
for (const auto& well : schedule_wells)
{
std::vector<int> wellCells = this->getCellsForConnections(well);
for (int cellIdx : wellCells) {
neighbors[cellIdx].insert(wellCells.begin(),
wellCells.end());
}
}
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
linearize(SparseMatrixAdapter& jacobian, GlobalEqVector& res)
{
if (!param_.matrix_add_well_contributions_)
{
OPM_BEGIN_PARALLEL_TRY_CATCH();
{
// if the well contributions are not supposed to be included explicitly in
// the matrix, we only apply the vector part of the Schur complement here.
for (const auto& well: well_container_) {
// r = r - duneC_^T * invDuneD_ * resWell_
well->apply(res);
}
}
OPM_END_PARALLEL_TRY_CATCH("BlackoilWellModel::linearize failed: ",
ebosSimulator_.gridView().comm());
return;
}
for (const auto& well: well_container_) {
well->addWellContributions(jacobian);
// applying the well residual to reservoir residuals
// r = r - duneC_^T * invDuneD_ * resWell_
well->apply(res);
}
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
beginReportStep(const int timeStepIdx)
{
DeferredLogger local_deferredLogger;
report_step_starts_ = true;
const Grid& grid = ebosSimulator_.vanguard().grid();
const auto& summaryState = ebosSimulator_.vanguard().summaryState();
// Make wells_ecl_ contain only this partition's wells.
wells_ecl_ = getLocalWells(timeStepIdx);
this->local_parallel_well_info_ = createLocalParallelWellInfo(wells_ecl_);
// at least initializeWellState might be throw
// exception in opm-material (UniformTabulated2DFunction.hpp)
// playing it safe by extending the scope a bit.
OPM_BEGIN_PARALLEL_TRY_CATCH();
{
// The well state initialize bhp with the cell pressure in the top cell.
// We must therefore provide it with updated cell pressures
this->initializeWellPerfData();
this->initializeWellState(timeStepIdx, summaryState);
// handling MS well related
if (param_.use_multisegment_well_&& anyMSWellOpenLocal()) { // if we use MultisegmentWell model
this->wellState().initWellStateMSWell(wells_ecl_, &this->prevWellState());
}
const Group& fieldGroup = schedule().getGroup("FIELD", timeStepIdx);
WellGroupHelpers::setCmodeGroup(fieldGroup, schedule(), summaryState, timeStepIdx, this->wellState(), this->groupState());
// Compute reservoir volumes for RESV controls.
rateConverter_ = std::make_unique<RateConverterType>(phase_usage_,
std::vector<int>(local_num_cells_, 0));
rateConverter_->template defineState<ElementContext>(ebosSimulator_);
// Compute regional average pressures used by gpmaint
if (schedule_[timeStepIdx].has_gpmaint()) {
WellGroupHelpers::setRegionAveragePressureCalculator(fieldGroup, schedule(),
timeStepIdx, this->eclState_.fieldProps(), phase_usage_, regionalAveragePressureCalculator_);
}
{
const auto& sched_state = this->schedule()[timeStepIdx];
// update VFP properties
vfp_properties_ = std::make_unique<VFPProperties>(sched_state.vfpinj(),
sched_state.vfpprod(),
this->prevWellState());
this->initializeWellProdIndCalculators();
if (sched_state.events().hasEvent(ScheduleEvents::Events::WELL_PRODUCTIVITY_INDEX)) {
this->runWellPIScaling(timeStepIdx, local_deferredLogger);
}
}
}
OPM_END_PARALLEL_TRY_CATCH_LOG(local_deferredLogger, "beginReportStep() failed: ",
terminal_output_, grid.comm());
// Store the current well state, to be able to recover in the case of failed iterations
this->commitWGState();
}
// called at the beginning of a time step
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
beginTimeStep()
{
updatePerforationIntensiveQuantities();
updateAverageFormationFactor();
DeferredLogger local_deferredLogger;
switched_prod_groups_.clear();
switched_inj_groups_.clear();
this->resetWGState();
const int reportStepIdx = ebosSimulator_.episodeIndex();
updateAndCommunicateGroupData(reportStepIdx,
ebosSimulator_.model().newtonMethod().numIterations());
this->wellState().gliftTimeStepInit();
const double simulationTime = ebosSimulator_.time();
OPM_BEGIN_PARALLEL_TRY_CATCH();
{
// test wells
wellTesting(reportStepIdx, simulationTime, local_deferredLogger);
// create the well container
createWellContainer(reportStepIdx);
// Wells are active if they are active wells on at least one process.
const Grid& grid = ebosSimulator_.vanguard().grid();
wells_active_ = !this->well_container_.empty();
wells_active_ = grid.comm().max(wells_active_);
// do the initialization for all the wells
// TODO: to see whether we can postpone of the intialization of the well containers to
// optimize the usage of the following several member variables
this->initWellContainer(reportStepIdx);
// update the updated cell flag
std::fill(is_cell_perforated_.begin(), is_cell_perforated_.end(), false);
for (auto& well : well_container_) {
well->updatePerforatedCell(is_cell_perforated_);
}
// calculate the efficiency factors for each well
calculateEfficiencyFactors(reportStepIdx);
if constexpr (has_polymer_)
{
if (PolymerModule::hasPlyshlog() || getPropValue<TypeTag, Properties::EnablePolymerMW>() ) {
setRepRadiusPerfLength();
}
}
}
OPM_END_PARALLEL_TRY_CATCH_LOG(local_deferredLogger, "beginTimeStep() failed: ",
terminal_output_, ebosSimulator_.vanguard().grid().comm());
for (auto& well : well_container_) {
well->setVFPProperties(vfp_properties_.get());
well->setGuideRate(&guideRate_);
}
// Close completions due to economical reasons
for (auto& well : well_container_) {
well->closeCompletions(wellTestState());
}
if (alternative_well_rate_init_) {
// Update the well rates of well_state_, if only single-phase rates, to
// have proper multi-phase rates proportional to rates at bhp zero.
// This is done only for producers, as injectors will only have a single
// nonzero phase anyway.
for (auto& well : well_container_) {
if (well->isProducer()) {
well->updateWellStateRates(ebosSimulator_, this->wellState(), local_deferredLogger);
}
}
}
// calculate the well potentials
try {
updateWellPotentials(reportStepIdx,
/*onlyAfterEvent*/true,
ebosSimulator_.vanguard().summaryConfig(),
local_deferredLogger);
} catch ( std::runtime_error& e ) {
const std::string msg = "A zero well potential is returned for output purposes. ";
local_deferredLogger.warning("WELL_POTENTIAL_CALCULATION_FAILED", msg);
}
//update guide rates
const auto& comm = ebosSimulator_.vanguard().grid().comm();
const auto& summaryState = ebosSimulator_.vanguard().summaryState();
std::vector<double> pot(numPhases(), 0.0);
const Group& fieldGroup = schedule().getGroup("FIELD", reportStepIdx);
WellGroupHelpers::updateGuideRates(fieldGroup, schedule(), summaryState, this->phase_usage_, reportStepIdx, simulationTime,
this->wellState(), this->groupState(), comm, &this->guideRate_, pot, local_deferredLogger);
std::string exc_msg;
auto exc_type = ExceptionType::NONE;
// update gpmaint targets
if (schedule_[reportStepIdx].has_gpmaint()) {
for (auto& calculator : regionalAveragePressureCalculator_) {
calculator.second->template defineState<ElementContext>(ebosSimulator_);
}
const double dt = ebosSimulator_.timeStepSize();
WellGroupHelpers::updateGpMaintTargetForGroups(fieldGroup,
schedule_, regionalAveragePressureCalculator_, reportStepIdx, dt, this->wellState(), this->groupState());
}
try {
// Compute initial well solution for new wells and injectors that change injection type i.e. WAG.
for (auto& well : well_container_) {
const uint64_t effective_events_mask = ScheduleEvents::WELL_STATUS_CHANGE
+ ScheduleEvents::INJECTION_TYPE_CHANGED
+ ScheduleEvents::WELL_SWITCHED_INJECTOR_PRODUCER
+ ScheduleEvents::NEW_WELL;
const auto& events = schedule()[reportStepIdx].wellgroup_events();
const bool event = report_step_starts_ && events.hasEvent(well->name(), effective_events_mask);
const bool dyn_status_change = this->wellState().well(well->name()).status
!= this->prevWellState().well(well->name()).status;
if (event || dyn_status_change) {
try {
well->updateWellStateWithTarget(ebosSimulator_, this->groupState(), this->wellState(), local_deferredLogger);
well->calculateExplicitQuantities(ebosSimulator_, this->wellState(), local_deferredLogger);
well->solveWellEquation(ebosSimulator_, this->wellState(), this->groupState(), local_deferredLogger);
} catch (const std::exception& e) {
const std::string msg = "Compute initial well solution for new well " + well->name() + " failed. Continue with zero initial rates";
local_deferredLogger.warning("WELL_INITIAL_SOLVE_FAILED", msg);
}
}
}
}
// Catch clauses for all errors setting exc_type and exc_msg
OPM_PARALLEL_CATCH_CLAUSE(exc_type, exc_msg);
if (exc_type != ExceptionType::NONE) {
const std::string msg = "Compute initial well solution for new wells failed. Continue with zero initial rates";
local_deferredLogger.warning("WELL_INITIAL_SOLVE_FAILED", msg);
}
logAndCheckForExceptionsAndThrow(local_deferredLogger,
exc_type, "beginTimeStep() failed: " + exc_msg, terminal_output_, comm);
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::wellTesting(const int timeStepIdx,
const double simulationTime,
DeferredLogger& deferred_logger)
{
for (const std::string& well_name : this->getWellsForTesting(timeStepIdx, simulationTime)) {
const Well& wellEcl = schedule().getWell(well_name, timeStepIdx);
if (wellEcl.getStatus() == Well::Status::SHUT)
continue;
WellInterfacePtr well = createWellForWellTest(well_name, timeStepIdx, deferred_logger);
// some preparation before the well can be used
well->init(&phase_usage_, depth_, gravity_, local_num_cells_, B_avg_, true);
double well_efficiency_factor = wellEcl.getEfficiencyFactor();
WellGroupHelpers::accumulateGroupEfficiencyFactor(schedule().getGroup(wellEcl.groupName(), timeStepIdx),
schedule(), timeStepIdx, well_efficiency_factor);
well->setWellEfficiencyFactor(well_efficiency_factor);
well->setVFPProperties(vfp_properties_.get());
well->setGuideRate(&guideRate_);
well->wellTesting(ebosSimulator_, simulationTime, this->wellState(), this->groupState(), wellTestState(), deferred_logger);
}
}
// called at the end of a report step
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
endReportStep()
{
// Clear the communication data structures for above values.
for (auto&& pinfo : this->local_parallel_well_info_)
{
pinfo.get().clear();
}
}
// called at the end of a report step
template<typename TypeTag>
const SimulatorReportSingle&
BlackoilWellModel<TypeTag>::
lastReport() const {return last_report_; }
// called at the end of a time step
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
timeStepSucceeded(const double& simulationTime, const double dt)
{
this->closed_this_step_.clear();
// time step is finished and we are not any more at the beginning of an report step
report_step_starts_ = false;
const int reportStepIdx = ebosSimulator_.episodeIndex();
DeferredLogger local_deferredLogger;
for (const auto& well : well_container_) {
if (getPropValue<TypeTag, Properties::EnablePolymerMW>() && well->isInjector()) {
well->updateWaterThroughput(dt, this->wellState());
}
}
// report well switching
for (const auto& well : well_container_) {
well->reportWellSwitching(this->wellState().well(well->indexOfWell()), local_deferredLogger);
}
// report group switching
if (terminal_output_) {
for (const auto& [name, to] : switched_prod_groups_) {
const Group::ProductionCMode& oldControl = this->prevWGState().group_state.production_control(name);
std::string from = Group::ProductionCMode2String(oldControl);
if (to != from) {
std::string msg = " Production Group " + name
+ " control mode changed from ";
msg += from;
msg += " to " + to;
local_deferredLogger.info(msg);
}
}
for (const auto& [key, to] : switched_inj_groups_) {
const std::string& name = key.first;
const Opm::Phase& phase = key.second;
const Group::InjectionCMode& oldControl = this->prevWGState().group_state.injection_control(name, phase);
std::string from = Group::InjectionCMode2String(oldControl);
if (to != from) {
std::string msg = " Injection Group " + name
+ " control mode changed from ";
msg += from;
msg += " to " + to;
local_deferredLogger.info(msg);
}
}
}
// update the rate converter with current averages pressures etc in
rateConverter_->template defineState<ElementContext>(ebosSimulator_);
// calculate the well potentials
try {
updateWellPotentials(reportStepIdx,
/*onlyAfterEvent*/false,
ebosSimulator_.vanguard().summaryConfig(),
local_deferredLogger);
} catch ( std::runtime_error& e ) {
const std::string msg = "A zero well potential is returned for output purposes. ";
local_deferredLogger.warning("WELL_POTENTIAL_CALCULATION_FAILED", msg);
}
updateWellTestState(simulationTime, wellTestState());
// check group sales limits at the end of the timestep
const Group& fieldGroup = schedule_.getGroup("FIELD", reportStepIdx);
checkGconsaleLimits(fieldGroup, this->wellState(),
ebosSimulator_.episodeIndex(), local_deferredLogger);
this->calculateProductivityIndexValues(local_deferredLogger);
this->commitWGState();
const Opm::Parallel::Communication& comm = grid().comm();
DeferredLogger global_deferredLogger = gatherDeferredLogger(local_deferredLogger, comm);
if (terminal_output_) {
global_deferredLogger.logMessages();
}
//reporting output temperatures
this->computeWellTemperature();
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
computeTotalRatesForDof(RateVector& rate,
unsigned elemIdx) const
{
rate = 0;
if (!is_cell_perforated_[elemIdx])
return;
for (const auto& well : well_container_)
well->addCellRates(rate, elemIdx);
}
template<typename TypeTag>
template <class Context>
void
BlackoilWellModel<TypeTag>::
computeTotalRatesForDof(RateVector& rate,
const Context& context,
unsigned spaceIdx,
unsigned timeIdx) const
{
rate = 0;
int elemIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
if (!is_cell_perforated_[elemIdx])
return;
for (const auto& well : well_container_)
well->addCellRates(rate, elemIdx);
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
initializeWellState(const int timeStepIdx,
const SummaryState& summaryState)
{
std::vector<double> cellPressures(this->local_num_cells_, 0.0);
ElementContext elemCtx(ebosSimulator_);
const auto& gridView = ebosSimulator_.vanguard().gridView();
OPM_BEGIN_PARALLEL_TRY_CATCH();
for (const auto& elem : elements(gridView, Dune::Partitions::interior)) {
elemCtx.updatePrimaryStencil(elem);
elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
const auto& fs = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0).fluidState();
// copy of get perfpressure in Standard well except for value
double& perf_pressure = cellPressures[elemCtx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0)];
if (Indices::oilEnabled) {
perf_pressure = fs.pressure(FluidSystem::oilPhaseIdx).value();
} else if (Indices::waterEnabled) {
perf_pressure = fs.pressure(FluidSystem::waterPhaseIdx).value();
} else {
perf_pressure = fs.pressure(FluidSystem::gasPhaseIdx).value();
}
}
OPM_END_PARALLEL_TRY_CATCH("BlackoilWellModel::initializeWellState() failed: ", ebosSimulator_.vanguard().grid().comm());
this->wellState().init(cellPressures, schedule(), wells_ecl_, local_parallel_well_info_, timeStepIdx,
&this->prevWellState(), well_perf_data_,
summaryState);
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
createWellContainer(const int time_step)
{
DeferredLogger local_deferredLogger;
const int nw = numLocalWells();
well_container_.clear();
if (nw > 0) {
well_container_.reserve(nw);
for (int w = 0; w < nw; ++w) {
const Well& well_ecl = wells_ecl_[w];
if (!well_ecl.hasConnections()) {
// No connections in this well. Nothing to do.
continue;
}
const std::string& well_name = well_ecl.name();
const auto well_status = this->schedule()
.getWell(well_name, time_step).getStatus();
if ((well_ecl.getStatus() == Well::Status::SHUT) ||
(well_status == Well::Status::SHUT))
{
// Due to ACTIONX the well might have been closed behind our back.
if (well_ecl.getStatus() != Well::Status::SHUT) {
this->closed_this_step_.insert(well_name);
this->wellState().shutWell(w);
}
continue;
}
// A new WCON keywords can re-open a well that was closed/shut due to Physical limit
if (this->wellTestState().well_is_closed(well_name)) {
// TODO: more checking here, to make sure this standard more specific and complete
// maybe there is some WCON keywords will not open the well
auto& events = this->wellState().well(w).events;
if (events.hasEvent(WellState::event_mask)) {
if (wellTestState().lastTestTime(well_name) == ebosSimulator_.time()) {
// The well was shut this timestep, we are most likely retrying
// a timestep without the well in question, after it caused
// repeated timestep cuts. It should therefore not be opened,
// even if it was new or received new targets this report step.
events.clearEvent(WellState::event_mask);
} else {
wellTestState().open_well(well_name);
wellTestState().open_completions(well_name);
}
}
}
// TODO: should we do this for all kinds of closing reasons?
// something like wellTestState().hasWell(well_name)?
bool wellIsStopped = false;
if (wellTestState().well_is_closed(well_name))
{
if (well_ecl.getAutomaticShutIn()) {
// shut wells are not added to the well container
this->wellState().shutWell(w);
continue;
} else {
if (!well_ecl.getAllowCrossFlow()) {
// stopped wells where cross flow is not allowed
// are not added to the well container
this->wellState().shutWell(w);
continue;
}
// stopped wells are added to the container but marked as stopped
this->wellState().stopWell(w);
wellIsStopped = true;
}
}
// If a production well disallows crossflow and its
// (prediction type) rate control is zero, then it is effectively shut.
if (!well_ecl.getAllowCrossFlow() && well_ecl.isProducer() && well_ecl.predictionMode()) {
const auto& summaryState = ebosSimulator_.vanguard().summaryState();
const auto prod_controls = well_ecl.productionControls(summaryState);
auto is_zero = [](const double x)
{
return std::isfinite(x) && !std::isnormal(x);
};
bool zero_rate_control = false;
switch (prod_controls.cmode) {
case Well::ProducerCMode::ORAT:
zero_rate_control = is_zero(prod_controls.oil_rate);
break;
case Well::ProducerCMode::WRAT:
zero_rate_control = is_zero(prod_controls.water_rate);
break;
case Well::ProducerCMode::GRAT:
zero_rate_control = is_zero(prod_controls.gas_rate);
break;
case Well::ProducerCMode::LRAT:
zero_rate_control = is_zero(prod_controls.liquid_rate);
break;
case Well::ProducerCMode::RESV:
zero_rate_control = is_zero(prod_controls.resv_rate);
break;
default:
// Might still have zero rate controls, but is pressure controlled.
zero_rate_control = false;
break;
}
if (zero_rate_control) {
// Treat as shut, do not add to container.
local_deferredLogger.info(" Well shut due to zero rate control and disallowing crossflow: " + well_ecl.name());
this->wellState().shutWell(w);
continue;
}
}
if (well_status == Well::Status::STOP) {
this->wellState().stopWell(w);
wellIsStopped = true;
}
well_container_.emplace_back(this->createWellPointer(w, time_step));
if (wellIsStopped)
well_container_.back()->stopWell();
}
}
// Collect log messages and print.
const Opm::Parallel::Communication& comm = grid().comm();
DeferredLogger global_deferredLogger = gatherDeferredLogger(local_deferredLogger, comm);
if (terminal_output_) {
global_deferredLogger.logMessages();
}
well_container_generic_.clear();
for (auto& w : well_container_)
well_container_generic_.push_back(w.get());
}
template <typename TypeTag>
typename BlackoilWellModel<TypeTag>::WellInterfacePtr
BlackoilWellModel<TypeTag>::
createWellPointer(const int wellID, const int time_step) const
{
const auto is_multiseg = this->wells_ecl_[wellID].isMultiSegment();
if (! (this->param_.use_multisegment_well_ && is_multiseg)) {
return this->template createTypedWellPointer<StandardWell<TypeTag>>(wellID, time_step);
}
else {
return this->template createTypedWellPointer<MultisegmentWell<TypeTag>>(wellID, time_step);
}
}
template <typename TypeTag>
template <typename WellType>
std::unique_ptr<WellType>
BlackoilWellModel<TypeTag>::
createTypedWellPointer(const int wellID, const int time_step) const
{
// Use the pvtRegionIdx from the top cell
const auto& perf_data = this->well_perf_data_[wellID];
// Cater for case where local part might have no perforations.
const auto pvtreg = perf_data.empty()
? 0 : pvt_region_idx_[perf_data.front().cell_index];
const auto& parallel_well_info = this->local_parallel_well_info_[wellID].get();
const auto global_pvtreg = parallel_well_info.broadcastFirstPerforationValue(pvtreg);
return std::make_unique<WellType>(this->wells_ecl_[wellID],
parallel_well_info,
time_step,
this->param_,
*this->rateConverter_,
global_pvtreg,
this->numComponents(),
this->numPhases(),
wellID,
perf_data);
}
template<typename TypeTag>
typename BlackoilWellModel<TypeTag>::WellInterfacePtr
BlackoilWellModel<TypeTag>::
createWellForWellTest(const std::string& well_name,
const int report_step,
DeferredLogger& deferred_logger) const
{
// Finding the location of the well in wells_ecl
const int nw_wells_ecl = wells_ecl_.size();
int index_well_ecl = 0;
for (; index_well_ecl < nw_wells_ecl; ++index_well_ecl) {
if (well_name == wells_ecl_[index_well_ecl].name()) {
break;
}
}
// It should be able to find in wells_ecl.
if (index_well_ecl == nw_wells_ecl) {
OPM_DEFLOG_THROW(std::logic_error,
fmt::format("Could not find well {} in wells_ecl ", well_name),
deferred_logger);
}
return this->createWellPointer(index_well_ecl, report_step);
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
assemble(const int iterationIdx,
const double dt)
{
DeferredLogger local_deferredLogger;
if (this->glift_debug) {
const std::string msg = fmt::format(
"assemble() : iteration {}" , iterationIdx);
gliftDebug(msg, local_deferredLogger);
}
last_report_ = SimulatorReportSingle();
Dune::Timer perfTimer;
perfTimer.start();
if ( ! wellsActive() ) {
return;
}
updatePerforationIntensiveQuantities();
if (iterationIdx == 0) {
// try-catch is needed here as updateWellControls
// contains global communication and has either to
// be reached by all processes or all need to abort
// before.
OPM_BEGIN_PARALLEL_TRY_CATCH();
{
calculateExplicitQuantities(local_deferredLogger);
prepareTimeStep(local_deferredLogger);
}
OPM_END_PARALLEL_TRY_CATCH_LOG(local_deferredLogger,
"assemble() failed (It=0): ",
terminal_output_, grid().comm());
}
const bool well_group_control_changed = assembleImpl(iterationIdx, dt, 0, local_deferredLogger);
// if group or well control changes we don't consider the
// case converged
last_report_.well_group_control_changed = well_group_control_changed;
last_report_.assemble_time_well += perfTimer.stop();
}
template<typename TypeTag>
bool
BlackoilWellModel<TypeTag>::
assembleImpl(const int iterationIdx,
const double dt,
const std::size_t recursion_level,
DeferredLogger& local_deferredLogger)
{
auto [well_group_control_changed, network_changed, network_imbalance] = updateWellControls(local_deferredLogger);
bool alq_updated = false;
OPM_BEGIN_PARALLEL_TRY_CATCH();
{
// Set the well primary variables based on the value of well solutions
initPrimaryVariablesEvaluation();
alq_updated = maybeDoGasLiftOptimize(local_deferredLogger);
assembleWellEq(dt, local_deferredLogger);
}
OPM_END_PARALLEL_TRY_CATCH_LOG(local_deferredLogger, "assemble() failed: ",
terminal_output_, grid().comm());
//update guide rates
const int reportStepIdx = ebosSimulator_.episodeIndex();
if (alq_updated || BlackoilWellModelGuideRates(*this).
guideRateUpdateIsNeeded(reportStepIdx)) {
const double simulationTime = ebosSimulator_.time();
const auto& comm = ebosSimulator_.vanguard().grid().comm();
const auto& summaryState = ebosSimulator_.vanguard().summaryState();
std::vector<double> pot(numPhases(), 0.0);
const Group& fieldGroup = schedule().getGroup("FIELD", reportStepIdx);
WellGroupHelpers::updateGuideRates(fieldGroup, schedule(), summaryState, this->phase_usage_, reportStepIdx, simulationTime,
this->wellState(), this->groupState(), comm, &this->guideRate_, pot, local_deferredLogger);
}
// Maybe do a recursive call to iterate network and well controls.
if (network_changed) {
if (shouldBalanceNetwork(reportStepIdx, iterationIdx) &&
shouldIterateNetwork(reportStepIdx, recursion_level, network_imbalance)) {
well_group_control_changed = assembleImpl(iterationIdx, dt, recursion_level + 1, local_deferredLogger);
}
}
return well_group_control_changed;
}
template<typename TypeTag>
bool
BlackoilWellModel<TypeTag>::
maybeDoGasLiftOptimize(DeferredLogger& deferred_logger)
{
bool do_glift_optimization = false;
int num_wells_changed = 0;
const double simulation_time = ebosSimulator_.time();
const double min_wait = ebosSimulator_.vanguard().schedule().glo(ebosSimulator_.episodeIndex()).min_wait();
// We only optimize if a min_wait time has past.
// If all_newton is true we still want to optimize several times pr timestep
// i.e. we also optimize if check simulation_time == last_glift_opt_time_
// that is when the last_glift_opt_time is already updated with the current time step
if ( simulation_time == last_glift_opt_time_ || simulation_time >= (last_glift_opt_time_ + min_wait)) {
do_glift_optimization = true;
last_glift_opt_time_ = simulation_time;
}
if (do_glift_optimization) {
GLiftOptWells glift_wells;
GLiftProdWells prod_wells;
GLiftWellStateMap state_map;
// NOTE: To make GasLiftGroupInfo (see below) independent of the TypeTag
// associated with *this (i.e. BlackoilWellModel<TypeTag>) we observe
// that GasLiftGroupInfo's only dependence on *this is that it needs to
// access the eclipse Wells in the well container (the eclipse Wells
// themselves are independent of the TypeTag).
// Hence, we extract them from the well container such that we can pass
// them to the GasLiftGroupInfo constructor.
GLiftEclWells ecl_well_map;
initGliftEclWellMap(ecl_well_map);
GasLiftGroupInfo group_info {
ecl_well_map,
ebosSimulator_.vanguard().schedule(),
ebosSimulator_.vanguard().summaryState(),
ebosSimulator_.episodeIndex(),
ebosSimulator_.model().newtonMethod().numIterations(),
phase_usage_,
deferred_logger,
this->wellState(),
this->groupState(),
ebosSimulator_.vanguard().grid().comm(),
this->glift_debug
};
group_info.initialize();
gasLiftOptimizationStage1(
deferred_logger, prod_wells, glift_wells, group_info, state_map);
gasLiftOptimizationStage2(
deferred_logger, prod_wells, glift_wells, group_info, state_map,
ebosSimulator_.episodeIndex());
if (this->glift_debug) gliftDebugShowALQ(deferred_logger);
num_wells_changed = glift_wells.size();
}
num_wells_changed = this->comm_.sum(num_wells_changed);
return num_wells_changed > 0;
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
gasLiftOptimizationStage1(DeferredLogger& deferred_logger,
GLiftProdWells &prod_wells, GLiftOptWells &glift_wells,
GasLiftGroupInfo &group_info, GLiftWellStateMap &state_map)
{
auto comm = ebosSimulator_.vanguard().grid().comm();
int num_procs = comm.size();
// NOTE: Gas lift optimization stage 1 seems to be difficult
// to do in parallel since the wells are optimized on different
// processes and each process needs to know the current ALQ allocated
// to each group it is a memeber of in order to check group limits and avoid
// allocating more ALQ than necessary. (Surplus ALQ is removed in
// stage 2). In stage1, as each well is adding ALQ, the current group ALQ needs
// to be communicated to the other processes. But there is no common
// synchronization point that all process will reach in the
// runOptimizeLoop_() in GasLiftSingleWell.cpp.
//
// TODO: Maybe a better solution could be invented by distributing
// wells according to certain parent groups. Then updated group rates
// might not have to be communicated to the other processors.
// Currently, the best option seems to be to run this part sequentially
// (not in parallel).
//
// TODO: The simplest approach seems to be if a) one process could take
// ownership of all the wells (the union of all the wells in the
// well_container_ of each process) then this process could do the
// optimization, while the other processes could wait for it to
// finish (e.g. comm.barrier()), or alternatively, b) if all
// processes could take ownership of all the wells. Then there
// would be no need for synchronization here..
//
for (int i = 0; i< num_procs; i++) {
int num_rates_to_sync = 0; // communication variable
GLiftSyncGroups groups_to_sync;
if (comm.rank() == i) {
// Run stage1: Optimize single wells while also checking group limits
for (const auto& well : well_container_) {
// NOTE: Only the wells in "group_info" needs to be optimized
if (group_info.hasWell(well->name())) {
gasLiftOptimizationStage1SingleWell(
well.get(), deferred_logger, prod_wells, glift_wells,
group_info, state_map, groups_to_sync
);
}
}
num_rates_to_sync = groups_to_sync.size();
}
num_rates_to_sync = comm.sum(num_rates_to_sync);
if (num_rates_to_sync > 0) {
std::vector<int> group_indexes;
group_indexes.reserve(num_rates_to_sync);
std::vector<double> group_alq_rates;
group_alq_rates.reserve(num_rates_to_sync);
std::vector<double> group_oil_rates;
group_oil_rates.reserve(num_rates_to_sync);
std::vector<double> group_gas_rates;
group_gas_rates.reserve(num_rates_to_sync);
std::vector<double> group_water_rates;
group_water_rates.reserve(num_rates_to_sync);
if (comm.rank() == i) {
for (auto idx : groups_to_sync) {
auto [oil_rate, gas_rate, water_rate, alq] = group_info.getRates(idx);
group_indexes.push_back(idx);
group_oil_rates.push_back(oil_rate);
group_gas_rates.push_back(gas_rate);
group_water_rates.push_back(water_rate);
group_alq_rates.push_back(alq);
}
} else {
group_indexes.resize(num_rates_to_sync);
group_oil_rates.resize(num_rates_to_sync);
group_gas_rates.resize(num_rates_to_sync);
group_water_rates.resize(num_rates_to_sync);
group_alq_rates.resize(num_rates_to_sync);
}
#if HAVE_MPI
EclMpiSerializer ser(comm);
ser.broadcast(i, group_indexes, group_oil_rates,
group_gas_rates, group_water_rates, group_alq_rates);
#endif
if (comm.rank() != i) {
for (int j=0; j<num_rates_to_sync; j++) {
group_info.updateRate(group_indexes[j],
group_oil_rates[j], group_gas_rates[j], group_water_rates[j], group_alq_rates[j]);
}
}
if (this->glift_debug) {
int counter = 0;
if (comm.rank() == i) {
counter = this->wellState().gliftGetDebugCounter();
}
counter = comm.sum(counter);
if (comm.rank() != i) {
this->wellState().gliftSetDebugCounter(counter);
}
}
}
}
}
// NOTE: this method cannot be const since it passes this->wellState()
// (see below) to the GasLiftSingleWell constructor which accepts WellState
// as a non-const reference..
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
gasLiftOptimizationStage1SingleWell(WellInterface<TypeTag> *well,
DeferredLogger& deferred_logger,
GLiftProdWells &prod_wells, GLiftOptWells &glift_wells,
GasLiftGroupInfo &group_info, GLiftWellStateMap &state_map,
GLiftSyncGroups& sync_groups)
{
const auto& summary_state = ebosSimulator_.vanguard().summaryState();
std::unique_ptr<GasLiftSingleWell> glift
= std::make_unique<GasLiftSingleWell>(
*well, ebosSimulator_, summary_state,
deferred_logger, this->wellState(), this->groupState(),
group_info, sync_groups, this->comm_, this->glift_debug);
auto state = glift->runOptimize(
ebosSimulator_.model().newtonMethod().numIterations());
if (state) {
state_map.insert({well->name(), std::move(state)});
glift_wells.insert({well->name(), std::move(glift)});
return;
}
prod_wells.insert({well->name(), well});
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
initGliftEclWellMap(GLiftEclWells &ecl_well_map)
{
for ( const auto& well: well_container_ ) {
ecl_well_map.try_emplace(
well->name(), &(well->wellEcl()), well->indexOfWell());
}
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
assembleWellEq(const double dt, DeferredLogger& deferred_logger)
{
for (auto& well : well_container_) {
well->assembleWellEq(ebosSimulator_, dt, this->wellState(), this->groupState(), deferred_logger);
}
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
apply( BVector& r) const
{
for (auto& well : well_container_) {
well->apply(r);
}
}
// Ax = A x - C D^-1 B x
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
apply(const BVector& x, BVector& Ax) const
{
for (auto& well : well_container_) {
well->apply(x, Ax);
}
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
getWellContributions(WellContributions& wellContribs) const
{
// prepare for StandardWells
wellContribs.setBlockSize(StandardWell<TypeTag>::Indices::numEq, StandardWell<TypeTag>::numStaticWellEq);
for(unsigned int i = 0; i < well_container_.size(); i++){
auto& well = well_container_[i];
std::shared_ptr<StandardWell<TypeTag> > derived = std::dynamic_pointer_cast<StandardWell<TypeTag> >(well);
if (derived) {
wellContribs.addNumBlocks(derived->linSys().getNumBlocks());
}
}
// allocate memory for data from StandardWells
wellContribs.alloc();
for(unsigned int i = 0; i < well_container_.size(); i++){
auto& well = well_container_[i];
// maybe WellInterface could implement addWellContribution()
auto derived_std = std::dynamic_pointer_cast<StandardWell<TypeTag>>(well);
if (derived_std) {
derived_std->linSys().extract(derived_std->numStaticWellEq, wellContribs);
} else {
auto derived_ms = std::dynamic_pointer_cast<MultisegmentWell<TypeTag> >(well);
if (derived_ms) {
derived_ms->linSys().extract(wellContribs);
} else {
OpmLog::warning("Warning unknown type of well");
}
}
}
}
// Ax = Ax - alpha * C D^-1 B x
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
applyScaleAdd(const Scalar alpha, const BVector& x, BVector& Ax) const
{
if (this->well_container_.empty()) {
return;
}
if( scaleAddRes_.size() != Ax.size() ) {
scaleAddRes_.resize( Ax.size() );
}
scaleAddRes_ = 0.0;
// scaleAddRes_ = - C D^-1 B x
apply( x, scaleAddRes_ );
// Ax = Ax + alpha * scaleAddRes_
Ax.axpy( alpha, scaleAddRes_ );
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
addWellContributions(SparseMatrixAdapter& jacobian) const
{
for ( const auto& well: well_container_ ) {
well->addWellContributions(jacobian);
}
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
addWellPressureEquations(PressureMatrix& jacobian, const BVector& weights,const bool use_well_weights) const
{
int nw = this->numLocalWellsEnd();
int rdofs = local_num_cells_;
for ( int i = 0; i < nw; i++ ){
int wdof = rdofs + i;
jacobian[wdof][wdof] = 1.0;// better scaling ?
}
for ( const auto& well : well_container_ ) {
well->addWellPressureEquations(jacobian, weights, pressureVarIndex, use_well_weights, this->wellState());
}
}
template<typename TypeTag>
int
BlackoilWellModel<TypeTag>::
numLocalWellsEnd() const
{
auto w = schedule().getWellsatEnd();
w.erase(std::remove_if(w.begin(), w.end(), not_on_process_), w.end());
return w.size();
}
template<typename TypeTag>
std::vector<std::vector<int>>
BlackoilWellModel<TypeTag>::
getMaxWellConnections() const
{
std::vector<std::vector<int>> wells;
auto schedule_wells = schedule().getWellsatEnd();
schedule_wells.erase(std::remove_if(schedule_wells.begin(), schedule_wells.end(), not_on_process_), schedule_wells.end());
wells.reserve(schedule_wells.size());
// initialize the additional cell connections introduced by wells.
for ( const auto& well : schedule_wells )
{
std::vector<int> compressed_well_perforations = this->getCellsForConnections(well);
// also include wells with no perforations in case
std::sort(compressed_well_perforations.begin(),
compressed_well_perforations.end());
wells.push_back(compressed_well_perforations);
}
return wells;
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
addWellPressureEquationsStruct(PressureMatrix& jacobian) const
{
int nw = this->numLocalWellsEnd();
int rdofs = local_num_cells_;
for(int i=0; i < nw; i++){
int wdof = rdofs + i;
jacobian.entry(wdof,wdof) = 1.0;// better scaling ?
}
std::vector<std::vector<int>> wellconnections = getMaxWellConnections();
for(int i=0; i < nw; i++){
const auto& perfcells = wellconnections[i];
for(int perfcell : perfcells){
int wdof = rdofs + i;
jacobian.entry(wdof,perfcell) = 0.0;
jacobian.entry(perfcell, wdof) = 0.0;
}
}
}
template<typename TypeTag>
int
BlackoilWellModel<TypeTag>::
numLocalNonshutWells() const
{
return well_container_.size();
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
recoverWellSolutionAndUpdateWellState(const BVector& x)
{
DeferredLogger local_deferredLogger;
OPM_BEGIN_PARALLEL_TRY_CATCH();
{
for (auto& well : well_container_) {
well->recoverWellSolutionAndUpdateWellState(x, this->wellState(), local_deferredLogger);
}
}
OPM_END_PARALLEL_TRY_CATCH_LOG(local_deferredLogger,
"recoverWellSolutionAndUpdateWellState() failed: ",
terminal_output_, ebosSimulator_.vanguard().grid().comm());
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
initPrimaryVariablesEvaluation() const
{
for (auto& well : well_container_) {
well->initPrimaryVariablesEvaluation();
}
}
template<typename TypeTag>
ConvergenceReport
BlackoilWellModel<TypeTag>::
getWellConvergence(const std::vector<Scalar>& B_avg, bool checkWellGroupControls) const
{
DeferredLogger local_deferredLogger;
// Get global (from all processes) convergence report.
ConvergenceReport local_report;
const int iterationIdx = ebosSimulator_.model().newtonMethod().numIterations();
for (const auto& well : well_container_) {
if (well->isOperableAndSolvable() || well->wellIsStopped()) {
local_report += well->getWellConvergence(this->wellState(), B_avg, local_deferredLogger, iterationIdx > param_.strict_outer_iter_wells_ );
} else {
ConvergenceReport report;
using CR = ConvergenceReport;
report.setWellFailed({CR::WellFailure::Type::Unsolvable, CR::Severity::Normal, -1, well->name()});
local_report += report;
}
}
const Opm::Parallel::Communication comm = grid().comm();
DeferredLogger global_deferredLogger = gatherDeferredLogger(local_deferredLogger, comm);
ConvergenceReport report = gatherConvergenceReport(local_report, comm);
// the well_group_control_changed info is already communicated
if (checkWellGroupControls) {
report.setWellGroupTargetsViolated(this->lastReport().well_group_control_changed);
}
if (terminal_output_) {
global_deferredLogger.logMessages();
}
// Log debug messages for NaN or too large residuals.
if (terminal_output_) {
for (const auto& f : report.wellFailures()) {
if (f.severity() == ConvergenceReport::Severity::NotANumber) {
OpmLog::debug("NaN residual found with phase " + std::to_string(f.phase()) + " for well " + f.wellName());
} else if (f.severity() == ConvergenceReport::Severity::TooLarge) {
OpmLog::debug("Too large residual found with phase " + std::to_string(f.phase()) + " for well " + f.wellName());
}
}
}
return report;
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
calculateExplicitQuantities(DeferredLogger& deferred_logger) const
{
// TODO: checking isOperableAndSolvable() ?
for (auto& well : well_container_) {
well->calculateExplicitQuantities(ebosSimulator_, this->wellState(), deferred_logger);
}
}
template<typename TypeTag>
std::tuple<bool, bool, double>
BlackoilWellModel<TypeTag>::
updateWellControls(DeferredLogger& deferred_logger)
{
// Even if there are no wells active locally, we cannot
// return as the DeferredLogger uses global communication.
// For no well active globally we simply return.
if( !wellsActive() ) return { false, false, 0.0 };
const int episodeIdx = ebosSimulator_.episodeIndex();
const int iterationIdx = ebosSimulator_.model().newtonMethod().numIterations();
const auto& comm = ebosSimulator_.vanguard().grid().comm();
updateAndCommunicateGroupData(episodeIdx, iterationIdx);
const auto [local_network_changed, local_network_imbalance]
= shouldBalanceNetwork(episodeIdx, iterationIdx) ?
updateNetworkPressures(episodeIdx) : std::make_pair(false, 0.0);
const bool network_changed = comm.sum(local_network_changed);
const double network_imbalance = comm.max(local_network_imbalance);
bool changed_well_group = false;
// Check group individual constraints.
const int nupcol = schedule()[episodeIdx].nupcol();
// don't switch group control when iterationIdx > nupcol
// to avoid oscilations between group controls
if (iterationIdx <= nupcol) {
const Group& fieldGroup = schedule().getGroup("FIELD", episodeIdx);
changed_well_group = updateGroupControls(fieldGroup, deferred_logger, episodeIdx, iterationIdx);
}
// Check wells' group constraints and communicate.
bool changed_well_to_group = false;
for (const auto& well : well_container_) {
const auto mode = WellInterface<TypeTag>::IndividualOrGroup::Group;
const bool changed_well = well->updateWellControl(ebosSimulator_, mode, this->wellState(), this->groupState(), deferred_logger);
if (changed_well) {
changed_well_to_group = changed_well || changed_well_to_group;
}
}
changed_well_to_group = comm.sum(changed_well_to_group);
if (changed_well_to_group) {
updateAndCommunicate(episodeIdx, iterationIdx, deferred_logger);
changed_well_group = true;
}
// Check individual well constraints and communicate.
bool changed_well_individual = false;
for (const auto& well : well_container_) {
const auto mode = WellInterface<TypeTag>::IndividualOrGroup::Individual;
const bool changed_well = well->updateWellControl(ebosSimulator_, mode, this->wellState(), this->groupState(), deferred_logger);
if (changed_well) {
changed_well_individual = changed_well || changed_well_individual;
}
}
changed_well_individual = comm.sum(changed_well_individual);
if (changed_well_individual) {
updateAndCommunicate(episodeIdx, iterationIdx, deferred_logger);
changed_well_group = true;
}
// update wsolvent fraction for REIN wells
const Group& fieldGroup = schedule().getGroup("FIELD", episodeIdx);
updateWsolvent(fieldGroup, episodeIdx, this->nupcolWellState());
return { changed_well_group, network_changed, network_imbalance };
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
updateAndCommunicate(const int reportStepIdx,
const int iterationIdx,
DeferredLogger& deferred_logger)
{
updateAndCommunicateGroupData(reportStepIdx, iterationIdx);
// if a well or group change control it affects all wells that are under the same group
for (const auto& well : well_container_) {
well->updateWellStateWithTarget(ebosSimulator_, this->groupState(), this->wellState(), deferred_logger);
}
updateAndCommunicateGroupData(reportStepIdx, iterationIdx);
}
template<typename TypeTag>
bool
BlackoilWellModel<TypeTag>::
updateGroupControls(const Group& group,
DeferredLogger& deferred_logger,
const int reportStepIdx,
const int iterationIdx)
{
bool changed = false;
bool changed_hc = checkGroupHigherConstraints( group, deferred_logger, reportStepIdx);
if (changed_hc) {
changed = true;
updateAndCommunicate(reportStepIdx, iterationIdx, deferred_logger);
}
bool changed_individual =
BlackoilWellModelConstraints(*this).
updateGroupIndividualControl(group,
reportStepIdx,
this->switched_inj_groups_,
this->switched_prod_groups_,
this->groupState(),
this->wellState(),
deferred_logger);
if (changed_individual) {
changed = true;
updateAndCommunicate(reportStepIdx, iterationIdx, deferred_logger);
}
// call recursively down the group hierarchy
for (const std::string& groupName : group.groups()) {
bool changed_this = updateGroupControls( schedule().getGroup(groupName, reportStepIdx), deferred_logger, reportStepIdx,iterationIdx);
changed = changed || changed_this;
}
return changed;
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
updateWellTestState(const double& simulationTime, WellTestState& wellTestState) const
{
DeferredLogger local_deferredLogger;
for (const auto& well : well_container_) {
const auto& wname = well->name();
const auto wasClosed = wellTestState.well_is_closed(wname);
well->checkWellOperability(ebosSimulator_, this->wellState(), local_deferredLogger);
well->updateWellTestState(this->wellState().well(wname), simulationTime, /*writeMessageToOPMLog=*/ true, wellTestState, local_deferredLogger);
if (!wasClosed && wellTestState.well_is_closed(wname)) {
this->closed_this_step_.insert(wname);
}
}
const Opm::Parallel::Communication comm = grid().comm();
DeferredLogger global_deferredLogger = gatherDeferredLogger(local_deferredLogger, comm);
if (terminal_output_) {
global_deferredLogger.logMessages();
}
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::computePotentials(const std::size_t widx,
const WellState& well_state_copy,
std::string& exc_msg,
ExceptionType::ExcEnum& exc_type,
DeferredLogger& deferred_logger)
{
const int np = numPhases();
std::vector<double> potentials;
const auto& well= well_container_[widx];
try {
well->computeWellPotentials(ebosSimulator_, well_state_copy, potentials, deferred_logger);
}
// catch all possible exception and store type and message.
OPM_PARALLEL_CATCH_CLAUSE(exc_type, exc_msg);
// Store it in the well state
// potentials is resized and set to zero in the beginning of well->ComputeWellPotentials
// and updated only if sucessfull. i.e. the potentials are zero for exceptions
auto& ws = this->wellState().well(well->indexOfWell());
for (int p = 0; p < np; ++p) {
// make sure the potentials are positive
ws.well_potentials[p] = std::max(0.0, potentials[p]);
}
}
template <typename TypeTag>
void
BlackoilWellModel<TypeTag>::
calculateProductivityIndexValues(DeferredLogger& deferred_logger)
{
for (const auto& wellPtr : this->well_container_) {
this->calculateProductivityIndexValues(wellPtr.get(), deferred_logger);
}
}
template <typename TypeTag>
void
BlackoilWellModel<TypeTag>::
calculateProductivityIndexValuesShutWells(const int reportStepIdx,
DeferredLogger& deferred_logger)
{
// For the purpose of computing PI/II values, it is sufficient to
// construct StandardWell instances only. We don't need to form
// well objects that honour the 'isMultisegment()' flag of the
// corresponding "this->wells_ecl_[shutWell]".
for (const auto& shutWell : this->local_shut_wells_) {
if (!this->wells_ecl_[shutWell].hasConnections()) {
// No connections in this well. Nothing to do.
continue;
}
auto wellPtr = this->template createTypedWellPointer
<StandardWell<TypeTag>>(shutWell, reportStepIdx);
wellPtr->init(&this->phase_usage_, this->depth_, this->gravity_,
this->local_num_cells_, this->B_avg_, true);
this->calculateProductivityIndexValues(wellPtr.get(), deferred_logger);
}
}
template <typename TypeTag>
void
BlackoilWellModel<TypeTag>::
calculateProductivityIndexValues(const WellInterface<TypeTag>* wellPtr,
DeferredLogger& deferred_logger)
{
wellPtr->updateProductivityIndex(this->ebosSimulator_,
this->prod_index_calc_[wellPtr->indexOfWell()],
this->wellState(),
deferred_logger);
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
prepareTimeStep(DeferredLogger& deferred_logger)
{
for (const auto& well : well_container_) {
auto& events = this->wellState().well(well->indexOfWell()).events;
if (events.hasEvent(WellState::event_mask)) {
well->updateWellStateWithTarget(ebosSimulator_, this->groupState(), this->wellState(), deferred_logger);
well->updatePrimaryVariables(this->wellState(), deferred_logger);
well->initPrimaryVariablesEvaluation();
// There is no new well control change input within a report step,
// so next time step, the well does not consider to have effective events anymore.
events.clearEvent(WellState::event_mask);
}
// solve the well equation initially to improve the initial solution of the well model
if (param_.solve_welleq_initially_ && well->isOperableAndSolvable()) {
try {
well->solveWellEquation(ebosSimulator_, this->wellState(), this->groupState(), deferred_logger);
} catch (const std::exception& e) {
const std::string msg = "Compute initial well solution for " + well->name() + " initially failed. Continue with the privious rates";
deferred_logger.warning("WELL_INITIAL_SOLVE_FAILED", msg);
}
}
}
updatePrimaryVariables(deferred_logger);
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
updateAverageFormationFactor()
{
std::vector< Scalar > B_avg(numComponents(), Scalar() );
const auto& grid = ebosSimulator_.vanguard().grid();
const auto& gridView = grid.leafGridView();
ElementContext elemCtx(ebosSimulator_);
OPM_BEGIN_PARALLEL_TRY_CATCH();
for (const auto& elem : elements(gridView, Dune::Partitions::interior)) {
elemCtx.updatePrimaryStencil(elem);
elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
const auto& intQuants = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0);
const auto& fs = intQuants.fluidState();
for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx)
{
if (!FluidSystem::phaseIsActive(phaseIdx)) {
continue;
}
const unsigned compIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::solventComponentIndex(phaseIdx));
auto& B = B_avg[ compIdx ];
B += 1 / fs.invB(phaseIdx).value();
}
if constexpr (has_solvent_) {
auto& B = B_avg[solventSaturationIdx];
B += 1 / intQuants.solventInverseFormationVolumeFactor().value();
}
}
OPM_END_PARALLEL_TRY_CATCH("BlackoilWellModel::updateAverageFormationFactor() failed: ", grid.comm())
// compute global average
grid.comm().sum(B_avg.data(), B_avg.size());
for (auto& bval : B_avg)
{
bval /= global_num_cells_;
}
B_avg_ = B_avg;
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
updatePrimaryVariables(DeferredLogger& deferred_logger)
{
for (const auto& well : well_container_) {
well->updatePrimaryVariables(this->wellState(), deferred_logger);
}
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::extractLegacyCellPvtRegionIndex_()
{
const auto& grid = ebosSimulator_.vanguard().grid();
const auto& eclProblem = ebosSimulator_.problem();
const unsigned numCells = grid.size(/*codim=*/0);
pvt_region_idx_.resize(numCells);
for (unsigned cellIdx = 0; cellIdx < numCells; ++cellIdx) {
pvt_region_idx_[cellIdx] =
eclProblem.pvtRegionIndex(cellIdx);
}
}
// The number of components in the model.
template<typename TypeTag>
int
BlackoilWellModel<TypeTag>::numComponents() const
{
// The numComponents here does not reflect the actual number of the components in the system.
// It more or less reflects the number of mass conservation equations for the well equations.
// For example, in the current formulation, we do not have the polymer conservation equation
// in the well equations. As a result, for an oil-water-polymer system, this function will return 2.
// In some way, it makes this function appear to be confusing from its name, and we need
// to revisit/revise this function again when extending the variants of system that flow can simulate.
if (numPhases() < 3) {
return numPhases();
}
int numComp = FluidSystem::numComponents;
if constexpr (has_solvent_) {
numComp ++;
}
return numComp;
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::extractLegacyDepth_()
{
const auto& eclProblem = ebosSimulator_.problem();
depth_.resize(local_num_cells_);
for (unsigned cellIdx = 0; cellIdx < local_num_cells_; ++cellIdx) {
depth_[cellIdx] = eclProblem.dofCenterDepth(cellIdx);
}
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
updatePerforationIntensiveQuantities()
{
ElementContext elemCtx(ebosSimulator_);
const auto& gridView = ebosSimulator_.gridView();
OPM_BEGIN_PARALLEL_TRY_CATCH();
for (const auto& elem : elements(gridView, Dune::Partitions::interior)) {
elemCtx.updatePrimaryStencil(elem);
int elemIdx = elemCtx.globalSpaceIndex(0, 0);
if (!is_cell_perforated_[elemIdx]) {
continue;
}
elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
}
OPM_END_PARALLEL_TRY_CATCH("BlackoilWellModel::updatePerforationIntensiveQuantities() failed: ", ebosSimulator_.vanguard().grid().comm());
}
template<typename TypeTag>
typename BlackoilWellModel<TypeTag>::WellInterfacePtr
BlackoilWellModel<TypeTag>::
getWell(const std::string& well_name) const
{
// finding the iterator of the well in wells_ecl
auto well = std::find_if(well_container_.begin(),
well_container_.end(),
[&well_name](const WellInterfacePtr& elem)->bool {
return elem->name() == well_name;
});
assert(well != well_container_.end());
return *well;
}
template<typename TypeTag>
bool
BlackoilWellModel<TypeTag>::
hasWell(const std::string& well_name) const
{
return std::any_of(well_container_.begin(), well_container_.end(),
[&well_name](const WellInterfacePtr& elem) -> bool
{
return elem->name() == well_name;
});
}
template <typename TypeTag>
int
BlackoilWellModel<TypeTag>::
reportStepIndex() const
{
return std::max(this->ebosSimulator_.episodeIndex(), 0);
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
calcRates(const int fipnum,
const int pvtreg,
std::vector<double>& resv_coeff)
{
rateConverter_->calcCoeff(fipnum, pvtreg, resv_coeff);
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
calcInjRates(const int fipnum,
const int pvtreg,
std::vector<double>& resv_coeff)
{
rateConverter_->calcInjCoeff(fipnum, pvtreg, resv_coeff);
}
template <typename TypeTag>
void
BlackoilWellModel<TypeTag>::
computeWellTemperature()
{
if (!has_energy_)
return;
int np = numPhases();
double cellInternalEnergy;
double cellBinv;
double cellDensity;
double perfPhaseRate;
const int nw = numLocalWells();
for (auto wellID = 0*nw; wellID < nw; ++wellID) {
const Well& well = wells_ecl_[wellID];
if (well.isInjector())
continue;
int connpos = 0;
for (int i = 0; i < wellID; ++i) {
connpos += well_perf_data_[i].size();
}
connpos *= np;
std::array<double,2> weighted{0.0,0.0};
auto& [weighted_temperature, total_weight] = weighted;
auto& well_info = local_parallel_well_info_[wellID].get();
const int num_perf_this_well = well_info.communication().sum(well_perf_data_[wellID].size());
auto& ws = this->wellState().well(wellID);
auto& perf_data = ws.perf_data;
auto& perf_phase_rate = perf_data.phase_rates;
for (int perf = 0; perf < num_perf_this_well; ++perf) {
const int cell_idx = well_perf_data_[wellID][perf].cell_index;
const auto& intQuants = *(ebosSimulator_.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/0));
const auto& fs = intQuants.fluidState();
// we on only have one temperature pr cell any phaseIdx will do
double cellTemperatures = fs.temperature(/*phaseIdx*/0).value();
double weight_factor = 0.0;
for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx)
{
if (!FluidSystem::phaseIsActive(phaseIdx)) {
continue;
}
cellInternalEnergy = fs.enthalpy(phaseIdx).value() - fs.pressure(phaseIdx).value() / fs.density(phaseIdx).value();
cellBinv = fs.invB(phaseIdx).value();
cellDensity = fs.density(phaseIdx).value();
perfPhaseRate = perf_phase_rate[ perf*np + phaseIdx ];
weight_factor += cellDensity * perfPhaseRate/cellBinv * cellInternalEnergy/cellTemperatures;
}
total_weight += weight_factor;
weighted_temperature += weight_factor * cellTemperatures;
}
well_info.communication().sum(weighted.data(), 2);
this->wellState().well(wellID).temperature = weighted_temperature/total_weight;
}
}
template <typename TypeTag>
void
BlackoilWellModel<TypeTag>::
assignWellTracerRates(data::Wells& wsrpt) const
{
const auto & wellTracerRates = ebosSimulator_.problem().tracerModel().getWellTracerRates();
if (wellTracerRates.empty())
return; // no tracers
for (const auto& wTR : wellTracerRates) {
std::string wellName = wTR.first.first;
auto xwPos = wsrpt.find(wellName);
if (xwPos == wsrpt.end()) { // No well results.
continue;
}
std::string tracerName = wTR.first.second;
double rate = wTR.second;
xwPos->second.rates.set(data::Rates::opt::tracer, rate, tracerName);
}
}
} // namespace Opm