mirror of
https://github.com/OPM/opm-simulators.git
synced 2024-12-25 08:41:00 -06:00
7c832b00f8
Add support for gas in water
667 lines
29 KiB
C++
667 lines
29 KiB
C++
/*
|
|
Copyright 2014, 2015 SINTEF ICT, Applied Mathematics.
|
|
Copyright 2014, 2015 Statoil ASA.
|
|
Copyright 2017, IRIS
|
|
|
|
This file is part of the Open Porous Media Project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#ifndef OPM_RATECONVERTER_HPP_HEADER_INCLUDED
|
|
#define OPM_RATECONVERTER_HPP_HEADER_INCLUDED
|
|
|
|
#include <opm/core/props/BlackoilPhases.hpp>
|
|
#include <opm/grid/utility/RegionMapping.hpp>
|
|
#include <opm/simulators/utils/DeferredLoggingErrorHelpers.hpp>
|
|
#include <opm/simulators/wells/RegionAttributeHelpers.hpp>
|
|
|
|
#include <dune/grid/common/gridenums.hh>
|
|
#include <dune/grid/common/rangegenerators.hh>
|
|
|
|
#include <algorithm>
|
|
#include <cmath>
|
|
#include <memory>
|
|
#include <stdexcept>
|
|
#include <type_traits>
|
|
#include <unordered_map>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
/**
|
|
* \file
|
|
* Facility for converting component rates at surface conditions to
|
|
* phase (voidage) rates at reservoir conditions.
|
|
*
|
|
* This uses the average hydrocarbon pressure to define fluid
|
|
* properties. The facility is intended to support Reservoir Voidage
|
|
* rates only ('RESV').
|
|
*/
|
|
|
|
namespace Opm {
|
|
namespace RateConverter {
|
|
|
|
/**
|
|
* Convert component rates at surface conditions to phase
|
|
* (voidage) rates at reservoir conditions.
|
|
*
|
|
* The conversion uses fluid properties evaluated at average
|
|
* hydrocarbon pressure in regions or field.
|
|
*
|
|
* \tparam FluidSystem Fluid system class. Expected to be a
|
|
* BlackOilFluidSystem
|
|
*
|
|
* \tparam Region Type of a forward region mapping. Expected to
|
|
* provide indexed access through \code operator[]() \endcode as
|
|
* well as inner types \c value_type, \c size_type, and \c
|
|
* const_iterator. Typically \code std::vector<int> \endcode.
|
|
*/
|
|
template <class FluidSystem, class Region>
|
|
class SurfaceToReservoirVoidage {
|
|
public:
|
|
/**
|
|
* Constructor.
|
|
*
|
|
* \param[in] region Forward region mapping. Often corresponds
|
|
* to the "FIPNUM" mapping of an ECLIPSE input deck.
|
|
*/
|
|
SurfaceToReservoirVoidage(const PhaseUsage& phaseUsage,
|
|
const Region& region)
|
|
: phaseUsage_(phaseUsage)
|
|
, rmap_ (region)
|
|
, attr_ (rmap_, Attributes())
|
|
{}
|
|
|
|
/**
|
|
* Compute pore volume averaged hydrocarbon state pressure, rs and rv.
|
|
*
|
|
* Fluid properties are evaluated at average hydrocarbon
|
|
* state for purpose of conversion from surface rate to
|
|
* reservoir voidage rate.
|
|
*
|
|
*/
|
|
template <typename ElementContext, class EbosSimulator>
|
|
void defineState(const EbosSimulator& simulator)
|
|
{
|
|
// create map from cell to region and set all attributes to
|
|
// zero
|
|
for (const auto& reg : rmap_.activeRegions()) {
|
|
auto& ra = attr_.attributes(reg);
|
|
ra.pressure = 0.0;
|
|
ra.temperature = 0.0;
|
|
ra.rs = 0.0;
|
|
ra.rv = 0.0;
|
|
ra.pv = 0.0;
|
|
ra.saltConcentration = 0.0;
|
|
ra.rsw = 0.0;
|
|
ra.rvw = 0.0;
|
|
|
|
}
|
|
|
|
// quantities for pore volume average
|
|
std::unordered_map<RegionId, Attributes> attributes_pv;
|
|
|
|
// quantities for hydrocarbon volume average
|
|
std::unordered_map<RegionId, Attributes> attributes_hpv;
|
|
|
|
for (const auto& reg : rmap_.activeRegions()) {
|
|
attributes_pv.insert({reg, Attributes()});
|
|
attributes_hpv.insert({reg, Attributes()});
|
|
}
|
|
|
|
ElementContext elemCtx( simulator );
|
|
const auto& gridView = simulator.gridView();
|
|
const auto& comm = gridView.comm();
|
|
|
|
OPM_BEGIN_PARALLEL_TRY_CATCH();
|
|
for (const auto& elem : elements(gridView, Dune::Partitions::interior)) {
|
|
elemCtx.updatePrimaryStencil(elem);
|
|
elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
|
|
const unsigned cellIdx = elemCtx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0);
|
|
const auto& intQuants = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0);
|
|
const auto& fs = intQuants.fluidState();
|
|
// use pore volume weighted averages.
|
|
const double pv_cell =
|
|
simulator.model().dofTotalVolume(cellIdx)
|
|
* intQuants.porosity().value();
|
|
|
|
// only count oil and gas filled parts of the domain
|
|
double hydrocarbon = 1.0;
|
|
const auto& pu = phaseUsage_;
|
|
if (RegionAttributeHelpers::PhaseUsed::water(pu)) {
|
|
hydrocarbon -= fs.saturation(FluidSystem::waterPhaseIdx).value();
|
|
}
|
|
|
|
const int reg = rmap_.region(cellIdx);
|
|
assert(reg >= 0);
|
|
|
|
// sum p, rs, rv, and T.
|
|
const double hydrocarbonPV = pv_cell*hydrocarbon;
|
|
if (hydrocarbonPV > 0.) {
|
|
auto& attr = attributes_hpv[reg];
|
|
attr.pv += hydrocarbonPV;
|
|
if (RegionAttributeHelpers::PhaseUsed::oil(pu) && RegionAttributeHelpers::PhaseUsed::gas(pu)) {
|
|
attr.rs += fs.Rs().value() * hydrocarbonPV;
|
|
attr.rv += fs.Rv().value() * hydrocarbonPV;
|
|
}
|
|
if (RegionAttributeHelpers::PhaseUsed::oil(pu)) {
|
|
attr.pressure += fs.pressure(FluidSystem::oilPhaseIdx).value() * hydrocarbonPV;
|
|
attr.temperature += fs.temperature(FluidSystem::oilPhaseIdx).value() * hydrocarbonPV;
|
|
} else {
|
|
assert(RegionAttributeHelpers::PhaseUsed::gas(pu));
|
|
attr.pressure += fs.pressure(FluidSystem::gasPhaseIdx).value() * hydrocarbonPV;
|
|
attr.temperature += fs.temperature(FluidSystem::gasPhaseIdx).value() * hydrocarbonPV;
|
|
}
|
|
attr.saltConcentration += fs.saltConcentration().value() * hydrocarbonPV;
|
|
if (FluidSystem::enableDissolvedGasInWater()) {
|
|
attr.rsw += fs.Rsw().value() * hydrocarbonPV; // scale with total volume?
|
|
}
|
|
if (FluidSystem::enableVaporizedWater()) {
|
|
attr.rvw += fs.Rvw().value() * hydrocarbonPV; // scale with total volume?
|
|
}
|
|
}
|
|
|
|
if (pv_cell > 0.) {
|
|
auto& attr = attributes_pv[reg];
|
|
attr.pv += pv_cell;
|
|
if (RegionAttributeHelpers::PhaseUsed::oil(pu) && RegionAttributeHelpers::PhaseUsed::gas(pu)) {
|
|
attr.rs += fs.Rs().value() * pv_cell;
|
|
attr.rv += fs.Rv().value() * pv_cell;
|
|
}
|
|
if (RegionAttributeHelpers::PhaseUsed::oil(pu)) {
|
|
attr.pressure += fs.pressure(FluidSystem::oilPhaseIdx).value() * pv_cell;
|
|
attr.temperature += fs.temperature(FluidSystem::oilPhaseIdx).value() * pv_cell;
|
|
} else if (RegionAttributeHelpers::PhaseUsed::gas(pu)) {
|
|
attr.pressure += fs.pressure(FluidSystem::gasPhaseIdx).value() * pv_cell;
|
|
attr.temperature += fs.temperature(FluidSystem::gasPhaseIdx).value() * pv_cell;
|
|
} else {
|
|
assert(RegionAttributeHelpers::PhaseUsed::water(pu));
|
|
attr.pressure += fs.pressure(FluidSystem::waterPhaseIdx).value() * pv_cell;
|
|
attr.temperature += fs.temperature(FluidSystem::waterPhaseIdx).value() * pv_cell;
|
|
}
|
|
attr.saltConcentration += fs.saltConcentration().value() * pv_cell;
|
|
if (FluidSystem::enableDissolvedGasInWater()) {
|
|
attr.rsw += fs.Rsw().value() * pv_cell;
|
|
}
|
|
if (FluidSystem::enableVaporizedWater()) {
|
|
attr.rvw += fs.Rvw().value() * pv_cell;
|
|
}
|
|
}
|
|
}
|
|
|
|
OPM_END_PARALLEL_TRY_CATCH("SurfaceToReservoirVoidage::defineState() failed: ", simulator.vanguard().grid().comm());
|
|
|
|
for (const auto& reg : rmap_.activeRegions()) {
|
|
auto& ra = attr_.attributes(reg);
|
|
const double hpv_sum = comm.sum(attributes_hpv[reg].pv);
|
|
// TODO: should we have some epsilon here instead of zero?
|
|
if (hpv_sum > 0.) {
|
|
const auto& attri_hpv = attributes_hpv[reg];
|
|
const double p_hpv_sum = comm.sum(attri_hpv.pressure);
|
|
const double T_hpv_sum = comm.sum(attri_hpv.temperature);
|
|
const double rs_hpv_sum = comm.sum(attri_hpv.rs);
|
|
const double rv_hpv_sum = comm.sum(attri_hpv.rv);
|
|
const double sc_hpv_sum = comm.sum(attri_hpv.saltConcentration);
|
|
const double rsw_hpv_sum = comm.sum(attri_hpv.rsw);
|
|
const double rvw_hpv_sum = comm.sum(attri_hpv.rvw);
|
|
|
|
ra.pressure = p_hpv_sum / hpv_sum;
|
|
ra.temperature = T_hpv_sum / hpv_sum;
|
|
ra.rs = rs_hpv_sum / hpv_sum;
|
|
ra.rv = rv_hpv_sum / hpv_sum;
|
|
ra.rsw = rsw_hpv_sum / hpv_sum;
|
|
ra.rvw = rvw_hpv_sum / hpv_sum;
|
|
ra.pv = hpv_sum;
|
|
ra.saltConcentration = sc_hpv_sum / hpv_sum;
|
|
} else {
|
|
// using the pore volume to do the averaging
|
|
const auto& attri_pv = attributes_pv[reg];
|
|
const double pv_sum = comm.sum(attri_pv.pv);
|
|
assert(pv_sum > 0.);
|
|
const double p_pv_sum = comm.sum(attri_pv.pressure);
|
|
const double T_pv_sum = comm.sum(attri_pv.temperature);
|
|
const double rs_pv_sum = comm.sum(attri_pv.rs);
|
|
const double rv_pv_sum = comm.sum(attri_pv.rv);
|
|
const double rsw_pv_sum = comm.sum(attri_pv.rsw);
|
|
const double rvw_pv_sum = comm.sum(attri_pv.rvw);
|
|
const double sc_pv_sum = comm.sum(attri_pv.saltConcentration);
|
|
|
|
ra.pressure = p_pv_sum / pv_sum;
|
|
ra.temperature = T_pv_sum / pv_sum;
|
|
ra.rs = rs_pv_sum / pv_sum;
|
|
ra.rv = rv_pv_sum / pv_sum;
|
|
ra.rsw = rsw_pv_sum / pv_sum;
|
|
ra.rvw = rvw_pv_sum / pv_sum;
|
|
ra.pv = pv_sum;
|
|
ra.saltConcentration = sc_pv_sum / pv_sum;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Region identifier.
|
|
*
|
|
* Integral type.
|
|
*/
|
|
typedef typename RegionMapping<Region>::RegionId RegionId;
|
|
|
|
/**
|
|
* Compute coefficients for surface-to-reservoir voidage
|
|
* conversion.
|
|
*
|
|
* \tparam Input Type representing contiguous collection
|
|
* of component rates at surface conditions. Must support
|
|
* direct indexing through \code operator[]()\endcode.
|
|
*
|
|
* \tparam Coeff Type representing contiguous collection
|
|
* of surface-to-reservoir conversion coefficients. Must
|
|
* support direct indexing through \code operator[]()
|
|
* \endcode.
|
|
*
|
|
*
|
|
* \param[in] r Fluid-in-place region of the well
|
|
* \param[in] pvtRegionIdx PVT region of the well
|
|
*
|
|
*
|
|
* \param[out] coeff Surface-to-reservoir conversion
|
|
* coefficients that can be used to compute total reservoir
|
|
* volumes from surface volumes with the formula
|
|
* q_{rT} = \sum_p coeff[p] q_{sp}.
|
|
* However, individual phase reservoir volumes cannot be calculated from
|
|
* these coefficients (i.e. q_{rp} is not equal to coeff[p] q_{sp})
|
|
* since they can depend on more than one surface volume rate when
|
|
* we have dissolved gas or vaporized oil.
|
|
*/
|
|
template <class Coeff>
|
|
void
|
|
calcCoeff(const RegionId r, const int pvtRegionIdx, Coeff& coeff) const
|
|
{
|
|
const auto& pu = phaseUsage_;
|
|
const auto& ra = attr_.attributes(r);
|
|
const double p = ra.pressure;
|
|
const double T = ra.temperature;
|
|
const double saltConcentration = ra.saltConcentration;
|
|
|
|
const int iw = RegionAttributeHelpers::PhasePos::water(pu);
|
|
const int io = RegionAttributeHelpers::PhasePos::oil (pu);
|
|
const int ig = RegionAttributeHelpers::PhasePos::gas (pu);
|
|
|
|
std::fill(& coeff[0], & coeff[0] + phaseUsage_.num_phases, 0.0);
|
|
|
|
// Actual Rsw and Rvw:
|
|
double Rsw = ra.rsw;
|
|
double Rvw = ra.rvw;
|
|
// Determinant of 'R' matrix
|
|
const double detRw = 1.0 - (Rsw * Rvw);
|
|
|
|
if (RegionAttributeHelpers::PhaseUsed::water(pu)) {
|
|
// q[w]_r = 1/(bw * (1 - rsw*rvw)) * (q[w]_s - rvw*q[g]_s)
|
|
|
|
const double bw = FluidSystem::waterPvt().inverseFormationVolumeFactor(pvtRegionIdx, T, p, Rsw, saltConcentration);
|
|
|
|
const double den = bw * detRw;
|
|
|
|
coeff[iw] += 1.0 / den;
|
|
|
|
if (RegionAttributeHelpers::PhaseUsed::gas(pu)) {
|
|
coeff[ig] -= ra.rvw / den;
|
|
}
|
|
}
|
|
|
|
// Actual Rs and Rv:
|
|
double Rs = ra.rs;
|
|
double Rv = ra.rv;
|
|
|
|
// Determinant of 'R' matrix
|
|
const double detR = 1.0 - (Rs * Rv);
|
|
|
|
// Currently we only support either gas in water or gas in oil
|
|
// not both
|
|
if(detR != 1 && detRw != 1 ) {
|
|
std::string msg = "only support " + std::to_string(detR) + " " + std::to_string(detR);
|
|
throw(msg);
|
|
}
|
|
|
|
if (RegionAttributeHelpers::PhaseUsed::oil(pu)) {
|
|
// q[o]_r = 1/(bo * (1 - rs*rv)) * (q[o]_s - rv*q[g]_s)
|
|
|
|
const double bo = FluidSystem::oilPvt().inverseFormationVolumeFactor(pvtRegionIdx, T, p, Rs);
|
|
const double den = bo * detR;
|
|
|
|
coeff[io] += 1.0 / den;
|
|
|
|
if (RegionAttributeHelpers::PhaseUsed::gas(pu)) {
|
|
coeff[ig] -= ra.rv / den;
|
|
}
|
|
}
|
|
|
|
if (RegionAttributeHelpers::PhaseUsed::gas(pu)) {
|
|
// q[g]_r = 1/(bg * (1 - rs*rv)) * (q[g]_s - rs*q[o]_s)
|
|
const double bg = FluidSystem::gasPvt().inverseFormationVolumeFactor(pvtRegionIdx, T, p, Rv, Rvw);
|
|
if (FluidSystem::enableDissolvedGasInWater()) {
|
|
const double denw = bg * detRw;
|
|
coeff[ig] += 1.0 / denw;
|
|
if (RegionAttributeHelpers::PhaseUsed::water(pu)) {
|
|
coeff[iw] -= ra.rsw / denw;
|
|
}
|
|
} else {
|
|
const double den = bg * detR;
|
|
coeff[ig] += 1.0 / den;
|
|
if (RegionAttributeHelpers::PhaseUsed::oil(pu)) {
|
|
coeff[io] -= ra.rs / den;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
template <class Coeff>
|
|
void
|
|
calcInjCoeff(const RegionId r, const int pvtRegionIdx, Coeff& coeff) const
|
|
{
|
|
const auto& pu = phaseUsage_;
|
|
const auto& ra = attr_.attributes(r);
|
|
const double p = ra.pressure;
|
|
const double T = ra.temperature;
|
|
const double saltConcentration = ra.saltConcentration;
|
|
|
|
const int iw = RegionAttributeHelpers::PhasePos::water(pu);
|
|
const int io = RegionAttributeHelpers::PhasePos::oil (pu);
|
|
const int ig = RegionAttributeHelpers::PhasePos::gas (pu);
|
|
|
|
std::fill(& coeff[0], & coeff[0] + phaseUsage_.num_phases, 0.0);
|
|
|
|
if (RegionAttributeHelpers::PhaseUsed::water(pu)) {
|
|
// q[w]_r = q[w]_s / bw
|
|
|
|
const double bw = FluidSystem::waterPvt().inverseFormationVolumeFactor(pvtRegionIdx, T, p, 0.0, saltConcentration);
|
|
|
|
coeff[iw] = 1.0 / bw;
|
|
}
|
|
|
|
if (RegionAttributeHelpers::PhaseUsed::oil(pu)) {
|
|
const double bo = FluidSystem::oilPvt().inverseFormationVolumeFactor(pvtRegionIdx, T, p, 0.0);
|
|
coeff[io] += 1.0 / bo;
|
|
}
|
|
|
|
if (RegionAttributeHelpers::PhaseUsed::gas(pu)) {
|
|
const double bg = FluidSystem::gasPvt().inverseFormationVolumeFactor(pvtRegionIdx, T, p, 0.0, 0.0);
|
|
coeff[ig] += 1.0 / bg;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Convert surface volume flow rates to reservoir voidage flow
|
|
* rates.
|
|
*
|
|
* State dependent version. Client must call \code
|
|
* defineState() \endcode prior to invoking this member
|
|
* function.
|
|
*
|
|
* \tparam Rates Type representing contiguous collection of
|
|
* surface flow rates. Must support direct indexing through
|
|
* \code operator[]() \endcode.
|
|
*
|
|
* \param[in] r Zero based fluid-in-place region index.
|
|
*
|
|
* \param[in] pvtRegionIdx Zero based PVT region index.
|
|
*
|
|
* \param[in] surface_rates surface volume flow rates for all
|
|
* active phases.
|
|
*
|
|
* \param[out] voidage_rates reservoir volume flow rates for all
|
|
* active phases.
|
|
*/
|
|
template <class Rates>
|
|
void calcReservoirVoidageRates(const RegionId r,
|
|
const int pvtRegionIdx,
|
|
const Rates& surface_rates,
|
|
Rates& voidage_rates) const
|
|
{
|
|
const auto& ra = this->attr_.attributes(r);
|
|
|
|
this->calcReservoirVoidageRates(pvtRegionIdx,
|
|
ra.pressure, ra.rs, ra.rv,
|
|
ra.rsw, ra.rvw,
|
|
ra.temperature,
|
|
ra.saltConcentration,
|
|
surface_rates,
|
|
voidage_rates);
|
|
}
|
|
|
|
/**
|
|
* Convert surface volume flow rates to reservoir voidage flow
|
|
* rates.
|
|
*
|
|
* State independent version.
|
|
*
|
|
* \tparam Rates Type representing contiguous collection of
|
|
* surface flow rates. Must support direct indexing through
|
|
* \code operator[]() \endcode.
|
|
*
|
|
* \param[in] pvtRegionIdx PVT region.
|
|
*
|
|
* \param[in] p Fluid pressure.
|
|
*
|
|
* \param[in] rs Dissolved gas/oil ratio.
|
|
*
|
|
* \param[in] rv Vaporised oil/gas ratio.
|
|
*
|
|
* \param[in] rsw Dissolved gas/water ratio.
|
|
*
|
|
* \param[in] rwv Vaporised water/gas ratio.
|
|
*
|
|
* \param[in] T Temperature. Unused in non-thermal simulation
|
|
* runs.
|
|
*
|
|
* \param[in] saltConcentration Salt concentration. Unused in
|
|
* simulation runs without salt precipitation.
|
|
*
|
|
* \param[in] surface_rates Surface volume flow rates for all
|
|
* active phases.
|
|
*
|
|
* \param[out] voidage_rates Reservoir volume flow rates for all
|
|
* active phases.
|
|
*/
|
|
template <typename SurfaceRates, typename VoidageRates>
|
|
void calcReservoirVoidageRates(const int pvtRegionIdx,
|
|
const double p,
|
|
const double rs,
|
|
const double rv,
|
|
const double rsw,
|
|
const double rvw,
|
|
const double T,
|
|
const double saltConcentration,
|
|
const SurfaceRates& surface_rates,
|
|
VoidageRates& voidage_rates) const
|
|
{
|
|
const auto& pu = this->phaseUsage_;
|
|
const auto iw = RegionAttributeHelpers::PhasePos::water(pu);
|
|
const auto io = RegionAttributeHelpers::PhasePos::oil (pu);
|
|
const auto ig = RegionAttributeHelpers::PhasePos::gas (pu);
|
|
|
|
const auto [Rs, Rv] = this->
|
|
dissolvedVaporisedRatio(io, ig, rs, rv, surface_rates);
|
|
|
|
const auto [Rsw, Rvw] = this->
|
|
dissolvedVaporisedRatio(iw, ig, rsw, rvw, surface_rates);
|
|
|
|
|
|
std::fill_n(&voidage_rates[0], pu.num_phases, 0.0);
|
|
|
|
|
|
// Determinant of 'R' matrix
|
|
const auto detRw = 1.0 - (Rsw * Rvw);
|
|
|
|
if (RegionAttributeHelpers::PhaseUsed::water(pu)) {
|
|
// q[w]_r = 1/(bw * (1 - rsw*rvw)) * (q[w]_s - rvw*q[g]_s)
|
|
voidage_rates[iw] = surface_rates[iw];
|
|
|
|
const auto bw = FluidSystem::waterPvt()
|
|
.inverseFormationVolumeFactor(pvtRegionIdx, T, p,
|
|
Rsw,
|
|
saltConcentration);
|
|
|
|
if (RegionAttributeHelpers::PhaseUsed::gas(pu)) {
|
|
voidage_rates[iw] -= Rvw * surface_rates[ig];
|
|
}
|
|
voidage_rates[iw] /= bw * detRw;
|
|
}
|
|
|
|
// Determinant of 'R' matrix
|
|
const auto detR = 1.0 - (Rs * Rv);
|
|
|
|
if (RegionAttributeHelpers::PhaseUsed::oil(pu)) {
|
|
// q[o]_r = 1/(bo * (1 - rs*rv)) * (q[o]_s - rv*q[g]_s)
|
|
voidage_rates[io] = surface_rates[io];
|
|
if (RegionAttributeHelpers::PhaseUsed::gas(pu)) {
|
|
voidage_rates[io] -= Rv * surface_rates[ig];
|
|
}
|
|
|
|
const auto bo = FluidSystem::oilPvt()
|
|
.inverseFormationVolumeFactor(pvtRegionIdx, T, p, Rs);
|
|
|
|
voidage_rates[io] /= bo * detR;
|
|
}
|
|
|
|
// we only support either gas in water
|
|
// or gas in oil
|
|
if(detR != 1 && detRw != 1 ) {
|
|
std::string msg = "only support " + std::to_string(detR) + " " + std::to_string(detR);
|
|
throw(msg);
|
|
}
|
|
if (RegionAttributeHelpers::PhaseUsed::gas(pu)) {
|
|
// q[g]_r = 1/(bg * (1 - rs*rv)) * (q[g]_s - rs*q[o]_s)
|
|
voidage_rates[ig] = surface_rates[ig];
|
|
if (RegionAttributeHelpers::PhaseUsed::oil(pu)) {
|
|
voidage_rates[ig] -= Rs * surface_rates[io];
|
|
}
|
|
if (RegionAttributeHelpers::PhaseUsed::water(pu)) {
|
|
voidage_rates[ig] -= Rsw * surface_rates[iw];
|
|
}
|
|
|
|
const auto bg = FluidSystem::gasPvt()
|
|
.inverseFormationVolumeFactor(pvtRegionIdx, T, p,
|
|
Rv, Rvw);
|
|
|
|
// we only support either gas in water or gas in oil
|
|
if (detRw == 1) {
|
|
voidage_rates[ig] /= bg * detR;
|
|
} else {
|
|
voidage_rates[ig] /= bg * detRw;
|
|
}
|
|
}
|
|
}
|
|
|
|
template <class Rates>
|
|
std::pair<double, double>
|
|
inferDissolvedVaporisedRatio(const double rsMax,
|
|
const double rvMax,
|
|
const Rates& surface_rates) const
|
|
{
|
|
const auto io = RegionAttributeHelpers::PhasePos::oil(this->phaseUsage_);
|
|
const auto ig = RegionAttributeHelpers::PhasePos::gas(this->phaseUsage_);
|
|
return this->dissolvedVaporisedRatio(io, ig, rsMax, rvMax, surface_rates);
|
|
}
|
|
|
|
/**
|
|
* Compute coefficients for surface-to-reservoir voidage
|
|
* conversion for solvent.
|
|
*
|
|
*
|
|
* \param[in] r Fluid-in-place region of the well
|
|
* \param[in] pvtRegionIdx PVT region of the well
|
|
*
|
|
*
|
|
* \param[out] double Surface-to-reservoir conversion
|
|
* coefficients for solvent.
|
|
*/
|
|
template <class SolventModule>
|
|
void
|
|
calcCoeffSolvent(const RegionId r, const int pvtRegionIdx, double& coeff) const
|
|
{
|
|
const auto& ra = attr_.attributes(r);
|
|
const double p = ra.pressure;
|
|
const double T = ra.temperature;
|
|
const auto& solventPvt = SolventModule::solventPvt();
|
|
const double bs = solventPvt.inverseFormationVolumeFactor(pvtRegionIdx, T, p);
|
|
coeff = 1.0 / bs;
|
|
}
|
|
|
|
private:
|
|
/**
|
|
* Fluid property object.
|
|
*/
|
|
const PhaseUsage phaseUsage_;
|
|
|
|
/**
|
|
* "Fluid-in-place" region mapping (forward and reverse).
|
|
*/
|
|
const RegionMapping<Region> rmap_;
|
|
|
|
/**
|
|
* Derived property attributes for each active region.
|
|
*/
|
|
struct Attributes {
|
|
Attributes()
|
|
: pressure (0.0)
|
|
, temperature(0.0)
|
|
, rs(0.0)
|
|
, rv(0.0)
|
|
, rsw(0.0)
|
|
, rvw(0.0)
|
|
, pv(0.0)
|
|
, saltConcentration(0.0)
|
|
{}
|
|
|
|
double pressure;
|
|
double temperature;
|
|
double rs;
|
|
double rv;
|
|
double rsw;
|
|
double rvw;
|
|
double pv;
|
|
double saltConcentration;
|
|
};
|
|
|
|
RegionAttributeHelpers::RegionAttributes<RegionId, Attributes> attr_;
|
|
|
|
template <typename Rates>
|
|
std::pair<double, double>
|
|
dissolvedVaporisedRatio(const int io,
|
|
const int ig,
|
|
const double rs,
|
|
const double rv,
|
|
const Rates& surface_rates) const
|
|
{
|
|
if ((io < 0) || (ig < 0)) {
|
|
return { rs, rv };
|
|
}
|
|
auto eps = std::copysign(1.0e-15, surface_rates[io]);
|
|
const auto Rs = surface_rates[ig] / (surface_rates[io] + eps);
|
|
|
|
eps = std::copysign(1.0e-15, surface_rates[ig]);
|
|
const auto Rv = surface_rates[io] / (surface_rates[ig] + eps);
|
|
|
|
return {
|
|
std::clamp(static_cast<double>(Rs), 0.0, rs),
|
|
std::clamp(static_cast<double>(Rv), 0.0, rv)
|
|
};
|
|
}
|
|
};
|
|
|
|
} // namespace RateConverter
|
|
} // namespace Opm
|
|
|
|
#endif /* OPM_RATECONVERTER_HPP_HEADER_INCLUDED */
|