opm-simulators/opm/simulators/wells/RegionAverageCalculator.hpp
Markus Blatt 3cda8a2fdb Added missing parallel try-catch clause for updatePrimaryIntensities.
As Problem::updatePrimaryIntensities might throw we need to do this
to prevent dealocks in parallel run in case problem occurs.
2021-09-24 09:25:44 +02:00

266 lines
10 KiB
C++

/*
Copyright 2021, Equinor
This file is part of the Open Porous Media Project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_REGIONAVERAGECALCULATOR_HPP_HEADER_INCLUDED
#define OPM_REGIONAVERAGECALCULATOR_HPP_HEADER_INCLUDED
#include <opm/core/props/BlackoilPhases.hpp>
#include <opm/simulators/wells/RegionAttributeHelpers.hpp>
#include <opm/simulators/linalg/ParallelIstlInformation.hpp>
#include <opm/simulators/utils/DeferredLoggingErrorHelpers.hpp>
#include <dune/grid/common/gridenums.hh>
#include <algorithm>
#include <cmath>
#include <memory>
#include <stdexcept>
#include <type_traits>
#include <unordered_map>
#include <utility>
#include <vector>
/**
* \file
* Facility for converting component rates at surface conditions to
* phase (voidage) rates at reservoir conditions.
*
* This uses the average hydrocarbon pressure to define fluid
* properties. The facility is intended to support Reservoir Voidage
* rates only ('RESV').
*/
namespace Opm {
namespace RegionAverageCalculator {
/**
* Computes hydrocarbon weighed average pressures over regions
*
* \tparam FluidSystem Fluid system class. Expected to be a BlackOilFluidSystem
*
* \tparam Region Type of a forward region mapping. Expected
* to provide indexed access through \code operator[]()
* \endcode as well as inner types \c value_type, \c
* size_type, and \c const_iterator. Typically \code
* std::vector<int> \endcode.
*/
template <class FluidSystem, class Region>
class AverageRegionalPressure {
public:
/**
* Constructor.
*
* \param[in] region Forward region mapping. Often
* corresponds to the "FIPNUM" mapping of an ECLIPSE input
* deck.
*/
AverageRegionalPressure(const PhaseUsage& phaseUsage,
const Region& region)
: phaseUsage_(phaseUsage)
, rmap_ (region)
, attr_ (rmap_, Attributes())
{
}
/**
* Compute pore volume averaged hydrocarbon state pressure, *
*/
template <typename ElementContext, class EbosSimulator>
void defineState(const EbosSimulator& simulator)
{
int numRegions = 0;
const auto& gridView = simulator.gridView();
const auto& comm = gridView.comm();
for (const auto& reg : rmap_.activeRegions()) {
numRegions = std::max(numRegions, reg);
}
numRegions = comm.max(numRegions);
for (int reg = 1; reg <= numRegions ; ++ reg) {
if(!attr_.has(reg))
attr_.insert(reg, Attributes());
}
// create map from cell to region
// and set all attributes to zero
for (int reg = 1; reg <= numRegions ; ++ reg) {
auto& ra = attr_.attributes(reg);
ra.pressure = 0.0;
ra.pv = 0.0;
}
// quantities for pore volume average
std::unordered_map<RegionId, Attributes> attributes_pv;
// quantities for hydrocarbon volume average
std::unordered_map<RegionId, Attributes> attributes_hpv;
for (int reg = 1; reg <= numRegions ; ++ reg) {
attributes_pv.insert({reg, Attributes()});
attributes_hpv.insert({reg, Attributes()});
}
ElementContext elemCtx( simulator );
const auto& elemEndIt = gridView.template end</*codim=*/0>();
OPM_BEGIN_PARALLEL_TRY_CATCH();
for (auto elemIt = gridView.template begin</*codim=*/0>();
elemIt != elemEndIt;
++elemIt)
{
const auto& elem = *elemIt;
if (elem.partitionType() != Dune::InteriorEntity)
continue;
elemCtx.updatePrimaryStencil(elem);
elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
const unsigned cellIdx = elemCtx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0);
const auto& intQuants = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0);
const auto& fs = intQuants.fluidState();
// use pore volume weighted averages.
const double pv_cell =
simulator.model().dofTotalVolume(cellIdx)
* intQuants.porosity().value();
// only count oil and gas filled parts of the domain
double hydrocarbon = 1.0;
const auto& pu = phaseUsage_;
if (RegionAttributeHelpers::PhaseUsed::water(pu)) {
hydrocarbon -= fs.saturation(FluidSystem::waterPhaseIdx).value();
}
const int reg = rmap_.region(cellIdx);
assert(reg >= 0);
// sum p, rs, rv, and T.
const double hydrocarbonPV = pv_cell*hydrocarbon;
if (hydrocarbonPV > 0.) {
auto& attr = attributes_hpv[reg];
attr.pv += hydrocarbonPV;
if (RegionAttributeHelpers::PhaseUsed::oil(pu)) {
attr.pressure += fs.pressure(FluidSystem::oilPhaseIdx).value() * hydrocarbonPV;
} else {
assert(RegionAttributeHelpers::PhaseUsed::gas(pu));
attr.pressure += fs.pressure(FluidSystem::gasPhaseIdx).value() * hydrocarbonPV;
}
}
if (pv_cell > 0.) {
auto& attr = attributes_pv[reg];
attr.pv += pv_cell;
if (RegionAttributeHelpers::PhaseUsed::oil(pu)) {
attr.pressure += fs.pressure(FluidSystem::oilPhaseIdx).value() * pv_cell;
} else if (RegionAttributeHelpers::PhaseUsed::gas(pu)) {
attr.pressure += fs.pressure(FluidSystem::gasPhaseIdx).value() * pv_cell;
} else {
assert(RegionAttributeHelpers::PhaseUsed::water(pu));
attr.pressure += fs.pressure(FluidSystem::waterPhaseIdx).value() * pv_cell;
}
}
}
OPM_END_PARALLEL_TRY_CATCH("AverageRegionalPressure::defineState(): ");
for (int reg = 1; reg <= numRegions ; ++ reg) {
auto& ra = attr_.attributes(reg);
const double hpv_sum = comm.sum(attributes_hpv[reg].pv);
// TODO: should we have some epsilon here instead of zero?
if (hpv_sum > 0.) {
const auto& attri_hpv = attributes_hpv[reg];
const double p_hpv_sum = comm.sum(attri_hpv.pressure);
ra.pressure = p_hpv_sum / hpv_sum;
} else {
// using the pore volume to do the averaging
const auto& attri_pv = attributes_pv[reg];
const double pv_sum = comm.sum(attri_pv.pv);
// pore volums can be zero if a fipnum region is empty
if (pv_sum > 0) {
const double p_pv_sum = comm.sum(attri_pv.pressure);
ra.pressure = p_pv_sum / pv_sum;
}
}
}
}
/**
* Region identifier.
*
* Integral type.
*/
typedef typename RegionMapping<Region>::RegionId RegionId;
/**
* Average pressure
*
*/
double
pressure(const RegionId r) const
{
if (r == 0 ) // region 0 is the whole field
{
double pressure = 0.0;
int num_active_regions = 0;
for (const auto& attr : attr_.attributes()) {
const auto& value = *attr.second;
const auto& ra = value.attr_;
pressure += ra.pressure;
num_active_regions ++;
}
return pressure / num_active_regions;
}
const auto& ra = attr_.attributes(r);
return ra.pressure;
}
private:
/**
* Fluid property object.
*/
const PhaseUsage phaseUsage_;
/**
* "Fluid-in-place" region mapping (forward and reverse).
*/
const RegionMapping<Region> rmap_;
/**
* Derived property attributes for each active region.
*/
struct Attributes {
Attributes()
: pressure(0.0)
, pv(0.0)
{}
double pressure;
double pv;
};
RegionAttributeHelpers::RegionAttributes<RegionId, Attributes> attr_;
};
} // namespace RegionAverageCalculator
} // namespace Opm
#endif /* OPM_REGIONAVERAGECALCULATOR_HPP_HEADER_INCLUDED */