mirror of
https://github.com/OPM/opm-simulators.git
synced 2024-12-30 11:06:55 -06:00
969d8f238d
TODO: The output, fip and restart still uses a mixture of old and new phase indices. This needs to be adressed in future PRs
1255 lines
41 KiB
C++
1255 lines
41 KiB
C++
|
|
|
|
|
|
namespace Opm {
|
|
|
|
|
|
template<typename TypeTag>
|
|
BlackoilWellModel<TypeTag>::
|
|
BlackoilWellModel(Simulator& ebosSimulator,
|
|
const ModelParameters& param,
|
|
const bool terminal_output)
|
|
: ebosSimulator_(ebosSimulator)
|
|
, param_(param)
|
|
, terminal_output_(terminal_output)
|
|
, has_solvent_(GET_PROP_VALUE(TypeTag, EnableSolvent))
|
|
, has_polymer_(GET_PROP_VALUE(TypeTag, EnablePolymer))
|
|
{
|
|
const auto& eclState = ebosSimulator_.gridManager().eclState();
|
|
phase_usage_ = phaseUsageFromDeck(eclState);
|
|
|
|
const auto& gridView = ebosSimulator_.gridView();
|
|
|
|
// calculate the number of elements of the compressed sequential grid. this needs
|
|
// to be done in two steps because the dune communicator expects a reference as
|
|
// argument for sum()
|
|
number_of_cells_ = gridView.size(/*codim=*/0);
|
|
global_nc_ = gridView.comm().sum(number_of_cells_);
|
|
gravity_ = ebosSimulator_.problem().gravity()[2];
|
|
|
|
extractLegacyCellPvtRegionIndex_();
|
|
extractLegacyDepth_();
|
|
}
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
beginReportStep(const int timeStepIdx)
|
|
{
|
|
const Grid& grid = ebosSimulator_.gridManager().grid();
|
|
const auto& defunct_well_names = ebosSimulator_.gridManager().defunctWellNames();
|
|
const auto& eclState = ebosSimulator_.gridManager().eclState();
|
|
wells_ecl_ = schedule().getWells(timeStepIdx);
|
|
|
|
// Create wells and well state.
|
|
wells_manager_.reset( new WellsManager (eclState,
|
|
schedule(),
|
|
timeStepIdx,
|
|
Opm::UgGridHelpers::numCells(grid),
|
|
Opm::UgGridHelpers::globalCell(grid),
|
|
Opm::UgGridHelpers::cartDims(grid),
|
|
Opm::UgGridHelpers::dimensions(grid),
|
|
Opm::UgGridHelpers::cell2Faces(grid),
|
|
Opm::UgGridHelpers::beginFaceCentroids(grid),
|
|
dynamic_list_econ_limited_,
|
|
grid.comm().size() > 1,
|
|
defunct_well_names) );
|
|
|
|
// Wells are active if they are active wells on at least
|
|
// one process.
|
|
wells_active_ = localWellsActive() ? 1 : 0;
|
|
wells_active_ = grid.comm().max(wells_active_);
|
|
|
|
// The well state initialize bhp with the cell pressure in the top cell.
|
|
// We must therefore provide it with updated cell pressures
|
|
size_t nc = number_of_cells_;
|
|
std::vector<double> cellPressures(nc, 0.0);
|
|
ElementContext elemCtx(ebosSimulator_);
|
|
const auto& gridView = ebosSimulator_.gridManager().gridView();
|
|
const auto& elemEndIt = gridView.template end</*codim=*/0>();
|
|
for (auto elemIt = gridView.template begin</*codim=*/0>();
|
|
elemIt != elemEndIt;
|
|
++elemIt)
|
|
{
|
|
const auto& elem = *elemIt;
|
|
if (elem.partitionType() != Dune::InteriorEntity) {
|
|
continue;
|
|
}
|
|
elemCtx.updatePrimaryStencil(elem);
|
|
elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
|
|
|
|
const unsigned cellIdx = elemCtx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0);
|
|
const auto& intQuants = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0);
|
|
const auto& fs = intQuants.fluidState();
|
|
|
|
const double p = fs.pressure(FluidSystem::oilPhaseIdx).value();
|
|
cellPressures[cellIdx] = p;
|
|
}
|
|
well_state_.init(wells(), cellPressures, previous_well_state_, phase_usage_);
|
|
|
|
// handling MS well related
|
|
if (param_.use_multisegment_well_) { // if we use MultisegmentWell model
|
|
for (const auto& well : wells_ecl_) {
|
|
// TODO: this is acutally not very accurate, because sometimes a deck just claims a MS well
|
|
// while keep the well shut. More accurately, we should check if the well exisits in the Wells
|
|
// structure here
|
|
if (well->isMultiSegment(timeStepIdx) ) { // there is one well is MS well
|
|
well_state_.initWellStateMSWell(wells(), wells_ecl_, timeStepIdx, phase_usage_, previous_well_state_);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Compute reservoir volumes for RESV controls.
|
|
rateConverter_.reset(new RateConverterType (phase_usage_,
|
|
std::vector<int>(number_of_cells_, 0)));
|
|
computeRESV(timeStepIdx);
|
|
|
|
// create the well container
|
|
well_container_ = createWellContainer(timeStepIdx);
|
|
|
|
// do the initialization for all the wells
|
|
// TODO: to see whether we can postpone of the intialization of the well containers to
|
|
// optimize the usage of the following several member variables
|
|
for (auto& well : well_container_) {
|
|
well->init(&phase_usage_, depth_, gravity_, number_of_cells_);
|
|
}
|
|
|
|
// calculate the efficiency factors for each well
|
|
calculateEfficiencyFactors();
|
|
|
|
if (has_polymer_)
|
|
{
|
|
if (PolymerModule::hasPlyshlog()) {
|
|
computeRepRadiusPerfLength(grid);
|
|
}
|
|
}
|
|
|
|
// compute VFP properties
|
|
vfp_properties_.reset (new VFPProperties (
|
|
eclState.getTableManager().getVFPInjTables(),
|
|
eclState.getTableManager().getVFPProdTables()) );
|
|
|
|
// update the previous well state. This is used to restart failed steps.
|
|
previous_well_state_ = well_state_;
|
|
|
|
|
|
}
|
|
|
|
|
|
// called at the beginning of a time step
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
beginTimeStep() {
|
|
well_state_ = previous_well_state_;
|
|
|
|
if (wellCollection().havingVREPGroups() ) {
|
|
rateConverter_->template defineState<ElementContext>(ebosSimulator_);
|
|
|
|
}
|
|
}
|
|
|
|
// only use this for restart.
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
setRestartWellState(const WellState& well_state) { previous_well_state_ = well_state; }
|
|
|
|
// called at the end of a report step
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
endReportStep() {
|
|
// update the list contanining information of closed wells
|
|
// and connections due to economical limits
|
|
// Used by the wellManager
|
|
updateListEconLimited(dynamic_list_econ_limited_);
|
|
}
|
|
|
|
// called at the end of a report step
|
|
template<typename TypeTag>
|
|
const SimulatorReport&
|
|
BlackoilWellModel<TypeTag>::
|
|
lastReport() const {return last_report_; }
|
|
|
|
// called at the end of a time step
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
timeStepSucceeded() {
|
|
previous_well_state_ = well_state_;
|
|
}
|
|
|
|
template<typename TypeTag>
|
|
std::vector<typename BlackoilWellModel<TypeTag>::WellInterfacePtr >
|
|
BlackoilWellModel<TypeTag>::
|
|
createWellContainer(const int time_step) const
|
|
{
|
|
std::vector<WellInterfacePtr> well_container;
|
|
|
|
const int nw = numWells();
|
|
|
|
if (nw > 0) {
|
|
well_container.reserve(nw);
|
|
|
|
// With the following way, it will have the same order with wells struct
|
|
// Hopefully, it can generate the same residual history with master branch
|
|
for (int w = 0; w < nw; ++w) {
|
|
const std::string well_name = std::string(wells()->name[w]);
|
|
|
|
// finding the location of the well in wells_ecl
|
|
const int nw_wells_ecl = wells_ecl_.size();
|
|
int index_well = 0;
|
|
for (; index_well < nw_wells_ecl; ++index_well) {
|
|
if (well_name == wells_ecl_[index_well]->name()) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
// It should be able to find in wells_ecl.
|
|
if (index_well == nw_wells_ecl) {
|
|
OPM_THROW(std::logic_error, "Could not find well " << well_name << " in wells_ecl ");
|
|
}
|
|
|
|
const Well* well_ecl = wells_ecl_[index_well];
|
|
|
|
// Use the pvtRegionIdx from the top cell
|
|
const int well_cell_top = wells()->well_cells[wells()->well_connpos[w]];
|
|
const int pvtreg = pvt_region_idx_[well_cell_top];
|
|
|
|
if ( !well_ecl->isMultiSegment(time_step) || !param_.use_multisegment_well_) {
|
|
well_container.emplace_back(new StandardWell<TypeTag>(well_ecl, time_step, wells(),
|
|
param_, *rateConverter_, pvtreg, numComponents() ) );
|
|
} else {
|
|
well_container.emplace_back(new MultisegmentWell<TypeTag>(well_ecl, time_step, wells(),
|
|
param_, *rateConverter_, pvtreg, numComponents() ) );
|
|
}
|
|
}
|
|
}
|
|
return well_container;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
assemble(const int iterationIdx,
|
|
const double dt)
|
|
{
|
|
|
|
|
|
last_report_ = SimulatorReport();
|
|
|
|
if ( ! wellsActive() ) {
|
|
return;
|
|
}
|
|
|
|
updatePerforationIntensiveQuantities();
|
|
|
|
if (iterationIdx == 0) {
|
|
prepareTimeStep();
|
|
}
|
|
|
|
updateWellControls();
|
|
// Set the well primary variables based on the value of well solutions
|
|
initPrimaryVariablesEvaluation();
|
|
|
|
if (iterationIdx == 0) {
|
|
calculateExplicitQuantities();
|
|
}
|
|
|
|
if (param_.solve_welleq_initially_ && iterationIdx == 0) {
|
|
// solve the well equations as a pre-processing step
|
|
last_report_ = solveWellEq(dt);
|
|
}
|
|
assembleWellEq(dt, false);
|
|
|
|
last_report_.converged = true;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
assembleWellEq(const double dt,
|
|
bool only_wells)
|
|
{
|
|
for (int w = 0; w < numWells(); ++w) {
|
|
well_container_[w]->assembleWellEq(ebosSimulator_, dt, well_state_, only_wells);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// applying the well residual to reservoir residuals
|
|
// r = r - duneC_^T * invDuneD_ * resWell_
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
apply( BVector& r) const
|
|
{
|
|
if ( ! localWellsActive() ) {
|
|
return;
|
|
}
|
|
|
|
for (auto& well : well_container_) {
|
|
well->apply(r);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Ax = A x - C D^-1 B x
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
apply(const BVector& x, BVector& Ax) const
|
|
{
|
|
// TODO: do we still need localWellsActive()?
|
|
if ( ! localWellsActive() ) {
|
|
return;
|
|
}
|
|
|
|
for (auto& well : well_container_) {
|
|
well->apply(x, Ax);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Ax = Ax - alpha * C D^-1 B x
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
applyScaleAdd(const Scalar alpha, const BVector& x, BVector& Ax) const
|
|
{
|
|
if ( ! localWellsActive() ) {
|
|
return;
|
|
}
|
|
|
|
if( scaleAddRes_.size() != Ax.size() ) {
|
|
scaleAddRes_.resize( Ax.size() );
|
|
}
|
|
|
|
scaleAddRes_ = 0.0;
|
|
// scaleAddRes_ = - C D^-1 B x
|
|
apply( x, scaleAddRes_ );
|
|
// Ax = Ax + alpha * scaleAddRes_
|
|
Ax.axpy( alpha, scaleAddRes_ );
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
recoverWellSolutionAndUpdateWellState(const BVector& x)
|
|
{
|
|
if (!localWellsActive())
|
|
return;
|
|
|
|
for (auto& well : well_container_) {
|
|
well->recoverWellSolutionAndUpdateWellState(x, well_state_);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
resetWellControlFromState() const
|
|
{
|
|
const int nw = numWells();
|
|
|
|
assert(nw == int(well_container_.size()) );
|
|
|
|
for (int w = 0; w < nw; ++w) {
|
|
WellControls* wc = well_container_[w]->wellControls();
|
|
well_controls_set_current( wc, well_state_.currentControls()[w]);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
bool
|
|
BlackoilWellModel<TypeTag>::
|
|
wellsActive() const
|
|
{
|
|
return wells_active_;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
setWellsActive(const bool wells_active)
|
|
{
|
|
wells_active_ = wells_active;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
bool
|
|
BlackoilWellModel<TypeTag>::
|
|
localWellsActive() const
|
|
{
|
|
return numWells() > 0;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
initPrimaryVariablesEvaluation() const
|
|
{
|
|
for (auto& well : well_container_) {
|
|
well->initPrimaryVariablesEvaluation();
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
SimulatorReport
|
|
BlackoilWellModel<TypeTag>::
|
|
solveWellEq(const double dt)
|
|
{
|
|
const int nw = numWells();
|
|
WellState well_state0 = well_state_;
|
|
|
|
const int numComp = numComponents();
|
|
std::vector< Scalar > B_avg( numComp, Scalar() );
|
|
computeAverageFormationFactor(B_avg);
|
|
|
|
const int max_iter = param_.max_welleq_iter_;
|
|
|
|
int it = 0;
|
|
bool converged;
|
|
do {
|
|
assembleWellEq(dt, true);
|
|
|
|
converged = getWellConvergence(B_avg);
|
|
|
|
// checking whether the group targets are converged
|
|
if (wellCollection().groupControlActive()) {
|
|
converged = converged && wellCollection().groupTargetConverged(well_state_.wellRates());
|
|
}
|
|
|
|
if (converged) {
|
|
break;
|
|
}
|
|
|
|
++it;
|
|
if( localWellsActive() )
|
|
{
|
|
for (auto& well : well_container_) {
|
|
well->solveEqAndUpdateWellState(well_state_);
|
|
}
|
|
}
|
|
// updateWellControls uses communication
|
|
// Therefore the following is executed if there
|
|
// are active wells anywhere in the global domain.
|
|
if( wellsActive() )
|
|
{
|
|
updateWellControls();
|
|
initPrimaryVariablesEvaluation();
|
|
}
|
|
} while (it < max_iter);
|
|
|
|
if (converged) {
|
|
if ( terminal_output_ ) {
|
|
OpmLog::debug("Well equation solution gets converged with " + std::to_string(it) + " iterations");
|
|
}
|
|
} else {
|
|
if ( terminal_output_ ) {
|
|
OpmLog::debug("Well equation solution failed in getting converged with " + std::to_string(it) + " iterations");
|
|
}
|
|
|
|
well_state_ = well_state0;
|
|
updatePrimaryVariables();
|
|
// also recover the old well controls
|
|
for (int w = 0; w < nw; ++w) {
|
|
WellControls* wc = well_container_[w]->wellControls();
|
|
well_controls_set_current(wc, well_state_.currentControls()[w]);
|
|
}
|
|
}
|
|
|
|
SimulatorReport report;
|
|
report.converged = converged;
|
|
report.total_well_iterations = it;
|
|
return report;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
bool
|
|
BlackoilWellModel<TypeTag>::
|
|
getWellConvergence(const std::vector<Scalar>& B_avg) const
|
|
{
|
|
ConvergenceReport report;
|
|
|
|
for (const auto& well : well_container_) {
|
|
report += well->getWellConvergence(B_avg);
|
|
}
|
|
|
|
// checking NaN residuals
|
|
{
|
|
bool nan_residual_found = report.nan_residual_found;
|
|
const auto& grid = ebosSimulator_.gridManager().grid();
|
|
int value = nan_residual_found ? 1 : 0;
|
|
|
|
nan_residual_found = grid.comm().max(value);
|
|
|
|
if (nan_residual_found) {
|
|
for (const auto& well : report.nan_residual_wells) {
|
|
OpmLog::debug("NaN residual found with phase " + well.phase_name + " for well " + well.well_name);
|
|
}
|
|
OPM_THROW(Opm::NumericalProblem, "NaN residual found!");
|
|
}
|
|
}
|
|
|
|
// checking too large residuals
|
|
{
|
|
bool too_large_residual_found = report.too_large_residual_found;
|
|
const auto& grid = ebosSimulator_.gridManager().grid();
|
|
int value = too_large_residual_found ? 1 : 0;
|
|
|
|
too_large_residual_found = grid.comm().max(value);
|
|
if (too_large_residual_found) {
|
|
for (const auto& well : report.too_large_residual_wells) {
|
|
OpmLog::debug("Too large residual found with phase " + well.phase_name + " fow well " + well.well_name);
|
|
}
|
|
OPM_THROW(Opm::NumericalProblem, "Too large residual found!");
|
|
}
|
|
}
|
|
|
|
// checking convergence
|
|
bool converged_well = report.converged;
|
|
{
|
|
const auto& grid = ebosSimulator_.gridManager().grid();
|
|
int value = converged_well ? 1 : 0;
|
|
|
|
converged_well = grid.comm().min(value);
|
|
}
|
|
|
|
return converged_well;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
calculateExplicitQuantities() const
|
|
{
|
|
for (auto& well : well_container_) {
|
|
well->calculateExplicitQuantities(ebosSimulator_, well_state_);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
updateWellControls()
|
|
{
|
|
// Even if there no wells active locally, we cannot
|
|
// return as the Destructor of the WellSwitchingLogger
|
|
// uses global communication. For no well active globally
|
|
// we simply return.
|
|
if( !wellsActive() ) return ;
|
|
|
|
#if HAVE_OPENMP
|
|
#endif // HAVE_OPENMP
|
|
wellhelpers::WellSwitchingLogger logger;
|
|
|
|
for (const auto& well : well_container_) {
|
|
well->updateWellControl(well_state_, logger);
|
|
}
|
|
|
|
updateGroupControls();
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
updateListEconLimited(DynamicListEconLimited& list_econ_limited) const
|
|
{
|
|
for (const auto& well : well_container_) {
|
|
well->updateListEconLimited(well_state_, list_econ_limited);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
computeWellPotentials(std::vector<double>& well_potentials)
|
|
{
|
|
// number of wells and phases
|
|
const int nw = numWells();
|
|
const int np = numPhases();
|
|
well_potentials.resize(nw * np, 0.0);
|
|
|
|
for (int w = 0; w < nw; ++w) {
|
|
std::vector<double> potentials;
|
|
well_container_[w]->computeWellPotentials(ebosSimulator_, well_state_, potentials);
|
|
|
|
// putting the sucessfully calculated potentials to the well_potentials
|
|
for (int p = 0; p < np; ++p) {
|
|
well_potentials[w * np + p] = std::abs(potentials[p]);
|
|
}
|
|
} // end of for (int w = 0; w < nw; ++w)
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
prepareTimeStep()
|
|
{
|
|
|
|
if ( wellCollection().havingVREPGroups() ) {
|
|
rateConverter_->template defineState<ElementContext>(ebosSimulator_);
|
|
}
|
|
|
|
// after restarting, the well_controls can be modified while
|
|
// the well_state still uses the old control index
|
|
// we need to synchronize these two.
|
|
// keep in mind that we set the control index of well_state to be the same with
|
|
// with the wellControls from the deck when we create well_state at the beginning of the report step
|
|
resetWellControlFromState();
|
|
|
|
// process group control related
|
|
prepareGroupControl();
|
|
|
|
// since the controls are all updated, we should update well_state accordingly
|
|
for (int w = 0; w < numWells(); ++w) {
|
|
WellControls* wc = well_container_[w]->wellControls();
|
|
const int control = well_controls_get_current(wc);
|
|
well_state_.currentControls()[w] = control;
|
|
// TODO: for VFP control, the perf_densities are still zero here, investigate better
|
|
// way to handle it later.
|
|
well_container_[w]->updateWellStateWithTarget(well_state_);
|
|
|
|
// The wells are not considered to be newly added
|
|
// for next time step
|
|
if (well_state_.isNewWell(w) ) {
|
|
well_state_.setNewWell(w, false);
|
|
}
|
|
} // end of for (int w = 0; w < nw; ++w)
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
prepareGroupControl()
|
|
{
|
|
// group control related processing
|
|
if (wellCollection().groupControlActive()) {
|
|
for (int w = 0; w < numWells(); ++w) {
|
|
WellControls* wc = well_container_[w]->wellControls();
|
|
WellNode& well_node = wellCollection().findWellNode(well_container_[w]->name());
|
|
|
|
// handling the situation that wells do not have a valid control
|
|
// it happens the well specified with GRUP and restarting due to non-convergencing
|
|
// putting the well under group control for this situation
|
|
int ctrl_index = well_controls_get_current(wc);
|
|
|
|
const int group_control_index = well_node.groupControlIndex();
|
|
if (group_control_index >= 0 && ctrl_index < 0) {
|
|
// put well under group control
|
|
well_controls_set_current(wc, group_control_index);
|
|
well_state_.currentControls()[w] = group_control_index;
|
|
}
|
|
|
|
// Final step, update whehter the well is under group control or individual control
|
|
// updated ctrl_index from the well control
|
|
ctrl_index = well_controls_get_current(wc);
|
|
if (well_node.groupControlIndex() >= 0 && ctrl_index == well_node.groupControlIndex()) {
|
|
// under group control
|
|
well_node.setIndividualControl(false);
|
|
} else {
|
|
// individual control
|
|
well_node.setIndividualControl(true);
|
|
}
|
|
}
|
|
|
|
if (wellCollection().requireWellPotentials()) {
|
|
|
|
// calculate the well potentials
|
|
std::vector<double> well_potentials;
|
|
computeWellPotentials(well_potentials);
|
|
|
|
// update/setup guide rates for each well based on the well_potentials
|
|
// TODO: this is one of two places that still need Wells struct. In this function, only the well names
|
|
// well types are used, probably the order of the wells to locate the correct values in well_potentials.
|
|
wellCollection().setGuideRatesWithPotentials(wells(), phase_usage_, well_potentials);
|
|
}
|
|
|
|
applyVREPGroupControl();
|
|
|
|
if (!wellCollection().groupControlApplied()) {
|
|
wellCollection().applyGroupControls();
|
|
} else {
|
|
wellCollection().updateWellTargets(well_state_.wellRates());
|
|
}
|
|
}
|
|
}
|
|
|
|
template<typename TypeTag>
|
|
const WellCollection&
|
|
BlackoilWellModel<TypeTag>::
|
|
wellCollection() const
|
|
{
|
|
return wells_manager_->wellCollection();
|
|
}
|
|
|
|
template<typename TypeTag>
|
|
WellCollection&
|
|
BlackoilWellModel<TypeTag>::
|
|
wellCollection()
|
|
{
|
|
return wells_manager_->wellCollection();
|
|
}
|
|
|
|
template<typename TypeTag>
|
|
const typename BlackoilWellModel<TypeTag>::WellState&
|
|
BlackoilWellModel<TypeTag>::
|
|
wellState() const { return well_state_; }
|
|
|
|
template<typename TypeTag>
|
|
const typename BlackoilWellModel<TypeTag>::WellState&
|
|
BlackoilWellModel<TypeTag>::
|
|
wellState(const WellState& well_state OPM_UNUSED) const { return wellState(); }
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
calculateEfficiencyFactors()
|
|
{
|
|
if ( !localWellsActive() ) {
|
|
return;
|
|
}
|
|
|
|
const int nw = numWells();
|
|
|
|
for (int w = 0; w < nw; ++w) {
|
|
const std::string well_name = well_container_[w]->name();
|
|
const WellNode& well_node = wellCollection().findWellNode(well_name);
|
|
|
|
const double well_efficiency_factor = well_node.getAccumulativeEfficiencyFactor();
|
|
|
|
well_container_[w]->setWellEfficiencyFactor(well_efficiency_factor);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
computeWellVoidageRates(std::vector<double>& well_voidage_rates,
|
|
std::vector<double>& voidage_conversion_coeffs) const
|
|
{
|
|
if ( !localWellsActive() ) {
|
|
return;
|
|
}
|
|
// TODO: for now, we store the voidage rates for all the production wells.
|
|
// For injection wells, the rates are stored as zero.
|
|
// We only store the conversion coefficients for all the injection wells.
|
|
// Later, more delicate model will be implemented here.
|
|
// And for the moment, group control can only work for serial running.
|
|
const int nw = numWells();
|
|
|
|
const int np = numPhases();
|
|
|
|
// we calculate the voidage rate for each well, that means the sum of all the phases.
|
|
well_voidage_rates.resize(nw, 0);
|
|
// store the conversion coefficients, while only for the use of injection wells.
|
|
voidage_conversion_coeffs.resize(nw * np, 1.0);
|
|
|
|
std::vector<double> well_rates(np, 0.0);
|
|
std::vector<double> convert_coeff(np, 1.0);
|
|
|
|
for (int w = 0; w < nw; ++w) {
|
|
const bool is_producer = well_container_[w]->wellType() == PRODUCER;
|
|
const int well_cell_top = well_container_[w]->cells()[0];
|
|
const int pvtRegionIdx = pvt_region_idx_[well_cell_top];
|
|
|
|
// not sure necessary to change all the value to be positive
|
|
if (is_producer) {
|
|
std::transform(well_state_.wellRates().begin() + np * w,
|
|
well_state_.wellRates().begin() + np * (w + 1),
|
|
well_rates.begin(), std::negate<double>());
|
|
|
|
// the average hydrocarbon conditions of the whole field will be used
|
|
const int fipreg = 0; // Not considering FIP for the moment.
|
|
|
|
rateConverter_->calcCoeff(fipreg, pvtRegionIdx, convert_coeff);
|
|
well_voidage_rates[w] = std::inner_product(well_rates.begin(), well_rates.end(),
|
|
convert_coeff.begin(), 0.0);
|
|
} else {
|
|
// TODO: Not sure whether will encounter situation with all zero rates
|
|
// and whether it will cause problem here.
|
|
std::copy(well_state_.wellRates().begin() + np * w,
|
|
well_state_.wellRates().begin() + np * (w + 1),
|
|
well_rates.begin());
|
|
// the average hydrocarbon conditions of the whole field will be used
|
|
const int fipreg = 0; // Not considering FIP for the moment.
|
|
rateConverter_->calcCoeff(fipreg, pvtRegionIdx, convert_coeff);
|
|
std::copy(convert_coeff.begin(), convert_coeff.end(),
|
|
voidage_conversion_coeffs.begin() + np * w);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
applyVREPGroupControl()
|
|
{
|
|
if ( wellCollection().havingVREPGroups() ) {
|
|
std::vector<double> well_voidage_rates;
|
|
std::vector<double> voidage_conversion_coeffs;
|
|
computeWellVoidageRates(well_voidage_rates, voidage_conversion_coeffs);
|
|
wellCollection().applyVREPGroupControls(well_voidage_rates, voidage_conversion_coeffs);
|
|
|
|
// for the wells under group control, update the control index for the well_state_ and well_controls
|
|
for (const WellNode* well_node : wellCollection().getLeafNodes()) {
|
|
if (well_node->isInjector() && !well_node->individualControl()) {
|
|
const int well_index = well_node->selfIndex();
|
|
well_state_.currentControls()[well_index] = well_node->groupControlIndex();
|
|
|
|
WellControls* wc = well_container_[well_index]->wellControls();
|
|
well_controls_set_current(wc, well_node->groupControlIndex());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
updateGroupControls()
|
|
{
|
|
|
|
if (wellCollection().groupControlActive()) {
|
|
for (int w = 0; w < numWells(); ++w) {
|
|
// update whether well is under group control
|
|
// get well node in the well collection
|
|
WellNode& well_node = wellCollection().findWellNode(well_container_[w]->name());
|
|
|
|
// update whehter the well is under group control or individual control
|
|
const int current = well_state_.currentControls()[w];
|
|
if (well_node.groupControlIndex() >= 0 && current == well_node.groupControlIndex()) {
|
|
// under group control
|
|
well_node.setIndividualControl(false);
|
|
} else {
|
|
// individual control
|
|
well_node.setIndividualControl(true);
|
|
}
|
|
}
|
|
|
|
applyVREPGroupControl();
|
|
// upate the well targets following group controls
|
|
// it will not change the control mode, only update the targets
|
|
wellCollection().updateWellTargets(well_state_.wellRates());
|
|
|
|
for (int w = 0; w < numWells(); ++w) {
|
|
well_container_[w]->updateWellStateWithTarget(well_state_);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
setupCompressedToCartesian(const int* global_cell, int number_of_cells, std::map<int,int>& cartesian_to_compressed ) const
|
|
{
|
|
if (global_cell) {
|
|
for (int i = 0; i < number_of_cells; ++i) {
|
|
cartesian_to_compressed.insert(std::make_pair(global_cell[i], i));
|
|
}
|
|
}
|
|
else {
|
|
for (int i = 0; i < number_of_cells; ++i) {
|
|
cartesian_to_compressed.insert(std::make_pair(i, i));
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
computeRepRadiusPerfLength(const Grid& grid)
|
|
{
|
|
// TODO, the function does not work for parallel running
|
|
// to be fixed later.
|
|
const int* global_cell = Opm::UgGridHelpers::globalCell(grid);
|
|
|
|
std::map<int,int> cartesian_to_compressed;
|
|
setupCompressedToCartesian(global_cell, number_of_cells_,
|
|
cartesian_to_compressed);
|
|
|
|
for (const auto& well : well_container_) {
|
|
well->computeRepRadiusPerfLength(grid, cartesian_to_compressed);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
computeAverageFormationFactor(std::vector<double>& B_avg) const
|
|
{
|
|
const auto& grid = ebosSimulator_.gridManager().grid();
|
|
const auto& gridView = grid.leafGridView();
|
|
ElementContext elemCtx(ebosSimulator_);
|
|
const auto& elemEndIt = gridView.template end</*codim=*/0, Dune::Interior_Partition>();
|
|
|
|
for (auto elemIt = gridView.template begin</*codim=*/0, Dune::Interior_Partition>();
|
|
elemIt != elemEndIt; ++elemIt)
|
|
{
|
|
elemCtx.updatePrimaryStencil(*elemIt);
|
|
elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
|
|
|
|
const auto& intQuants = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0);
|
|
const auto& fs = intQuants.fluidState();
|
|
|
|
for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx)
|
|
{
|
|
if (!FluidSystem::phaseIsActive(phaseIdx)) {
|
|
continue;
|
|
}
|
|
|
|
const unsigned compIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::solventComponentIndex(phaseIdx));
|
|
auto& B = B_avg[ compIdx ];
|
|
|
|
B += 1 / fs.invB(phaseIdx).value();
|
|
}
|
|
if (has_solvent_) {
|
|
auto& B = B_avg[solventSaturationIdx];
|
|
B += 1 / intQuants.solventInverseFormationVolumeFactor().value();
|
|
}
|
|
}
|
|
|
|
// compute global average
|
|
grid.comm().sum(B_avg.data(), B_avg.size());
|
|
for(auto& bval: B_avg)
|
|
{
|
|
bval/=global_nc_;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
updatePrimaryVariables()
|
|
{
|
|
for (const auto& well : well_container_) {
|
|
well->updatePrimaryVariables(well_state_);
|
|
}
|
|
}
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::extractLegacyCellPvtRegionIndex_()
|
|
{
|
|
const auto& grid = ebosSimulator_.gridManager().grid();
|
|
const auto& eclProblem = ebosSimulator_.problem();
|
|
const unsigned numCells = grid.size(/*codim=*/0);
|
|
|
|
pvt_region_idx_.resize(numCells);
|
|
for (unsigned cellIdx = 0; cellIdx < numCells; ++cellIdx) {
|
|
pvt_region_idx_[cellIdx] =
|
|
eclProblem.pvtRegionIndex(cellIdx);
|
|
}
|
|
}
|
|
|
|
// The number of components in the model.
|
|
template<typename TypeTag>
|
|
int
|
|
BlackoilWellModel<TypeTag>::numComponents() const
|
|
{
|
|
if (numPhases() == 2) {
|
|
return 2;
|
|
}
|
|
int numComp = FluidSystem::numComponents;
|
|
if (has_solvent_) {
|
|
numComp ++;
|
|
}
|
|
|
|
return numComp;
|
|
}
|
|
|
|
template<typename TypeTag>
|
|
int
|
|
BlackoilWellModel<TypeTag>:: numWells() const
|
|
{
|
|
return wells()->number_of_wells;
|
|
}
|
|
|
|
template<typename TypeTag>
|
|
int
|
|
BlackoilWellModel<TypeTag>:: numPhases() const
|
|
{
|
|
return wells()->number_of_phases;
|
|
}
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::extractLegacyDepth_()
|
|
{
|
|
const auto& grid = ebosSimulator_.gridManager().grid();
|
|
const unsigned numCells = grid.size(/*codim=*/0);
|
|
|
|
depth_.resize(numCells);
|
|
for (unsigned cellIdx = 0; cellIdx < numCells; ++cellIdx) {
|
|
depth_[cellIdx] =
|
|
grid.cellCenterDepth(cellIdx);
|
|
}
|
|
}
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
updatePerforationIntensiveQuantities() {
|
|
ElementContext elemCtx(ebosSimulator_);
|
|
const auto& gridView = ebosSimulator_.gridView();
|
|
const auto& elemEndIt = gridView.template end</*codim=*/0, Dune::Interior_Partition>();
|
|
for (auto elemIt = gridView.template begin</*codim=*/0, Dune::Interior_Partition>();
|
|
elemIt != elemEndIt;
|
|
++elemIt)
|
|
{
|
|
elemCtx.updatePrimaryStencil(*elemIt);
|
|
elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
|
|
}
|
|
}
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
computeRESV(const std::size_t step)
|
|
{
|
|
typedef SimFIBODetails::WellMap WellMap;
|
|
|
|
const WellMap& wmap = SimFIBODetails::mapWells(wells_ecl_);
|
|
|
|
const std::vector<int>& resv_wells = SimFIBODetails::resvWells(wells(), step, wmap);
|
|
|
|
int global_number_resv_wells = resv_wells.size();
|
|
global_number_resv_wells = ebosSimulator_.gridView().comm().sum(global_number_resv_wells);
|
|
if ( global_number_resv_wells > 0 )
|
|
{
|
|
rateConverter_->template defineState<ElementContext>(ebosSimulator_);
|
|
}
|
|
|
|
if (! resv_wells.empty()) {
|
|
const PhaseUsage& pu = phase_usage_;
|
|
const std::vector<double>::size_type np = pu.num_phases;
|
|
|
|
std::vector<double> distr (np);
|
|
std::vector<double> hrates(np);
|
|
|
|
for (std::vector<int>::const_iterator
|
|
rp = resv_wells.begin(), e = resv_wells.end();
|
|
rp != e; ++rp)
|
|
{
|
|
WellControls* ctrl = wells()->ctrls[*rp];
|
|
const bool is_producer = wells()->type[*rp] == PRODUCER;
|
|
const int well_cell_top = wells()->well_cells[wells()->well_connpos[*rp]];
|
|
const int pvtreg = pvt_region_idx_[well_cell_top];
|
|
|
|
// RESV control mode, all wells
|
|
{
|
|
const int rctrl = SimFIBODetails::resv_control(ctrl);
|
|
|
|
if (0 <= rctrl) {
|
|
const int fipreg = 0; // Hack. Ignore FIP regions.
|
|
rateConverter_->calcCoeff(fipreg, pvtreg, distr);
|
|
|
|
if (!is_producer) { // injectors
|
|
well_controls_assert_number_of_phases(ctrl, np);
|
|
|
|
// original distr contains 0 and 1 to indicate phases under control
|
|
const double* old_distr = well_controls_get_current_distr(ctrl);
|
|
|
|
for (size_t p = 0; p < np; ++p) {
|
|
distr[p] *= old_distr[p];
|
|
}
|
|
}
|
|
|
|
well_controls_iset_distr(ctrl, rctrl, & distr[0]);
|
|
}
|
|
}
|
|
|
|
// RESV control, WCONHIST wells. A bit of duplicate
|
|
// work, regrettably.
|
|
if (is_producer && wells()->name[*rp] != 0) {
|
|
WellMap::const_iterator i = wmap.find(wells()->name[*rp]);
|
|
|
|
if (i != wmap.end()) {
|
|
const auto* wp = i->second;
|
|
|
|
const WellProductionProperties& p =
|
|
wp->getProductionProperties(step);
|
|
|
|
if (! p.predictionMode) {
|
|
// History matching (WCONHIST/RESV)
|
|
SimFIBODetails::historyRates(pu, p, hrates);
|
|
|
|
const int fipreg = 0; // Hack. Ignore FIP regions.
|
|
rateConverter_->calcCoeff(fipreg, pvtreg, distr);
|
|
|
|
// WCONHIST/RESV target is sum of all
|
|
// observed phase rates translated to
|
|
// reservoir conditions. Recall sign
|
|
// convention: Negative for producers.
|
|
const double target =
|
|
- std::inner_product(distr.begin(), distr.end(),
|
|
hrates.begin(), 0.0);
|
|
|
|
well_controls_clear(ctrl);
|
|
well_controls_assert_number_of_phases(ctrl, int(np));
|
|
|
|
static const double invalid_alq = -std::numeric_limits<double>::max();
|
|
static const int invalid_vfp = -std::numeric_limits<int>::max();
|
|
|
|
const int ok_resv =
|
|
well_controls_add_new(RESERVOIR_RATE, target,
|
|
invalid_alq, invalid_vfp,
|
|
& distr[0], ctrl);
|
|
|
|
// For WCONHIST the BHP limit is set to 1 atm.
|
|
// or a value specified using WELTARG
|
|
double bhp_limit = (p.BHPLimit > 0) ? p.BHPLimit : unit::convert::from(1.0, unit::atm);
|
|
const int ok_bhp =
|
|
well_controls_add_new(BHP, bhp_limit,
|
|
invalid_alq, invalid_vfp,
|
|
NULL, ctrl);
|
|
|
|
if (ok_resv != 0 && ok_bhp != 0) {
|
|
well_state_.currentControls()[*rp] = 0;
|
|
well_controls_set_current(ctrl, 0);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if( wells() )
|
|
{
|
|
for (int w = 0, nw = numWells(); w < nw; ++w) {
|
|
WellControls* ctrl = wells()->ctrls[w];
|
|
const bool is_producer = wells()->type[w] == PRODUCER;
|
|
if (!is_producer && wells()->name[w] != 0) {
|
|
WellMap::const_iterator i = wmap.find(wells()->name[w]);
|
|
if (i != wmap.end()) {
|
|
const auto* wp = i->second;
|
|
const WellInjectionProperties& injector = wp->getInjectionProperties(step);
|
|
if (!injector.predictionMode) {
|
|
//History matching WCONINJEH
|
|
static const double invalid_alq = -std::numeric_limits<double>::max();
|
|
static const int invalid_vfp = -std::numeric_limits<int>::max();
|
|
// For WCONINJEH the BHP limit is set to a large number
|
|
// or a value specified using WELTARG
|
|
double bhp_limit = (injector.BHPLimit > 0) ? injector.BHPLimit : std::numeric_limits<double>::max();
|
|
const int ok_bhp =
|
|
well_controls_add_new(BHP, bhp_limit,
|
|
invalid_alq, invalid_vfp,
|
|
NULL, ctrl);
|
|
if (!ok_bhp) {
|
|
OPM_THROW(std::runtime_error, "Failed to add well control.");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
} // namespace Opm
|