mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-02-20 11:48:25 -06:00
917 lines
39 KiB
C++
917 lines
39 KiB
C++
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
|
// vi: set et ts=4 sw=4 sts=4:
|
|
/*
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
Consult the COPYING file in the top-level source directory of this
|
|
module for the precise wording of the license and the list of
|
|
copyright holders.
|
|
*/
|
|
/**
|
|
* \file
|
|
*
|
|
* \copydoc Opm::TracerModel
|
|
*/
|
|
#ifndef OPM_TRACER_MODEL_HPP
|
|
#define OPM_TRACER_MODEL_HPP
|
|
|
|
#include <opm/common/OpmLog/OpmLog.hpp>
|
|
|
|
#include <opm/models/utils/propertysystem.hh>
|
|
|
|
#include <opm/simulators/flow/GenericTracerModel.hpp>
|
|
#include <opm/simulators/utils/VectorVectorDataHandle.hpp>
|
|
|
|
#include <array>
|
|
#include <cstddef>
|
|
#include <memory>
|
|
#include <stdexcept>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
namespace Opm::Properties {
|
|
|
|
template<class TypeTag, class MyTypeTag>
|
|
struct EnableTracerModel {
|
|
using type = UndefinedProperty;
|
|
};
|
|
|
|
} // namespace Opm::Properties
|
|
|
|
namespace Opm {
|
|
|
|
/*!
|
|
* \ingroup BlackOilSimulator
|
|
*
|
|
* \brief A class which handles tracers as specified in by ECL
|
|
*/
|
|
template <class TypeTag>
|
|
class TracerModel : public GenericTracerModel<GetPropType<TypeTag, Properties::Grid>,
|
|
GetPropType<TypeTag, Properties::GridView>,
|
|
GetPropType<TypeTag, Properties::DofMapper>,
|
|
GetPropType<TypeTag, Properties::Stencil>,
|
|
GetPropType<TypeTag, Properties::FluidSystem>,
|
|
GetPropType<TypeTag, Properties::Scalar>>
|
|
{
|
|
using BaseType = GenericTracerModel<GetPropType<TypeTag, Properties::Grid>,
|
|
GetPropType<TypeTag, Properties::GridView>,
|
|
GetPropType<TypeTag, Properties::DofMapper>,
|
|
GetPropType<TypeTag, Properties::Stencil>,
|
|
GetPropType<TypeTag, Properties::FluidSystem>,
|
|
GetPropType<TypeTag, Properties::Scalar>>;
|
|
using Simulator = GetPropType<TypeTag, Properties::Simulator>;
|
|
using GridView = GetPropType<TypeTag, Properties::GridView>;
|
|
using Grid = GetPropType<TypeTag, Properties::Grid>;
|
|
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
|
using Stencil = GetPropType<TypeTag, Properties::Stencil>;
|
|
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
|
|
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
|
|
using RateVector = GetPropType<TypeTag, Properties::RateVector>;
|
|
using Indices = GetPropType<TypeTag, Properties::Indices>;
|
|
|
|
using TracerEvaluation = DenseAd::Evaluation<Scalar,1>;
|
|
|
|
using TracerMatrix = typename BaseType::TracerMatrix;
|
|
using TracerVector = typename BaseType::TracerVector;
|
|
|
|
enum { numEq = getPropValue<TypeTag, Properties::NumEq>() };
|
|
enum { numPhases = FluidSystem::numPhases };
|
|
enum { waterPhaseIdx = FluidSystem::waterPhaseIdx };
|
|
enum { oilPhaseIdx = FluidSystem::oilPhaseIdx };
|
|
enum { gasPhaseIdx = FluidSystem::gasPhaseIdx };
|
|
|
|
public:
|
|
TracerModel(Simulator& simulator)
|
|
: BaseType(simulator.vanguard().gridView(),
|
|
simulator.vanguard().eclState(),
|
|
simulator.vanguard().cartesianIndexMapper(),
|
|
simulator.model().dofMapper(),
|
|
simulator.vanguard().cellCentroids())
|
|
, simulator_(simulator)
|
|
, tbatch({waterPhaseIdx, oilPhaseIdx, gasPhaseIdx})
|
|
, wat_(tbatch[0])
|
|
, oil_(tbatch[1])
|
|
, gas_(tbatch[2])
|
|
{ }
|
|
|
|
|
|
/*
|
|
The initialization of the tracer model is a three step process:
|
|
|
|
1. The init() method is called. This will allocate buffers and initialize
|
|
some phase index stuff. If this is a normal run the initial tracer
|
|
concentrations will be assigned from the TBLK or TVDPF keywords.
|
|
|
|
2. [Restart only:] The tracer concentration are read from the restart
|
|
file and the concentrations are applied with repeated calls to the
|
|
setTracerConcentration() method. This is currently done in the
|
|
eclwriter::beginRestart() method.
|
|
|
|
3. Internally the tracer model manages the concentrations in "batches" for
|
|
the oil, water and gas tracers respectively. The batches should be
|
|
initialized with the initial concentration, that must be performed
|
|
after the concentration values have been assigned. This is done in
|
|
method prepareTracerBatches() called from eclproblem::finishInit().
|
|
*/
|
|
void init(bool rst)
|
|
{
|
|
this->doInit(rst, simulator_.model().numGridDof(),
|
|
gasPhaseIdx, oilPhaseIdx, waterPhaseIdx);
|
|
}
|
|
|
|
void prepareTracerBatches()
|
|
{
|
|
for (std::size_t tracerIdx = 0; tracerIdx < this->tracerPhaseIdx_.size(); ++tracerIdx) {
|
|
if (this->tracerPhaseIdx_[tracerIdx] == FluidSystem::waterPhaseIdx) {
|
|
if (! FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)){
|
|
throw std::runtime_error("Water tracer specified for non-water fluid system:" + this->name(tracerIdx));
|
|
}
|
|
|
|
wat_.addTracer(tracerIdx, this->tracerConcentration_[tracerIdx]);
|
|
}
|
|
else if (this->tracerPhaseIdx_[tracerIdx] == FluidSystem::oilPhaseIdx) {
|
|
if (! FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)){
|
|
throw std::runtime_error("Oil tracer specified for non-oil fluid system:" + this->name(tracerIdx));
|
|
}
|
|
|
|
oil_.addTracer(tracerIdx, this->tracerConcentration_[tracerIdx]);
|
|
}
|
|
else if (this->tracerPhaseIdx_[tracerIdx] == FluidSystem::gasPhaseIdx) {
|
|
if (! FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)){
|
|
throw std::runtime_error("Gas tracer specified for non-gas fluid system:" + this->name(tracerIdx));
|
|
}
|
|
|
|
gas_.addTracer(tracerIdx, this->tracerConcentration_[tracerIdx]);
|
|
}
|
|
|
|
// resize free and solution volume storages
|
|
fVol1_[this->tracerPhaseIdx_[tracerIdx]].resize(this->freeTracerConcentration_[tracerIdx].size());
|
|
sVol1_[this->tracerPhaseIdx_[tracerIdx]].resize(this->solTracerConcentration_[tracerIdx].size());
|
|
dsVol_[this->tracerPhaseIdx_[tracerIdx]].resize(this->solTracerConcentration_[tracerIdx].size());
|
|
dfVol_[this->tracerPhaseIdx_[tracerIdx]].resize(this->solTracerConcentration_[tracerIdx].size());
|
|
}
|
|
|
|
// will be valid after we move out of tracerMatrix_
|
|
TracerMatrix* base = this->tracerMatrix_.get();
|
|
for (auto& tr : this->tbatch) {
|
|
if (tr.numTracer() != 0) {
|
|
if (this->tracerMatrix_)
|
|
tr.mat = std::move(this->tracerMatrix_);
|
|
else
|
|
tr.mat = std::make_unique<TracerMatrix>(*base);
|
|
}
|
|
}
|
|
}
|
|
|
|
void beginTimeStep()
|
|
{
|
|
if (this->numTracers() == 0)
|
|
return;
|
|
|
|
updateStorageCache();
|
|
}
|
|
|
|
/*!
|
|
* \brief Informs the tracer model that a time step has just been finished.
|
|
*/
|
|
void endTimeStep()
|
|
{
|
|
if (this->numTracers() == 0)
|
|
return;
|
|
|
|
advanceTracerFields();
|
|
}
|
|
|
|
/*!
|
|
* \brief This method writes the complete state of all tracer
|
|
* to the hard disk.
|
|
*/
|
|
template <class Restarter>
|
|
void serialize(Restarter&)
|
|
{ /* not implemented */ }
|
|
|
|
/*!
|
|
* \brief This method restores the complete state of the tracer
|
|
* from disk.
|
|
*
|
|
* It is the inverse of the serialize() method.
|
|
*/
|
|
template <class Restarter>
|
|
void deserialize(Restarter&)
|
|
{ /* not implemented */ }
|
|
|
|
template<class Serializer>
|
|
void serializeOp(Serializer& serializer)
|
|
{
|
|
serializer(static_cast<BaseType&>(*this));
|
|
serializer(tbatch);
|
|
}
|
|
|
|
protected:
|
|
|
|
// compute volume associated with free concentration
|
|
Scalar computeFreeVolume_(const int tracerPhaseIdx,
|
|
unsigned globalDofIdx,
|
|
unsigned timeIdx)
|
|
{
|
|
const auto& intQuants = simulator_.model().intensiveQuantities(globalDofIdx, timeIdx);
|
|
const auto& fs = intQuants.fluidState();
|
|
|
|
Scalar phaseVolume =
|
|
decay<Scalar>(fs.saturation(tracerPhaseIdx))
|
|
*decay<Scalar>(fs.invB(tracerPhaseIdx))
|
|
*decay<Scalar>(intQuants.porosity());
|
|
|
|
return max(phaseVolume, 1e-10);
|
|
}
|
|
|
|
// compute volume associated with solution concentration
|
|
Scalar computeSolutionVolume_(const int tracerPhaseIdx,
|
|
unsigned globalDofIdx,
|
|
unsigned timeIdx)
|
|
{
|
|
const auto& intQuants = simulator_.model().intensiveQuantities(globalDofIdx, timeIdx);
|
|
const auto& fs = intQuants.fluidState();
|
|
|
|
Scalar phaseVolume;
|
|
|
|
// vaporized oil
|
|
if (tracerPhaseIdx == FluidSystem::oilPhaseIdx && FluidSystem::enableVaporizedOil()) {
|
|
phaseVolume =
|
|
decay<Scalar>(fs.saturation(FluidSystem::gasPhaseIdx))
|
|
* decay<Scalar>(fs.invB(FluidSystem::gasPhaseIdx))
|
|
* decay<Scalar>(fs.Rv())
|
|
* decay<Scalar>(intQuants.porosity());
|
|
}
|
|
|
|
// dissolved gas
|
|
else if (tracerPhaseIdx == FluidSystem::gasPhaseIdx && FluidSystem::enableDissolvedGas()) {
|
|
phaseVolume =
|
|
decay<Scalar>(fs.saturation(FluidSystem::oilPhaseIdx))
|
|
* decay<Scalar>(fs.invB(FluidSystem::oilPhaseIdx))
|
|
* decay<Scalar>(fs.Rs())
|
|
* decay<Scalar>(intQuants.porosity());
|
|
}
|
|
else {
|
|
phaseVolume = 0.0;
|
|
}
|
|
|
|
return max(phaseVolume, 1e-10);
|
|
|
|
}
|
|
|
|
void computeFreeFlux_(TracerEvaluation & freeFlux,
|
|
bool & isUp,
|
|
const int tracerPhaseIdx,
|
|
const ElementContext& elemCtx,
|
|
unsigned scvfIdx,
|
|
unsigned timeIdx)
|
|
{
|
|
const auto& stencil = elemCtx.stencil(timeIdx);
|
|
const auto& scvf = stencil.interiorFace(scvfIdx);
|
|
|
|
const auto& extQuants = elemCtx.extensiveQuantities(scvfIdx, timeIdx);
|
|
unsigned inIdx = extQuants.interiorIndex();
|
|
|
|
unsigned upIdx = extQuants.upstreamIndex(tracerPhaseIdx);
|
|
|
|
const auto& intQuants = elemCtx.intensiveQuantities(upIdx, timeIdx);
|
|
const auto& fs = intQuants.fluidState();
|
|
|
|
Scalar v =
|
|
decay<Scalar>(extQuants.volumeFlux(tracerPhaseIdx))
|
|
* decay<Scalar>(fs.invB(tracerPhaseIdx));
|
|
|
|
Scalar A = scvf.area();
|
|
if (inIdx == upIdx) {
|
|
freeFlux = A*v*variable<TracerEvaluation>(1.0, 0);
|
|
isUp = true;
|
|
}
|
|
else {
|
|
freeFlux = A*v;
|
|
isUp = false;
|
|
}
|
|
}
|
|
|
|
void computeSolFlux_(TracerEvaluation & solFlux,
|
|
bool & isUp,
|
|
const int tracerPhaseIdx,
|
|
const ElementContext& elemCtx,
|
|
unsigned scvfIdx,
|
|
unsigned timeIdx)
|
|
{
|
|
const auto& stencil = elemCtx.stencil(timeIdx);
|
|
const auto& scvf = stencil.interiorFace(scvfIdx);
|
|
|
|
const auto& extQuants = elemCtx.extensiveQuantities(scvfIdx, timeIdx);
|
|
unsigned inIdx = extQuants.interiorIndex();
|
|
|
|
Scalar v;
|
|
unsigned upIdx;
|
|
|
|
// vaporized oil
|
|
if (tracerPhaseIdx == FluidSystem::oilPhaseIdx && FluidSystem::enableVaporizedOil()) {
|
|
upIdx = extQuants.upstreamIndex(FluidSystem::gasPhaseIdx);
|
|
|
|
const auto& intQuants = elemCtx.intensiveQuantities(upIdx, timeIdx);
|
|
const auto& fs = intQuants.fluidState();
|
|
v =
|
|
decay<Scalar>(fs.invB(FluidSystem::gasPhaseIdx))
|
|
* decay<Scalar>(extQuants.volumeFlux(FluidSystem::gasPhaseIdx))
|
|
* decay<Scalar>(fs.Rv());
|
|
}
|
|
// dissolved gas
|
|
else if (tracerPhaseIdx == FluidSystem::gasPhaseIdx && FluidSystem::enableDissolvedGas()) {
|
|
upIdx = extQuants.upstreamIndex(FluidSystem::oilPhaseIdx);
|
|
|
|
const auto& intQuants = elemCtx.intensiveQuantities(upIdx, timeIdx);
|
|
const auto& fs = intQuants.fluidState();
|
|
v =
|
|
decay<Scalar>(fs.invB(FluidSystem::oilPhaseIdx))
|
|
* decay<Scalar>(extQuants.volumeFlux(FluidSystem::oilPhaseIdx))
|
|
* decay<Scalar>(fs.Rs());
|
|
}
|
|
else {
|
|
upIdx = 0;
|
|
v = 0.0;
|
|
}
|
|
|
|
Scalar A = scvf.area();
|
|
if (inIdx == upIdx) {
|
|
solFlux = A*v*variable<TracerEvaluation>(1.0, 0);
|
|
isUp = true;
|
|
}
|
|
else {
|
|
solFlux = A*v;
|
|
isUp = false;
|
|
}
|
|
}
|
|
|
|
template<class TrRe>
|
|
void assembleTracerEquationVolume(TrRe& tr,
|
|
const ElementContext& elemCtx,
|
|
const Scalar scvVolume,
|
|
const Scalar dt,
|
|
unsigned I,
|
|
unsigned I1)
|
|
|
|
{
|
|
if (tr.numTracer() == 0)
|
|
return;
|
|
|
|
// Storage terms at previous time step (timeIdx = 1)
|
|
std::vector<Scalar> storageOfTimeIndex1(tr.numTracer());
|
|
std::vector<Scalar> fStorageOfTimeIndex1(tr.numTracer());
|
|
std::vector<Scalar> sStorageOfTimeIndex1(tr.numTracer());
|
|
if (elemCtx.enableStorageCache()) {
|
|
for (int tIdx = 0; tIdx < tr.numTracer(); ++tIdx) {
|
|
fStorageOfTimeIndex1[tIdx] = tr.storageOfTimeIndex1_[tIdx][I][0];
|
|
sStorageOfTimeIndex1[tIdx] = tr.storageOfTimeIndex1_[tIdx][I][1];
|
|
}
|
|
}
|
|
else {
|
|
Scalar fVolume1 = computeFreeVolume_(tr.phaseIdx_, I1, 1);
|
|
Scalar sVolume1 = computeSolutionVolume_(tr.phaseIdx_, I1, 1);
|
|
for (int tIdx = 0; tIdx < tr.numTracer(); ++tIdx) {
|
|
fStorageOfTimeIndex1[tIdx] = fVolume1 * tr.concentration_[tIdx][I1][0];
|
|
sStorageOfTimeIndex1[tIdx] = sVolume1 * tr.concentration_[tIdx][I1][1];
|
|
}
|
|
}
|
|
|
|
TracerEvaluation fVol = computeFreeVolume_(tr.phaseIdx_, I, 0) * variable<TracerEvaluation>(1.0, 0);
|
|
TracerEvaluation sVol = computeSolutionVolume_(tr.phaseIdx_, I, 0) * variable<TracerEvaluation>(1.0, 0);
|
|
dsVol_[tr.phaseIdx_][I] += sVol.value() * scvVolume - sVol1_[tr.phaseIdx_][I];
|
|
dfVol_[tr.phaseIdx_][I] += fVol.value() * scvVolume - fVol1_[tr.phaseIdx_][I];
|
|
for (int tIdx = 0; tIdx < tr.numTracer(); ++tIdx) {
|
|
// Free part
|
|
Scalar fStorageOfTimeIndex0 = fVol.value() * tr.concentration_[tIdx][I][0];
|
|
Scalar fLocalStorage = (fStorageOfTimeIndex0 - fStorageOfTimeIndex1[tIdx]) * scvVolume/dt;
|
|
tr.residual_[tIdx][I][0] += fLocalStorage; //residual + flux
|
|
|
|
// Solution part
|
|
Scalar sStorageOfTimeIndex0 = sVol.value() * tr.concentration_[tIdx][I][1];
|
|
Scalar sLocalStorage = (sStorageOfTimeIndex0 - sStorageOfTimeIndex1[tIdx]) * scvVolume/dt;
|
|
tr.residual_[tIdx][I][1] += sLocalStorage; //residual + flux
|
|
}
|
|
|
|
// Derivative matrix
|
|
(*tr.mat)[I][I][0][0] += fVol.derivative(0) * scvVolume/dt;
|
|
(*tr.mat)[I][I][1][1] += sVol.derivative(0) * scvVolume/dt;
|
|
|
|
}
|
|
|
|
template<class TrRe>
|
|
void assembleTracerEquationFlux(TrRe& tr,
|
|
const ElementContext& elemCtx,
|
|
unsigned scvfIdx,
|
|
unsigned I,
|
|
unsigned J,
|
|
const Scalar dt)
|
|
{
|
|
if (tr.numTracer() == 0)
|
|
return;
|
|
|
|
TracerEvaluation fFlux;
|
|
TracerEvaluation sFlux;
|
|
bool isUpF;
|
|
bool isUpS;
|
|
computeFreeFlux_(fFlux, isUpF, tr.phaseIdx_, elemCtx, scvfIdx, 0);
|
|
computeSolFlux_(sFlux, isUpS, tr.phaseIdx_, elemCtx, scvfIdx, 0);
|
|
dsVol_[tr.phaseIdx_][I] += sFlux.value() * dt;
|
|
dfVol_[tr.phaseIdx_][I] += fFlux.value() * dt;
|
|
int fGlobalUpIdx = isUpF ? I : J;
|
|
int sGlobalUpIdx = isUpS ? I : J;
|
|
for (int tIdx =0; tIdx < tr.numTracer(); ++tIdx) {
|
|
// Free and solution fluxes
|
|
tr.residual_[tIdx][I][0] += fFlux.value()*tr.concentration_[tIdx][fGlobalUpIdx][0]; //residual + flux
|
|
tr.residual_[tIdx][I][1] += sFlux.value()*tr.concentration_[tIdx][sGlobalUpIdx][1]; //residual + flux
|
|
}
|
|
|
|
// Derivative matrix
|
|
if (isUpF){
|
|
(*tr.mat)[J][I][0][0] = -fFlux.derivative(0);
|
|
(*tr.mat)[I][I][0][0] += fFlux.derivative(0);
|
|
}
|
|
if (isUpS) {
|
|
(*tr.mat)[J][I][1][1] = -sFlux.derivative(0);
|
|
(*tr.mat)[I][I][1][1] += sFlux.derivative(0);
|
|
}
|
|
}
|
|
|
|
template<class TrRe, class Well>
|
|
void assembleTracerEquationWell(TrRe& tr,
|
|
const Well& well)
|
|
{
|
|
if (tr.numTracer() == 0)
|
|
return;
|
|
|
|
const auto& eclWell = well.wellEcl();
|
|
|
|
// Init. well output to zero
|
|
for (int tIdx = 0; tIdx < tr.numTracer(); ++tIdx) {
|
|
this->wellTracerRate_[std::make_pair(eclWell.name(), this->name(tr.idx_[tIdx]))] = 0.0;
|
|
this->wellFreeTracerRate_[std::make_pair(eclWell.name(), this->wellfname(tr.idx_[tIdx]))] = 0.0;
|
|
this->wellSolTracerRate_[std::make_pair(eclWell.name(), this->wellsname(tr.idx_[tIdx]))] = 0.0;
|
|
if (eclWell.isMultiSegment()) {
|
|
for (std::size_t i = 0; i < eclWell.getConnections().size(); ++i) {
|
|
this->mSwTracerRate_[std::make_tuple(eclWell.name(),
|
|
this->name(tr.idx_[tIdx]),
|
|
eclWell.getConnections().get(i).segment())] = 0.0;
|
|
}
|
|
}
|
|
}
|
|
|
|
std::vector<Scalar> wtracer(tr.numTracer());
|
|
for (int tIdx = 0; tIdx < tr.numTracer(); ++tIdx) {
|
|
wtracer[tIdx] = this->currentConcentration_(eclWell, this->name(tr.idx_[tIdx]));
|
|
}
|
|
|
|
Scalar dt = simulator_.timeStepSize();
|
|
std::size_t well_index = simulator_.problem().wellModel().wellState().index(well.name()).value();
|
|
const auto& ws = simulator_.problem().wellModel().wellState().well(well_index);
|
|
for (std::size_t i = 0; i < ws.perf_data.size(); ++i) {
|
|
const auto I = ws.perf_data.cell_index[i];
|
|
Scalar rate = well.volumetricSurfaceRateForConnection(I, tr.phaseIdx_);
|
|
Scalar rate_s;
|
|
if (tr.phaseIdx_ == FluidSystem::oilPhaseIdx && FluidSystem::enableVaporizedOil()) {
|
|
rate_s = ws.perf_data.phase_mixing_rates[i][ws.vaporized_oil];
|
|
}
|
|
else if (tr.phaseIdx_ == FluidSystem::gasPhaseIdx && FluidSystem::enableDissolvedGas()) {
|
|
rate_s = ws.perf_data.phase_mixing_rates[i][ws.dissolved_gas];
|
|
}
|
|
else {
|
|
rate_s = 0.0;
|
|
}
|
|
|
|
Scalar rate_f = rate - rate_s;
|
|
if (rate_f > 0) {
|
|
for (int tIdx = 0; tIdx < tr.numTracer(); ++tIdx) {
|
|
// Injection of free tracer only
|
|
tr.residual_[tIdx][I][0] -= rate_f*wtracer[tIdx];
|
|
|
|
// Store _injector_ tracer rate for reporting (can be done here since WTRACER is constant)
|
|
this->wellTracerRate_.at(std::make_pair(eclWell.name(),this->name(tr.idx_[tIdx]))) += rate_f*wtracer[tIdx];
|
|
this->wellFreeTracerRate_.at(std::make_pair(eclWell.name(),this->wellfname(tr.idx_[tIdx]))) += rate_f*wtracer[tIdx];
|
|
if (eclWell.isMultiSegment()) {
|
|
this->mSwTracerRate_[std::make_tuple(eclWell.name(),
|
|
this->name(tr.idx_[tIdx]),
|
|
eclWell.getConnections().get(i).segment())] += rate_f*wtracer[tIdx];
|
|
}
|
|
}
|
|
dfVol_[tr.phaseIdx_][I] -= rate_f * dt;
|
|
}
|
|
else if (rate_f < 0) {
|
|
for (int tIdx = 0; tIdx < tr.numTracer(); ++tIdx) {
|
|
// Production of free tracer
|
|
tr.residual_[tIdx][I][0] -= rate_f * tr.concentration_[tIdx][I][0];
|
|
|
|
}
|
|
dfVol_[tr.phaseIdx_][I] -= rate_f * dt;
|
|
|
|
// Derivative matrix for free tracer producer
|
|
(*tr.mat)[I][I][0][0] -= rate_f * variable<TracerEvaluation>(1.0, 0).derivative(0);
|
|
}
|
|
if (rate_s < 0) {
|
|
for (int tIdx = 0; tIdx < tr.numTracer(); ++tIdx) {
|
|
// Production of solution tracer
|
|
tr.residual_[tIdx][I][1] -= rate_s * tr.concentration_[tIdx][I][1];
|
|
}
|
|
dsVol_[tr.phaseIdx_][I] -= rate_s * dt;
|
|
|
|
// Derivative matrix for solution tracer producer
|
|
(*tr.mat)[I][I][1][1] -= rate_s * variable<TracerEvaluation>(1.0, 0).derivative(0);
|
|
}
|
|
}
|
|
}
|
|
|
|
template<class TrRe>
|
|
void assembleTracerEquationSource(TrRe& tr,
|
|
const Scalar dt,
|
|
unsigned I)
|
|
{
|
|
if (tr.numTracer() == 0)
|
|
return;
|
|
|
|
// Skip if solution tracers do not exist
|
|
if (tr.phaseIdx_ == FluidSystem::waterPhaseIdx ||
|
|
(tr.phaseIdx_ == FluidSystem::gasPhaseIdx && !FluidSystem::enableDissolvedGas()) ||
|
|
(tr.phaseIdx_ == FluidSystem::oilPhaseIdx && !FluidSystem::enableVaporizedOil())) {
|
|
return;
|
|
}
|
|
|
|
const Scalar& dsVol = dsVol_[tr.phaseIdx_][I];
|
|
const Scalar& dfVol = dfVol_[tr.phaseIdx_][I];
|
|
|
|
// Source term determined by sign of dsVol: if dsVol > 0 then ms -> mf, else mf -> ms
|
|
for (int tIdx = 0; tIdx < tr.numTracer(); ++tIdx) {
|
|
if (dsVol >= 0) {
|
|
tr.residual_[tIdx][I][0] -= (dfVol / dt) * tr.concentration_[tIdx][I][0];
|
|
tr.residual_[tIdx][I][1] += (dfVol / dt) * tr.concentration_[tIdx][I][0];
|
|
}
|
|
else {
|
|
tr.residual_[tIdx][I][0] += (dsVol / dt) * tr.concentration_[tIdx][I][1];
|
|
tr.residual_[tIdx][I][1] -= (dsVol / dt) * tr.concentration_[tIdx][I][1];
|
|
}
|
|
}
|
|
|
|
// Derivative matrix
|
|
if (dsVol >= 0) {
|
|
(*tr.mat)[I][I][0][0] -= (dfVol / dt) * variable<TracerEvaluation>(1.0, 0).derivative(0);
|
|
(*tr.mat)[I][I][1][0] += (dfVol / dt) * variable<TracerEvaluation>(1.0, 0).derivative(0);
|
|
}
|
|
else {
|
|
(*tr.mat)[I][I][0][1] += (dsVol / dt) * variable<TracerEvaluation>(1.0, 0).derivative(0);
|
|
(*tr.mat)[I][I][1][1] -= (dsVol / dt) * variable<TracerEvaluation>(1.0, 0).derivative(0);
|
|
}
|
|
}
|
|
|
|
void assembleTracerEquations_()
|
|
{
|
|
// Note that we formulate the equations in terms of a concentration update
|
|
// (compared to previous time step) and not absolute concentration.
|
|
// This implies that current concentration (tr.concentration_[][]) contributes
|
|
// to the rhs both through storrage and flux terms.
|
|
// Compare also advanceTracerFields(...) below.
|
|
|
|
for (auto& tr : tbatch) {
|
|
if (tr.numTracer() != 0) {
|
|
(*tr.mat) = 0.0;
|
|
for (int tIdx = 0; tIdx < tr.numTracer(); ++tIdx) {
|
|
tr.residual_[tIdx] = 0.0;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Well terms
|
|
const auto& wellPtrs = simulator_.problem().wellModel().localNonshutWells();
|
|
for (const auto& wellPtr : wellPtrs) {
|
|
for (auto& tr : tbatch) {
|
|
this->assembleTracerEquationWell(tr, *wellPtr);
|
|
}
|
|
}
|
|
|
|
ElementContext elemCtx(simulator_);
|
|
for (const auto& elem : elements(simulator_.gridView())) {
|
|
elemCtx.updateStencil(elem);
|
|
|
|
std::size_t I = elemCtx.globalSpaceIndex(/*dofIdx=*/ 0, /*timeIdx=*/0);
|
|
|
|
if (elem.partitionType() != Dune::InteriorEntity)
|
|
{
|
|
// Dirichlet boundary conditions needed for the parallel matrix
|
|
for (auto& tr : tbatch) {
|
|
if (tr.numTracer() != 0) {
|
|
(*tr.mat)[I][I][0][0] = 1.;
|
|
(*tr.mat)[I][I][1][1] = 1.;
|
|
}
|
|
}
|
|
continue;
|
|
}
|
|
elemCtx.updateAllIntensiveQuantities();
|
|
elemCtx.updateAllExtensiveQuantities();
|
|
|
|
Scalar extrusionFactor =
|
|
elemCtx.intensiveQuantities(/*dofIdx=*/ 0, /*timeIdx=*/0).extrusionFactor();
|
|
Valgrind::CheckDefined(extrusionFactor);
|
|
assert(isfinite(extrusionFactor));
|
|
assert(extrusionFactor > 0.0);
|
|
Scalar scvVolume =
|
|
elemCtx.stencil(/*timeIdx=*/0).subControlVolume(/*dofIdx=*/ 0).volume()
|
|
* extrusionFactor;
|
|
Scalar dt = elemCtx.simulator().timeStepSize();
|
|
|
|
std::size_t I1 = elemCtx.globalSpaceIndex(/*dofIdx=*/ 0, /*timeIdx=*/1);
|
|
|
|
for (auto& tr : tbatch) {
|
|
this->assembleTracerEquationVolume(tr, elemCtx, scvVolume, dt, I, I1);
|
|
}
|
|
|
|
std::size_t numInteriorFaces = elemCtx.numInteriorFaces(/*timIdx=*/0);
|
|
for (unsigned scvfIdx = 0; scvfIdx < numInteriorFaces; scvfIdx++) {
|
|
const auto& face = elemCtx.stencil(0).interiorFace(scvfIdx);
|
|
unsigned j = face.exteriorIndex();
|
|
unsigned J = elemCtx.globalSpaceIndex(/*dofIdx=*/ j, /*timIdx=*/0);
|
|
for (auto& tr : tbatch) {
|
|
this->assembleTracerEquationFlux(tr, elemCtx, scvfIdx, I, J, dt);
|
|
}
|
|
}
|
|
|
|
// Source terms (mass transfer between free and solution tracer)
|
|
for (auto& tr : tbatch) {
|
|
this->assembleTracerEquationSource(tr, dt, I);
|
|
}
|
|
|
|
}
|
|
|
|
// Communicate overlap using grid Communication
|
|
for (auto& tr : tbatch) {
|
|
if (tr.numTracer() == 0)
|
|
continue;
|
|
auto handle = VectorVectorDataHandle<GridView, std::vector<TracerVector>>(tr.residual_,
|
|
simulator_.gridView());
|
|
simulator_.gridView().communicate(handle, Dune::InteriorBorder_All_Interface,
|
|
Dune::ForwardCommunication);
|
|
}
|
|
}
|
|
|
|
void updateStorageCache()
|
|
{
|
|
for (auto& tr : tbatch) {
|
|
if (tr.numTracer() != 0) {
|
|
tr.concentrationInitial_ = tr.concentration_;
|
|
}
|
|
}
|
|
|
|
ElementContext elemCtx(simulator_);
|
|
for (const auto& elem : elements(simulator_.gridView())) {
|
|
elemCtx.updatePrimaryStencil(elem);
|
|
elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
|
|
Scalar extrusionFactor = elemCtx.intensiveQuantities(/*dofIdx=*/ 0, /*timeIdx=*/0).extrusionFactor();
|
|
Scalar scvVolume = elemCtx.stencil(/*timeIdx=*/0).subControlVolume(/*dofIdx=*/ 0).volume() * extrusionFactor;
|
|
int globalDofIdx = elemCtx.globalSpaceIndex(0, /*timeIdx=*/0);
|
|
for (auto& tr : tbatch) {
|
|
if (tr.numTracer() == 0)
|
|
continue;
|
|
|
|
Scalar fVol1 = computeFreeVolume_(tr.phaseIdx_, globalDofIdx, 0);
|
|
Scalar sVol1 = computeSolutionVolume_(tr.phaseIdx_, globalDofIdx, 0);
|
|
fVol1_[tr.phaseIdx_][globalDofIdx] = fVol1 * scvVolume;
|
|
sVol1_[tr.phaseIdx_][globalDofIdx] = sVol1 * scvVolume;
|
|
dsVol_[tr.phaseIdx_][globalDofIdx] = 0.0;
|
|
dfVol_[tr.phaseIdx_][globalDofIdx] = 0.0;
|
|
for (int tIdx = 0; tIdx < tr.numTracer(); ++tIdx) {
|
|
tr.storageOfTimeIndex1_[tIdx][globalDofIdx][0] = fVol1 * tr.concentrationInitial_[tIdx][globalDofIdx][0];
|
|
tr.storageOfTimeIndex1_[tIdx][globalDofIdx][1] = sVol1 * tr.concentrationInitial_[tIdx][globalDofIdx][1];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void advanceTracerFields()
|
|
{
|
|
assembleTracerEquations_();
|
|
|
|
for (auto& tr : tbatch) {
|
|
if (tr.numTracer() == 0)
|
|
continue;
|
|
|
|
// Note that we solve for a concentration update (compared to previous time step)
|
|
// Confer also assembleTracerEquations_(...) above.
|
|
std::vector<TracerVector> dx(tr.concentration_);
|
|
for (int tIdx = 0; tIdx < tr.numTracer(); ++tIdx) {
|
|
dx[tIdx] = 0.0;
|
|
}
|
|
|
|
bool converged = this->linearSolveBatchwise_(*tr.mat, dx, tr.residual_);
|
|
if (!converged) {
|
|
OpmLog::warning("### Tracer model: Linear solver did not converge. ###");
|
|
}
|
|
|
|
for (int tIdx = 0; tIdx < tr.numTracer(); ++tIdx) {
|
|
for (std::size_t globalDofIdx = 0; globalDofIdx < tr.concentration_[tIdx].size(); ++globalDofIdx) {
|
|
// New concetration. Concentrations that are negative or where free/solution phase is not
|
|
// present are set to zero
|
|
const auto& intQuants = simulator_.model().intensiveQuantities(globalDofIdx, 0);
|
|
const auto& fs = intQuants.fluidState();
|
|
Scalar Sf = decay<Scalar>(fs.saturation(tr.phaseIdx_));
|
|
Scalar Ss = 0.0;
|
|
if (tr.phaseIdx_ == FluidSystem::gasPhaseIdx && FluidSystem::enableDissolvedGas())
|
|
Ss = decay<Scalar>(fs.saturation(FluidSystem::oilPhaseIdx));
|
|
else if (tr.phaseIdx_ == FluidSystem::oilPhaseIdx && FluidSystem::enableVaporizedOil())
|
|
Ss = decay<Scalar>(fs.saturation(FluidSystem::gasPhaseIdx));
|
|
|
|
const Scalar tol_gas_sat = 1e-6;
|
|
if ((tr.concentration_[tIdx][globalDofIdx][0] - dx[tIdx][globalDofIdx][0] < 0.0)
|
|
|| Sf < tol_gas_sat)
|
|
tr.concentration_[tIdx][globalDofIdx][0] = 0.0;
|
|
else
|
|
tr.concentration_[tIdx][globalDofIdx][0] -= dx[tIdx][globalDofIdx][0];
|
|
if (tr.concentration_[tIdx][globalDofIdx][1] - dx[tIdx][globalDofIdx][1] < 0.0
|
|
|| Ss < tol_gas_sat)
|
|
tr.concentration_[tIdx][globalDofIdx][1] = 0.0;
|
|
else
|
|
tr.concentration_[tIdx][globalDofIdx][1] -= dx[tIdx][globalDofIdx][1];
|
|
|
|
// Partition concentration into free and solution tracers for output
|
|
this->freeTracerConcentration_[tr.idx_[tIdx]][globalDofIdx] = tr.concentration_[tIdx][globalDofIdx][0];
|
|
this->solTracerConcentration_[tr.idx_[tIdx]][globalDofIdx] = tr.concentration_[tIdx][globalDofIdx][1];
|
|
}
|
|
}
|
|
|
|
// Store _producer_ tracer rate for reporting
|
|
const auto& wellPtrs = simulator_.problem().wellModel().localNonshutWells();
|
|
for (const auto& wellPtr : wellPtrs) {
|
|
const auto& eclWell = wellPtr->wellEcl();
|
|
|
|
// Injection rates already reported during assembly
|
|
if (!eclWell.isProducer())
|
|
continue;
|
|
|
|
Scalar rateWellPos = 0.0;
|
|
Scalar rateWellNeg = 0.0;
|
|
std::size_t well_index = simulator_.problem().wellModel().wellState().index(eclWell.name()).value();
|
|
const auto& ws = simulator_.problem().wellModel().wellState().well(well_index);
|
|
for (std::size_t i = 0; i < ws.perf_data.size(); ++i) {
|
|
const auto I = ws.perf_data.cell_index[i];
|
|
Scalar rate = wellPtr->volumetricSurfaceRateForConnection(I, tr.phaseIdx_);
|
|
|
|
Scalar rate_s;
|
|
if (tr.phaseIdx_ == FluidSystem::oilPhaseIdx && FluidSystem::enableVaporizedOil()) {
|
|
rate_s = ws.perf_data.phase_mixing_rates[i][ws.vaporized_oil];
|
|
}
|
|
else if (tr.phaseIdx_ == FluidSystem::gasPhaseIdx && FluidSystem::enableDissolvedGas()) {
|
|
rate_s = ws.perf_data.phase_mixing_rates[i][ws.dissolved_gas];
|
|
}
|
|
else {
|
|
rate_s = 0.0;
|
|
}
|
|
|
|
Scalar rate_f = rate - rate_s;
|
|
if (rate_f < 0) {
|
|
for (int tIdx = 0; tIdx < tr.numTracer(); ++tIdx) {
|
|
// Store _producer_ free tracer rate for reporting
|
|
this->wellTracerRate_.at(std::make_pair(eclWell.name(),this->name(tr.idx_[tIdx]))) +=
|
|
rate_f * tr.concentration_[tIdx][I][0];
|
|
this->wellFreeTracerRate_.at(std::make_pair(eclWell.name(),this->wellfname(tr.idx_[tIdx]))) +=
|
|
rate_f * tr.concentration_[tIdx][I][0];
|
|
if (eclWell.isMultiSegment()) {
|
|
this->mSwTracerRate_[std::make_tuple(eclWell.name(),
|
|
this->name(tr.idx_[tIdx]),
|
|
eclWell.getConnections().get(i).segment())] +=
|
|
rate_f * tr.concentration_[tIdx][I][0];
|
|
}
|
|
}
|
|
}
|
|
if (rate_s < 0) {
|
|
for (int tIdx = 0; tIdx < tr.numTracer(); ++tIdx) {
|
|
// Store _producer_ solution tracer rate for reporting
|
|
this->wellTracerRate_.at(std::make_pair(eclWell.name(),this->name(tr.idx_[tIdx]))) +=
|
|
rate_s * tr.concentration_[tIdx][I][1];
|
|
this->wellSolTracerRate_.at(std::make_pair(eclWell.name(),this->wellsname(tr.idx_[tIdx]))) +=
|
|
rate_s * tr.concentration_[tIdx][I][1];
|
|
if (eclWell.isMultiSegment()) {
|
|
this->mSwTracerRate_[std::make_tuple(eclWell.name(),
|
|
this->name(tr.idx_[tIdx]),
|
|
eclWell.getConnections().get(i).segment())] +=
|
|
rate_s * tr.concentration_[tIdx][I][1];
|
|
}
|
|
}
|
|
}
|
|
|
|
if (rate < 0) {
|
|
rateWellNeg += rate;
|
|
}
|
|
else {
|
|
rateWellPos += rate;
|
|
}
|
|
}
|
|
|
|
Scalar rateWellTotal = rateWellNeg + rateWellPos;
|
|
|
|
// TODO: Some inconsistencies here that perhaps should be clarified. The "offical" rate as reported below is
|
|
// occasionally significant different from the sum over connections (as calculated above). Only observed
|
|
// for small values, neglible for the rate itself, but matters when used to calculate tracer concentrations.
|
|
Scalar official_well_rate_total = simulator_.problem().wellModel().wellState().well(well_index).surface_rates[tr.phaseIdx_];
|
|
|
|
rateWellTotal = official_well_rate_total;
|
|
|
|
if (rateWellTotal > rateWellNeg) { // Cross flow
|
|
const Scalar bucketPrDay = 10.0/(1000.*3600.*24.); // ... keeps (some) trouble away
|
|
const Scalar factor = (rateWellTotal < -bucketPrDay) ? rateWellTotal/rateWellNeg : 0.0;
|
|
for (int tIdx = 0; tIdx < tr.numTracer(); ++tIdx) {
|
|
this->wellTracerRate_.at(std::make_pair(eclWell.name(),this->name(tr.idx_[tIdx]))) *= factor;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
Simulator& simulator_;
|
|
|
|
// This struct collects tracers of the same type (i.e, transported in same phase).
|
|
// The idea being that, under the assumption of linearity, tracers of same type can
|
|
// be solved in concert, having a common system matrix but separate right-hand-sides.
|
|
|
|
// Since oil or gas tracers appears in dual compositions when VAPOIL respectively DISGAS
|
|
// is active, the template argument is intended to support future extension to these
|
|
// scenarios by supplying an extended vector type.
|
|
|
|
template <typename TV>
|
|
struct TracerBatch {
|
|
std::vector<int> idx_;
|
|
const int phaseIdx_;
|
|
std::vector<TV> concentrationInitial_;
|
|
std::vector<TV> concentration_;
|
|
std::vector<TV> storageOfTimeIndex1_;
|
|
std::vector<TV> residual_;
|
|
std::unique_ptr<TracerMatrix> mat;
|
|
|
|
bool operator==(const TracerBatch& rhs) const
|
|
{
|
|
return this->concentrationInitial_ == rhs.concentrationInitial_ &&
|
|
this->concentration_ == rhs.concentration_;
|
|
}
|
|
|
|
static TracerBatch serializationTestObject()
|
|
{
|
|
TracerBatch<TV> result(4);
|
|
result.idx_ = {1,2,3};
|
|
result.concentrationInitial_ = {5.0, 6.0};
|
|
result.concentration_ = {7.0, 8.0};
|
|
result.storageOfTimeIndex1_ = {9.0, 10.0, 11.0};
|
|
result.residual_ = {12.0, 13.0};
|
|
|
|
return result;
|
|
}
|
|
|
|
template<class Serializer>
|
|
void serializeOp(Serializer& serializer)
|
|
{
|
|
serializer(concentrationInitial_);
|
|
serializer(concentration_);
|
|
}
|
|
|
|
TracerBatch(int phaseIdx = 0) : phaseIdx_(phaseIdx) {}
|
|
|
|
int numTracer() const {return idx_.size(); }
|
|
|
|
void addTracer(const int idx, const TV & concentration)
|
|
{
|
|
int numGridDof = concentration.size();
|
|
idx_.emplace_back(idx);
|
|
concentrationInitial_.emplace_back(concentration);
|
|
concentration_.emplace_back(concentration);
|
|
residual_.emplace_back(numGridDof);
|
|
storageOfTimeIndex1_.emplace_back(numGridDof);
|
|
}
|
|
};
|
|
|
|
std::array<TracerBatch<TracerVector>,3> tbatch;
|
|
TracerBatch<TracerVector>& wat_;
|
|
TracerBatch<TracerVector>& oil_;
|
|
TracerBatch<TracerVector>& gas_;
|
|
std::array<std::vector<Scalar>, 3> fVol1_;
|
|
std::array<std::vector<Scalar>, 3> sVol1_;
|
|
std::array<std::vector<Scalar>, 3> dsVol_;
|
|
std::array<std::vector<Scalar>, 3> dfVol_;
|
|
};
|
|
|
|
} // namespace Opm
|
|
|
|
#endif // OPM_TRACER_MODEL_HPP
|