opm-simulators/opm/simulators/wells/MultisegmentWellEval.cpp
2022-12-19 16:03:54 +01:00

732 lines
31 KiB
C++

/*
Copyright 2017 SINTEF Digital, Mathematics and Cybernetics.
Copyright 2017 Statoil ASA.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#include <opm/simulators/wells/MultisegmentWellEval.hpp>
#include <dune/istl/umfpack.hh>
#include <opm/material/fluidsystems/BlackOilFluidSystem.hpp>
#include <opm/models/blackoil/blackoilindices.hh>
#include <opm/models/blackoil/blackoilonephaseindices.hh>
#include <opm/models/blackoil/blackoiltwophaseindices.hh>
#include <opm/simulators/timestepping/ConvergenceReport.hpp>
#include <opm/simulators/utils/DeferredLoggingErrorHelpers.hpp>
#include <opm/simulators/wells/MSWellHelpers.hpp>
#include <opm/simulators/wells/MultisegmentWellAssemble.hpp>
#include <opm/simulators/wells/WellAssemble.hpp>
#include <opm/simulators/wells/WellConvergence.hpp>
#include <opm/simulators/wells/WellInterfaceIndices.hpp>
#include <opm/simulators/wells/WellState.hpp>
#include <algorithm>
#include <array>
#include <cassert>
#include <cmath>
#include <numeric>
#include <utility>
#include <vector>
namespace Opm
{
template<typename FluidSystem, typename Indices, typename Scalar>
MultisegmentWellEval<FluidSystem,Indices,Scalar>::
MultisegmentWellEval(WellInterfaceIndices<FluidSystem,Indices,Scalar>& baseif)
: MultisegmentWellGeneric<Scalar>(baseif)
, baseif_(baseif)
, linSys_(*this)
, primary_variables_(baseif)
, segments_(this->numberOfSegments(), baseif)
, cell_perforation_depth_diffs_(baseif_.numPerfs(), 0.0)
, cell_perforation_pressure_diffs_(baseif_.numPerfs(), 0.0)
{
}
template<typename FluidSystem, typename Indices, typename Scalar>
void
MultisegmentWellEval<FluidSystem,Indices,Scalar>::
initMatrixAndVectors(const int num_cells)
{
linSys_.init(num_cells, baseif_.numPerfs(),
baseif_.cells(), segments_.inlets_,
segments_.perforations_);
primary_variables_.resize(this->numberOfSegments());
}
template<typename FluidSystem, typename Indices, typename Scalar>
ConvergenceReport
MultisegmentWellEval<FluidSystem,Indices,Scalar>::
getWellConvergence(const WellState& well_state,
const std::vector<double>& B_avg,
DeferredLogger& deferred_logger,
const double max_residual_allowed,
const double tolerance_wells,
const double relaxed_inner_tolerance_flow_ms_well,
const double tolerance_pressure_ms_wells,
const double relaxed_inner_tolerance_pressure_ms_well,
const bool relax_tolerance) const
{
assert(int(B_avg.size()) == baseif_.numComponents());
// checking if any residual is NaN or too large. The two large one is only handled for the well flux
std::vector<std::vector<double>> abs_residual(this->numberOfSegments(),
std::vector<double>(numWellEq, 0.0));
for (int seg = 0; seg < this->numberOfSegments(); ++seg) {
for (int eq_idx = 0; eq_idx < numWellEq; ++eq_idx) {
abs_residual[seg][eq_idx] = std::abs(linSys_.residual()[seg][eq_idx]);
}
}
std::vector<double> maximum_residual(numWellEq, 0.0);
ConvergenceReport report;
// TODO: the following is a little complicated, maybe can be simplified in some way?
for (int eq_idx = 0; eq_idx < numWellEq; ++eq_idx) {
for (int seg = 0; seg < this->numberOfSegments(); ++seg) {
if (eq_idx < baseif_.numComponents()) { // phase or component mass equations
const double flux_residual = B_avg[eq_idx] * abs_residual[seg][eq_idx];
if (flux_residual > maximum_residual[eq_idx]) {
maximum_residual[eq_idx] = flux_residual;
}
} else { // pressure or control equation
// for the top segment (seg == 0), it is control equation, will be checked later separately
if (seg > 0) {
// Pressure equation
const double pressure_residual = abs_residual[seg][eq_idx];
if (pressure_residual > maximum_residual[eq_idx]) {
maximum_residual[eq_idx] = pressure_residual;
}
}
}
}
}
using CR = ConvergenceReport;
for (int eq_idx = 0; eq_idx < numWellEq; ++eq_idx) {
if (eq_idx < baseif_.numComponents()) { // phase or component mass equations
const double flux_residual = maximum_residual[eq_idx];
// TODO: the report can not handle the segment number yet.
if (std::isnan(flux_residual)) {
report.setWellFailed({CR::WellFailure::Type::MassBalance, CR::Severity::NotANumber, eq_idx, baseif_.name()});
} else if (flux_residual > max_residual_allowed) {
report.setWellFailed({CR::WellFailure::Type::MassBalance, CR::Severity::TooLarge, eq_idx, baseif_.name()});
} else if (!relax_tolerance && flux_residual > tolerance_wells) {
report.setWellFailed({CR::WellFailure::Type::MassBalance, CR::Severity::Normal, eq_idx, baseif_.name()});
} else if (flux_residual > relaxed_inner_tolerance_flow_ms_well) {
report.setWellFailed({CR::WellFailure::Type::MassBalance, CR::Severity::Normal, eq_idx, baseif_.name()});
}
} else { // pressure equation
const double pressure_residual = maximum_residual[eq_idx];
const int dummy_component = -1;
if (std::isnan(pressure_residual)) {
report.setWellFailed({CR::WellFailure::Type::Pressure, CR::Severity::NotANumber, dummy_component, baseif_.name()});
} else if (std::isinf(pressure_residual)) {
report.setWellFailed({CR::WellFailure::Type::Pressure, CR::Severity::TooLarge, dummy_component, baseif_.name()});
} else if (!relax_tolerance && pressure_residual > tolerance_pressure_ms_wells) {
report.setWellFailed({CR::WellFailure::Type::Pressure, CR::Severity::Normal, dummy_component, baseif_.name()});
} else if (pressure_residual > relaxed_inner_tolerance_pressure_ms_well) {
report.setWellFailed({CR::WellFailure::Type::Pressure, CR::Severity::Normal, dummy_component, baseif_.name()});
}
}
}
WellConvergence(baseif_).
checkConvergenceControlEq(well_state,
{tolerance_pressure_ms_wells,
tolerance_pressure_ms_wells,
tolerance_wells,
tolerance_wells,
max_residual_allowed},
std::abs(linSys_.residual()[0][SPres]),
report,
deferred_logger);
return report;
}
template<typename FluidSystem, typename Indices, typename Scalar>
typename MultisegmentWellEval<FluidSystem,Indices,Scalar>::EvalWell
MultisegmentWellEval<FluidSystem,Indices,Scalar>::
extendEval(const Eval& in) const
{
EvalWell out = 0.0;
out.setValue(in.value());
for(int eq_idx = 0; eq_idx < Indices::numEq;++eq_idx) {
out.setDerivative(eq_idx, in.derivative(eq_idx));
}
return out;
}
template<typename FluidSystem, typename Indices, typename Scalar>
typename MultisegmentWellEval<FluidSystem,Indices,Scalar>::EvalWell
MultisegmentWellEval<FluidSystem,Indices,Scalar>::
pressureDropSpiralICD(const int seg) const
{
const SICD& sicd = this->segmentSet()[seg].spiralICD();
const int seg_upwind = segments_.upwinding_segments_[seg];
const std::vector<EvalWell>& phase_fractions = segments_.phase_fractions_[seg_upwind];
const std::vector<EvalWell>& phase_viscosities = segments_.phase_viscosities_[seg_upwind];
EvalWell water_fraction = 0.;
EvalWell water_viscosity = 0.;
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
const int water_pos = Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx);
water_fraction = phase_fractions[water_pos];
water_viscosity = phase_viscosities[water_pos];
}
EvalWell oil_fraction = 0.;
EvalWell oil_viscosity = 0.;
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
const int oil_pos = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx);
oil_fraction = phase_fractions[oil_pos];
oil_viscosity = phase_viscosities[oil_pos];
}
EvalWell gas_fraction = 0.;
EvalWell gas_viscosity = 0.;
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
const int gas_pos = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
gas_fraction = phase_fractions[gas_pos];
gas_viscosity = phase_viscosities[gas_pos];
}
EvalWell density = segments_.densities_[seg_upwind];
// WARNING
// We disregard the derivatives from the upwind density to make sure derivatives
// wrt. to different segments dont get mixed.
if (seg != seg_upwind) {
water_fraction.clearDerivatives();
water_viscosity.clearDerivatives();
oil_fraction.clearDerivatives();
oil_viscosity.clearDerivatives();
gas_fraction.clearDerivatives();
gas_viscosity.clearDerivatives();
density.clearDerivatives();
}
const EvalWell liquid_fraction = water_fraction + oil_fraction;
// viscosity contribution from the liquid
const EvalWell liquid_viscosity_fraction = liquid_fraction < 1.e-30 ? oil_fraction * oil_viscosity + water_fraction * water_viscosity :
liquid_fraction * mswellhelpers::emulsionViscosity(water_fraction, water_viscosity, oil_fraction, oil_viscosity, sicd);
const EvalWell mixture_viscosity = liquid_viscosity_fraction + gas_fraction * gas_viscosity;
const EvalWell reservoir_rate = segments_.mass_rates_[seg] / density;
const EvalWell reservoir_rate_icd = reservoir_rate * sicd.scalingFactor();
const double viscosity_cali = sicd.viscosityCalibration();
using MathTool = MathToolbox<EvalWell>;
const double density_cali = sicd.densityCalibration();
const EvalWell temp_value1 = MathTool::pow(density / density_cali, 0.75);
const EvalWell temp_value2 = MathTool::pow(mixture_viscosity / viscosity_cali, 0.25);
// formulation before 2016, base_strength is used
// const double base_strength = sicd.strength() / density_cali;
// formulation since 2016, strength is used instead
const double strength = sicd.strength();
const double sign = reservoir_rate_icd <= 0. ? 1.0 : -1.0;
return sign * temp_value1 * temp_value2 * strength * reservoir_rate_icd * reservoir_rate_icd;
}
template<typename FluidSystem, typename Indices, typename Scalar>
typename MultisegmentWellEval<FluidSystem,Indices,Scalar>::EvalWell
MultisegmentWellEval<FluidSystem,Indices,Scalar>::
pressureDropAutoICD(const int seg,
const UnitSystem& unit_system) const
{
const AutoICD& aicd = this->segmentSet()[seg].autoICD();
const int seg_upwind = segments_.upwinding_segments_[seg];
const std::vector<EvalWell>& phase_fractions = this->segments_.phase_fractions_[seg_upwind];
const std::vector<EvalWell>& phase_viscosities = this->segments_.phase_viscosities_[seg_upwind];
const std::vector<EvalWell>& phase_densities = this->segments_.phase_densities_[seg_upwind];
EvalWell water_fraction = 0.;
EvalWell water_viscosity = 0.;
EvalWell water_density = 0.;
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
const int water_pos = Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx);
water_fraction = phase_fractions[water_pos];
water_viscosity = phase_viscosities[water_pos];
water_density = phase_densities[water_pos];
}
EvalWell oil_fraction = 0.;
EvalWell oil_viscosity = 0.;
EvalWell oil_density = 0.;
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
const int oil_pos = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx);
oil_fraction = phase_fractions[oil_pos];
oil_viscosity = phase_viscosities[oil_pos];
oil_density = phase_densities[oil_pos];
}
EvalWell gas_fraction = 0.;
EvalWell gas_viscosity = 0.;
EvalWell gas_density = 0.;
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
const int gas_pos = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
gas_fraction = phase_fractions[gas_pos];
gas_viscosity = phase_viscosities[gas_pos];
gas_density = phase_densities[gas_pos];
}
EvalWell density = segments_.densities_[seg_upwind];
// WARNING
// We disregard the derivatives from the upwind density to make sure derivatives
// wrt. to different segments dont get mixed.
if (seg != seg_upwind) {
water_fraction.clearDerivatives();
water_viscosity.clearDerivatives();
water_density.clearDerivatives();
oil_fraction.clearDerivatives();
oil_viscosity.clearDerivatives();
oil_density.clearDerivatives();
gas_fraction.clearDerivatives();
gas_viscosity.clearDerivatives();
gas_density.clearDerivatives();
density.clearDerivatives();
}
using MathTool = MathToolbox<EvalWell>;
const EvalWell mixture_viscosity = MathTool::pow(water_fraction, aicd.waterViscExponent()) * water_viscosity
+ MathTool::pow(oil_fraction, aicd.oilViscExponent()) * oil_viscosity
+ MathTool::pow(gas_fraction, aicd.gasViscExponent()) * gas_viscosity;
const EvalWell mixture_density = MathTool::pow(water_fraction, aicd.waterDensityExponent()) * water_density
+ MathTool::pow(oil_fraction, aicd.oilDensityExponent()) * oil_density
+ MathTool::pow(gas_fraction, aicd.gasDensityExponent()) * gas_density;
const double rho_reference = aicd.densityCalibration();
const double visc_reference = aicd.viscosityCalibration();
const auto volume_rate_icd = this->segments_.mass_rates_[seg] * aicd.scalingFactor() / mixture_density;
const double sign = volume_rate_icd <= 0. ? 1.0 : -1.0;
// convert 1 unit volume rate
using M = UnitSystem::measure;
const double unit_volume_rate = unit_system.to_si(M::geometric_volume_rate, 1.);
// TODO: we did not consider the maximum allowed rate here
const auto result = sign / rho_reference * mixture_density * mixture_density
* MathTool::pow(visc_reference/mixture_viscosity, aicd.viscExponent())
* aicd.strength() * MathTool::pow( -sign * volume_rate_icd, aicd.flowRateExponent())
* std::pow(unit_volume_rate, (2. - aicd.flowRateExponent())) ;
return result;
}
template<typename FluidSystem, typename Indices, typename Scalar>
typename MultisegmentWellEval<FluidSystem,Indices,Scalar>::EvalWell
MultisegmentWellEval<FluidSystem,Indices,Scalar>::
pressureDropValve(const int seg) const
{
const Valve& valve = this->segmentSet()[seg].valve();
const EvalWell& mass_rate = segments_.mass_rates_[seg];
const int seg_upwind = segments_.upwinding_segments_[seg];
EvalWell visc = segments_.viscosities_[seg_upwind];
EvalWell density = segments_.densities_[seg_upwind];
// WARNING
// We disregard the derivatives from the upwind density to make sure derivatives
// wrt. to different segments dont get mixed.
if (seg != seg_upwind) {
visc.clearDerivatives();
density.clearDerivatives();
}
const double additional_length = valve.pipeAdditionalLength();
const double roughness = valve.pipeRoughness();
const double diameter = valve.pipeDiameter();
const double area = valve.pipeCrossArea();
const EvalWell friction_pressure_loss =
mswellhelpers::frictionPressureLoss(additional_length, diameter, area, roughness, density, mass_rate, visc);
const double area_con = valve.conCrossArea();
const double cv = valve.conFlowCoefficient();
const EvalWell constriction_pressure_loss =
mswellhelpers::valveContrictionPressureLoss(mass_rate, density, area_con, cv);
const double sign = mass_rate <= 0. ? 1.0 : -1.0;
return sign * (friction_pressure_loss + constriction_pressure_loss);
}
template<typename FluidSystem, typename Indices, typename Scalar>
void
MultisegmentWellEval<FluidSystem,Indices,Scalar>::
handleAccelerationPressureLoss(const int seg,
WellState& well_state)
{
const double area = this->segmentSet()[seg].crossArea();
const EvalWell mass_rate = segments_.mass_rates_[seg];
const int seg_upwind = segments_.upwinding_segments_[seg];
EvalWell density = segments_.densities_[seg_upwind];
// WARNING
// We disregard the derivatives from the upwind density to make sure derivatives
// wrt. to different segments dont get mixed.
if (seg != seg_upwind) {
density.clearDerivatives();
}
EvalWell accelerationPressureLoss = mswellhelpers::velocityHead(area, mass_rate, density);
// handling the velocity head of intlet segments
for (const int inlet : this->segments_.inlets_[seg]) {
const int seg_upwind_inlet = segments_.upwinding_segments_[inlet];
const double inlet_area = this->segmentSet()[inlet].crossArea();
EvalWell inlet_density = this->segments_.densities_[seg_upwind_inlet];
// WARNING
// We disregard the derivatives from the upwind density to make sure derivatives
// wrt. to different segments dont get mixed.
if (inlet != seg_upwind_inlet) {
inlet_density.clearDerivatives();
}
const EvalWell inlet_mass_rate = segments_.mass_rates_[inlet];
accelerationPressureLoss -= mswellhelpers::velocityHead(std::max(inlet_area, area), inlet_mass_rate, inlet_density);
}
// We change the sign of the accelerationPressureLoss for injectors.
// Is this correct? Testing indicates that this is what the reference simulator does
const double sign = mass_rate < 0. ? 1.0 : - 1.0;
accelerationPressureLoss *= sign;
auto& segments = well_state.well(baseif_.indexOfWell()).segments;
segments.pressure_drop_accel[seg] = accelerationPressureLoss.value();
MultisegmentWellAssemble<FluidSystem,Indices,Scalar>(baseif_).
assemblePressureLoss(seg, seg_upwind, accelerationPressureLoss, linSys_);
}
template<typename FluidSystem, typename Indices, typename Scalar>
void
MultisegmentWellEval<FluidSystem,Indices,Scalar>::
assembleDefaultPressureEq(const int seg,
WellState& well_state)
{
assert(seg != 0); // not top segment
// for top segment, the well control equation will be used.
EvalWell pressure_equation = primary_variables_.getSegmentPressure(seg);
// we need to handle the pressure difference between the two segments
// we only consider the hydrostatic pressure loss first
// TODO: we might be able to add member variables to store these values, then we update well state
// after converged
const auto hydro_pressure_drop = segments_.getHydroPressureLoss(seg);
auto& ws = well_state.well(baseif_.indexOfWell());
auto& segments = ws.segments;
segments.pressure_drop_hydrostatic[seg] = hydro_pressure_drop.value();
pressure_equation -= hydro_pressure_drop;
if (this->frictionalPressureLossConsidered()) {
const auto friction_pressure_drop = segments_.getFrictionPressureLoss(seg);
pressure_equation -= friction_pressure_drop;
segments.pressure_drop_friction[seg] = friction_pressure_drop.value();
}
// contribution from the outlet segment
const int outlet_segment_index = this->segmentNumberToIndex(this->segmentSet()[seg].outletSegment());
const EvalWell outlet_pressure = primary_variables_.getSegmentPressure(outlet_segment_index);
const int seg_upwind = segments_.upwinding_segments_[seg];
MultisegmentWellAssemble<FluidSystem,Indices,Scalar>(baseif_).
assemblePressureEq(seg, seg_upwind, outlet_segment_index,
pressure_equation, outlet_pressure, linSys_);
if (this->accelerationalPressureLossConsidered()) {
handleAccelerationPressureLoss(seg, well_state);
}
}
template<typename FluidSystem, typename Indices, typename Scalar>
void
MultisegmentWellEval<FluidSystem,Indices,Scalar>::
assembleICDPressureEq(const int seg,
const UnitSystem& unit_system,
WellState& well_state,
DeferredLogger& deferred_logger)
{
// TODO: upwinding needs to be taken care of
// top segment can not be a spiral ICD device
assert(seg != 0);
if (const auto& segment = this->segmentSet()[seg];
(segment.segmentType() == Segment::SegmentType::VALVE) &&
(segment.valve().status() == Opm::ICDStatus::SHUT) ) { // we use a zero rate equation to handle SHUT valve
MultisegmentWellAssemble<FluidSystem,Indices,Scalar>(baseif_).
assembleTrivialEq(seg, this->primary_variables_.eval(seg)[WQTotal].value(), linSys_);
auto& ws = well_state.well(baseif_.indexOfWell());
ws.segments.pressure_drop_friction[seg] = 0.;
return;
}
// the pressure equation is something like
// p_seg - deltaP - p_outlet = 0.
// the major part is how to calculate the deltaP
EvalWell pressure_equation = primary_variables_.getSegmentPressure(seg);
EvalWell icd_pressure_drop;
switch(this->segmentSet()[seg].segmentType()) {
case Segment::SegmentType::SICD :
icd_pressure_drop = pressureDropSpiralICD(seg);
break;
case Segment::SegmentType::AICD :
icd_pressure_drop = pressureDropAutoICD(seg, unit_system);
break;
case Segment::SegmentType::VALVE :
icd_pressure_drop = pressureDropValve(seg);
break;
default: {
OPM_DEFLOG_THROW(std::runtime_error, "Segment " + std::to_string(this->segmentSet()[seg].segmentNumber())
+ " for well " + baseif_.name() + " is not of ICD type", deferred_logger);
}
}
pressure_equation = pressure_equation - icd_pressure_drop;
auto& ws = well_state.well(baseif_.indexOfWell());
ws.segments.pressure_drop_friction[seg] = icd_pressure_drop.value();
// contribution from the outlet segment
const int outlet_segment_index = this->segmentNumberToIndex(this->segmentSet()[seg].outletSegment());
const EvalWell outlet_pressure = primary_variables_.getSegmentPressure(outlet_segment_index);
const int seg_upwind = segments_.upwinding_segments_[seg];
MultisegmentWellAssemble<FluidSystem,Indices,Scalar>(baseif_).
assemblePressureEq(seg, seg_upwind, outlet_segment_index,
pressure_equation, outlet_pressure,
linSys_,
FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx),
FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx));
}
template<typename FluidSystem, typename Indices, typename Scalar>
void
MultisegmentWellEval<FluidSystem,Indices,Scalar>::
assemblePressureEq(const int seg,
const UnitSystem& unit_system,
WellState& well_state,
DeferredLogger& deferred_logger)
{
switch(this->segmentSet()[seg].segmentType()) {
case Segment::SegmentType::SICD :
case Segment::SegmentType::AICD :
case Segment::SegmentType::VALVE : {
assembleICDPressureEq(seg, unit_system, well_state,deferred_logger);
break;
}
default :
assembleDefaultPressureEq(seg, well_state);
}
}
template<typename FluidSystem, typename Indices, typename Scalar>
std::pair<bool, std::vector<Scalar> >
MultisegmentWellEval<FluidSystem,Indices,Scalar>::
getFiniteWellResiduals(const std::vector<Scalar>& B_avg,
DeferredLogger& deferred_logger) const
{
assert(int(B_avg.size() ) == baseif_.numComponents());
std::vector<Scalar> residuals(numWellEq + 1, 0.0);
for (int seg = 0; seg < this->numberOfSegments(); ++seg) {
for (int eq_idx = 0; eq_idx < numWellEq; ++eq_idx) {
double residual = 0.;
if (eq_idx < baseif_.numComponents()) {
residual = std::abs(linSys_.residual()[seg][eq_idx]) * B_avg[eq_idx];
} else {
if (seg > 0) {
residual = std::abs(linSys_.residual()[seg][eq_idx]);
}
}
if (std::isnan(residual) || std::isinf(residual)) {
deferred_logger.debug("nan or inf value for residal get for well " + baseif_.name()
+ " segment " + std::to_string(seg) + " eq_idx " + std::to_string(eq_idx));
return {false, residuals};
}
if (residual > residuals[eq_idx]) {
residuals[eq_idx] = residual;
}
}
}
// handling the control equation residual
{
const double control_residual = std::abs(linSys_.residual()[0][numWellEq - 1]);
if (std::isnan(control_residual) || std::isinf(control_residual)) {
deferred_logger.debug("nan or inf value for control residal get for well " + baseif_.name());
return {false, residuals};
}
residuals[numWellEq] = control_residual;
}
return {true, residuals};
}
template<typename FluidSystem, typename Indices, typename Scalar>
double
MultisegmentWellEval<FluidSystem,Indices,Scalar>::
getControlTolerance(const WellState& well_state,
const double tolerance_wells,
const double tolerance_pressure_ms_wells,
DeferredLogger& deferred_logger) const
{
double control_tolerance = 0.;
const int well_index = baseif_.indexOfWell();
const auto& ws = well_state.well(well_index);
if (baseif_.isInjector() )
{
auto current = ws.injection_cmode;
switch(current) {
case Well::InjectorCMode::THP:
control_tolerance = tolerance_pressure_ms_wells;
break;
case Well::InjectorCMode::BHP:
control_tolerance = tolerance_wells;
break;
case Well::InjectorCMode::RATE:
case Well::InjectorCMode::RESV:
control_tolerance = tolerance_wells;
break;
case Well::InjectorCMode::GRUP:
control_tolerance = tolerance_wells;
break;
default:
OPM_DEFLOG_THROW(std::runtime_error, "Unknown well control control types for well " << baseif_.name(), deferred_logger);
}
}
if (baseif_.isProducer() )
{
auto current = ws.production_cmode;
switch(current) {
case Well::ProducerCMode::THP:
control_tolerance = tolerance_pressure_ms_wells; // 0.1 bar
break;
case Well::ProducerCMode::BHP:
control_tolerance = tolerance_wells; // 0.01 bar
break;
case Well::ProducerCMode::ORAT:
case Well::ProducerCMode::WRAT:
case Well::ProducerCMode::GRAT:
case Well::ProducerCMode::LRAT:
case Well::ProducerCMode::RESV:
case Well::ProducerCMode::CRAT:
control_tolerance = tolerance_wells; // smaller tolerance for rate control
break;
case Well::ProducerCMode::GRUP:
control_tolerance = tolerance_wells; // smaller tolerance for rate control
break;
default:
OPM_DEFLOG_THROW(std::runtime_error, "Unknown well control control types for well " << baseif_.name(), deferred_logger);
}
}
return control_tolerance;
}
template<typename FluidSystem, typename Indices, typename Scalar>
double
MultisegmentWellEval<FluidSystem,Indices,Scalar>::
getResidualMeasureValue(const WellState& well_state,
const std::vector<double>& residuals,
const double tolerance_wells,
const double tolerance_pressure_ms_wells,
DeferredLogger& deferred_logger) const
{
assert(int(residuals.size()) == numWellEq + 1);
const double rate_tolerance = tolerance_wells;
int count = 0;
double sum = 0;
for (int eq_idx = 0; eq_idx < numWellEq - 1; ++eq_idx) {
if (residuals[eq_idx] > rate_tolerance) {
sum += residuals[eq_idx] / rate_tolerance;
++count;
}
}
const double pressure_tolerance = tolerance_pressure_ms_wells;
if (residuals[SPres] > pressure_tolerance) {
sum += residuals[SPres] / pressure_tolerance;
++count;
}
const double control_tolerance = getControlTolerance(well_state,
tolerance_wells,
tolerance_pressure_ms_wells,
deferred_logger);
if (residuals[SPres + 1] > control_tolerance) {
sum += residuals[SPres + 1] / control_tolerance;
++count;
}
// if (count == 0), it should be converged.
assert(count != 0);
return sum;
}
#define INSTANCE(...) \
template class MultisegmentWellEval<BlackOilFluidSystem<double,BlackOilDefaultIndexTraits>,__VA_ARGS__,double>;
// One phase
INSTANCE(BlackOilOnePhaseIndices<0u,0u,0u,0u,false,false,0u,1u,0u>)
INSTANCE(BlackOilOnePhaseIndices<0u,0u,0u,1u,false,false,0u,1u,0u>)
INSTANCE(BlackOilOnePhaseIndices<0u,0u,0u,0u,false,false,0u,1u,5u>)
// Two phase
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,false,0u,0u,0u>)
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,false,0u,1u,0u>)
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,false,0u,2u,0u>)
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,true,0u,2u,0u>)
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,1u,0u,false,false,0u,2u,0u>)
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,2u,0u,false,false,0u,2u,0u>)
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,1u,false,false,0u,1u,0u>)
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,true,0u,0u,0u>)
// Blackoil
INSTANCE(BlackOilIndices<0u,0u,0u,0u,false,false,0u,0u>)
INSTANCE(BlackOilIndices<0u,0u,0u,0u,true,false,0u,0u>)
INSTANCE(BlackOilIndices<0u,0u,0u,0u,false,true,0u,0u>)
INSTANCE(BlackOilIndices<0u,0u,0u,0u,false,true,2u,0u>)
INSTANCE(BlackOilIndices<1u,0u,0u,0u,false,false,0u,0u>)
INSTANCE(BlackOilIndices<0u,1u,0u,0u,false,false,0u,0u>)
INSTANCE(BlackOilIndices<0u,0u,1u,0u,false,false,0u,0u>)
INSTANCE(BlackOilIndices<0u,0u,0u,1u,false,false,0u,0u>)
INSTANCE(BlackOilIndices<0u,0u,0u,0u,false,false,1u,0u>)
INSTANCE(BlackOilIndices<0u,0u,0u,1u,false,true,0u,0u>)
} // namespace Opm