opm-simulators/opm/simulators/wells/StandardWellGeneric.cpp
Arne Morten Kvarving eb06c4bd70 add StandardWellEval
2021-06-09 08:32:30 +02:00

824 lines
33 KiB
C++

/*
Copyright 2017 SINTEF Digital, Mathematics and Cybernetics.
Copyright 2017 Statoil ASA.
Copyright 2016 - 2017 IRIS AS.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#include <opm/simulators/wells/StandardWellGeneric.hpp>
#include <opm/common/utility/numeric/RootFinders.hpp>
#include <opm/core/props/BlackoilPhases.hpp>
#include <opm/parser/eclipse/EclipseState/Schedule/GasLiftOpt.hpp>
#include <opm/parser/eclipse/EclipseState/Schedule/Schedule.hpp>
#include <opm/parser/eclipse/EclipseState/Schedule/VFPInjTable.hpp>
#include <opm/simulators/timestepping/ConvergenceReport.hpp>
#include <opm/simulators/utils/DeferredLogger.hpp>
#include <opm/simulators/utils/DeferredLoggingErrorHelpers.hpp>
#include <opm/simulators/wells/VFPHelpers.hpp>
#include <opm/simulators/wells/VFPProperties.hpp>
#include <opm/simulators/wells/WellHelpers.hpp>
#include <opm/simulators/wells/WellInterfaceGeneric.hpp>
#include <opm/simulators/wells/WellState.hpp>
#include <fmt/format.h>
#include <stdexcept>
namespace Opm
{
template<class Scalar>
StandardWellGeneric<Scalar>::
StandardWellGeneric(int Bhp,
const WellInterfaceGeneric& baseif)
: baseif_(baseif)
, perf_densities_(baseif_.numPerfs())
, perf_pressure_diffs_(baseif_.numPerfs())
, parallelB_(duneB_, baseif_.parallelWellInfo())
, Bhp_(Bhp)
{
duneB_.setBuildMode(OffDiagMatWell::row_wise);
duneC_.setBuildMode(OffDiagMatWell::row_wise);
invDuneD_.setBuildMode(DiagMatWell::row_wise);
}
template<class Scalar>
double
StandardWellGeneric<Scalar>::
relaxationFactorRate(const std::vector<double>& primary_variables,
const BVectorWell& dwells)
{
double relaxation_factor = 1.0;
static constexpr int WQTotal = 0;
// For injector, we only check the total rates to avoid sign change of rates
const double original_total_rate = primary_variables[WQTotal];
const double newton_update = dwells[0][WQTotal];
const double possible_update_total_rate = primary_variables[WQTotal] - newton_update;
// 0.8 here is a experimental value, which remains to be optimized
// if the original rate is zero or possible_update_total_rate is zero, relaxation_factor will
// always be 1.0, more thoughts might be needed.
if (original_total_rate * possible_update_total_rate < 0.) { // sign changed
relaxation_factor = std::abs(original_total_rate / newton_update) * 0.8;
}
assert(relaxation_factor >= 0.0 && relaxation_factor <= 1.0);
return relaxation_factor;
}
template<class Scalar>
double
StandardWellGeneric<Scalar>::
relaxationFactorFraction(const double old_value,
const double dx)
{
assert(old_value >= 0. && old_value <= 1.0);
double relaxation_factor = 1.;
// updated values without relaxation factor
const double possible_updated_value = old_value - dx;
// 0.95 is an experimental value remains to be optimized
if (possible_updated_value < 0.0) {
relaxation_factor = std::abs(old_value / dx) * 0.95;
} else if (possible_updated_value > 1.0) {
relaxation_factor = std::abs((1. - old_value) / dx) * 0.95;
}
// if possible_updated_value is between 0. and 1.0, then relaxation_factor
// remains to be one
assert(relaxation_factor >= 0. && relaxation_factor <= 1.);
return relaxation_factor;
}
template<class Scalar>
double
StandardWellGeneric<Scalar>::
calculateThpFromBhp(const WellState &well_state,
const std::vector<double>& rates,
const double bhp,
DeferredLogger& deferred_logger) const
{
assert(int(rates.size()) == 3); // the vfp related only supports three phases now.
static constexpr int Water = BlackoilPhases::Aqua;
static constexpr int Oil = BlackoilPhases::Liquid;
static constexpr int Gas = BlackoilPhases::Vapour;
const double aqua = rates[Water];
const double liquid = rates[Oil];
const double vapour = rates[Gas];
// pick the density in the top layer
double thp = 0.0;
if (baseif_.isInjector()) {
const int table_id = baseif_.wellEcl().vfp_table_number();
const double vfp_ref_depth = baseif_.vfpProperties()->getInj()->getTable(table_id).getDatumDepth();
const double dp = wellhelpers::computeHydrostaticCorrection(baseif_.refDepth(), vfp_ref_depth, getRho(), baseif_.gravity());
thp = baseif_.vfpProperties()->getInj()->thp(table_id, aqua, liquid, vapour, bhp + dp);
}
else if (baseif_.isProducer()) {
const int table_id = baseif_.wellEcl().vfp_table_number();
const double alq = baseif_.getALQ(well_state);
const double vfp_ref_depth = baseif_.vfpProperties()->getProd()->getTable(table_id).getDatumDepth();
const double dp = wellhelpers::computeHydrostaticCorrection(baseif_.refDepth(), vfp_ref_depth, getRho(), baseif_.gravity());
thp = baseif_.vfpProperties()->getProd()->thp(table_id, aqua, liquid, vapour, bhp + dp, alq);
}
else {
OPM_DEFLOG_THROW(std::logic_error, "Expected INJECTOR or PRODUCER well", deferred_logger);
}
return thp;
}
template<class Scalar>
void
StandardWellGeneric<Scalar>::
computeConnectionPressureDelta()
{
// Algorithm:
// We'll assume the perforations are given in order from top to
// bottom for each well. By top and bottom we do not necessarily
// mean in a geometric sense (depth), but in a topological sense:
// the 'top' perforation is nearest to the surface topologically.
// Our goal is to compute a pressure delta for each perforation.
// 1. Compute pressure differences between perforations.
// dp_perf will contain the pressure difference between a
// perforation and the one above it, except for the first
// perforation for each well, for which it will be the
// difference to the reference (bhp) depth.
const int nperf = baseif_.numPerfs();
perf_pressure_diffs_.resize(nperf, 0.0);
auto z_above = baseif_.parallelWellInfo().communicateAboveValues(baseif_.refDepth(), baseif_.perfDepth());
for (int perf = 0; perf < nperf; ++perf) {
const double dz = baseif_.perfDepth()[perf] - z_above[perf];
perf_pressure_diffs_[perf] = dz * perf_densities_[perf] * baseif_.gravity();
}
// 2. Compute pressure differences to the reference point (bhp) by
// accumulating the already computed adjacent pressure
// differences, storing the result in dp_perf.
// This accumulation must be done per well.
const auto beg = perf_pressure_diffs_.begin();
const auto end = perf_pressure_diffs_.end();
baseif_.parallelWellInfo().partialSumPerfValues(beg, end);
}
template<class Scalar>
void
StandardWellGeneric<Scalar>::
gliftDebug(const std::string &msg,
DeferredLogger& deferred_logger) const
{
if (glift_debug) {
const std::string message = fmt::format(
" GLIFT (DEBUG) : SW : Well {} : {}", baseif_.name(), msg);
deferred_logger.info(message);
}
}
template<class Scalar>
bool
StandardWellGeneric<Scalar>::
checkGliftNewtonIterationIdxOk(const int report_step_idx,
const int iteration_idx,
const Schedule& schedule,
DeferredLogger& deferred_logger ) const
{
const GasLiftOpt& glo = schedule.glo(report_step_idx);
if (glo.all_newton()) {
const int nupcol = schedule[report_step_idx].nupcol();
if (this->glift_debug) {
const std::string msg = fmt::format(
"LIFTOPT item4 == YES, it = {}, nupcol = {} --> GLIFT optimize = {}",
iteration_idx,
nupcol,
((iteration_idx <= nupcol) ? "TRUE" : "FALSE"));
gliftDebug(msg, deferred_logger);
}
return iteration_idx <= nupcol;
}
else {
if (this->glift_debug) {
const std::string msg = fmt::format(
"LIFTOPT item4 == NO, it = {} --> GLIFT optimize = {}",
iteration_idx, ((iteration_idx == 1) ? "TRUE" : "FALSE"));
gliftDebug(msg, deferred_logger);
}
return iteration_idx == 1;
}
}
/* At this point we know that the well does not have BHP control mode and
that it does have THP constraints, see computeWellPotentials().
* TODO: Currently we limit the application of gas lift optimization to wells
* operating under THP control mode, does it make sense to
* extend it to other modes?
*/
template<class Scalar>
bool
StandardWellGeneric<Scalar>::
doGasLiftOptimize(const WellState &well_state,
const int report_step_idx,
const int iteration_idx,
const Schedule& schedule,
DeferredLogger& deferred_logger) const
{
gliftDebug("checking if GLIFT should be done..", deferred_logger);
if (!well_state.gliftOptimizationEnabled()) {
gliftDebug("Optimization disabled in WellState", deferred_logger);
return false;
}
if (well_state.gliftCheckAlqOscillation(baseif_.name())) {
gliftDebug("further optimization skipped due to oscillation in ALQ",
deferred_logger);
return false;
}
if (glift_optimize_only_thp_wells) {
const int well_index = baseif_.indexOfWell();
auto control_mode = well_state.currentProductionControl(well_index);
if (control_mode != Well::ProducerCMode::THP ) {
gliftDebug("Not THP control", deferred_logger);
return false;
}
}
if (!checkGliftNewtonIterationIdxOk(report_step_idx,
iteration_idx,
schedule,
deferred_logger)) {
return false;
}
const GasLiftOpt& glo = schedule.glo(report_step_idx);
if (!glo.has_well(baseif_.name())) {
gliftDebug("Gas Lift not activated: WLIFTOPT is probably missing",
deferred_logger);
return false;
}
auto increment = glo.gaslift_increment();
// NOTE: According to the manual: LIFTOPT, item 1, :
// "Increment size for lift gas injection rate. Lift gas is
// allocated to individual wells in whole numbers of the increment
// size. If gas lift optimization is no longer required, it can be
// turned off by entering a zero or negative number."
if (increment <= 0) {
if (glift_debug) {
const std::string msg = fmt::format(
"Gas Lift switched off in LIFTOPT item 1 due to non-positive "
"value: {}", increment);
gliftDebug(msg, deferred_logger);
}
return false;
}
else {
return true;
}
}
template<class Scalar>
std::optional<double>
StandardWellGeneric<Scalar>::
computeBhpAtThpLimitProdWithAlq(const std::function<std::vector<double>(const double)>& frates,
const SummaryState& summary_state,
DeferredLogger& deferred_logger,
double alq_value) const
{
// Given a VFP function returning bhp as a function of phase
// rates and thp:
// fbhp(rates, thp),
// a function extracting the particular flow rate used for VFP
// lookups:
// flo(rates)
// and the inflow function (assuming the reservoir is fixed):
// frates(bhp)
// we want to solve the equation:
// fbhp(frates(bhp, thplimit)) - bhp = 0
// for bhp.
//
// This may result in 0, 1 or 2 solutions. If two solutions,
// the one corresponding to the lowest bhp (and therefore
// highest rate) is returned.
//
// In order to detect these situations, we will find piecewise
// linear approximations both to the inverse of the frates
// function and to the fbhp function.
//
// We first take the FLO sample points of the VFP curve, and
// find the corresponding bhp values by solving the equation:
// flo(frates(bhp)) - flo_sample = 0
// for bhp, for each flo_sample. The resulting (flo_sample,
// bhp_sample) values give a piecewise linear approximation to
// the true inverse inflow function, at the same flo values as
// the VFP data.
//
// Then we extract a piecewise linear approximation from the
// multilinear fbhp() by evaluating it at the flo_sample
// points, with fractions given by the frates(bhp_sample)
// values.
//
// When we have both piecewise linear curves defined on the
// same flo_sample points, it is easy to distinguish between
// the 0, 1 or 2 solution cases, and obtain the right interval
// in which to solve for the solution we want (with highest
// flow in case of 2 solutions).
static constexpr int Water = BlackoilPhases::Aqua;
static constexpr int Oil = BlackoilPhases::Liquid;
static constexpr int Gas = BlackoilPhases::Vapour;
// Make the fbhp() function.
const auto& controls = baseif_.wellEcl().productionControls(summary_state);
const auto& table = baseif_.vfpProperties()->getProd()->getTable(controls.vfp_table_number);
const double vfp_ref_depth = table.getDatumDepth();
const double thp_limit = baseif_.getTHPConstraint(summary_state);
const double dp = wellhelpers::computeHydrostaticCorrection(baseif_.refDepth(), vfp_ref_depth, getRho(), baseif_.gravity());
auto fbhp = [this, &controls, thp_limit, dp, alq_value](const std::vector<double>& rates) {
assert(rates.size() == 3);
return baseif_.vfpProperties()->getProd()
->bhp(controls.vfp_table_number, rates[Water], rates[Oil], rates[Gas], thp_limit, alq_value) - dp;
};
// Make the flo() function.
auto flo = [&table](const std::vector<double>& rates) {
return detail::getFlo(table, rates[Water], rates[Oil], rates[Gas]);
};
// Get the flo samples, add extra samples at low rates and bhp
// limit point if necessary. Then the sign must be flipped
// since the VFP code expects that production flo values are
// negative.
std::vector<double> flo_samples = table.getFloAxis();
if (flo_samples[0] > 0.0) {
const double f0 = flo_samples[0];
flo_samples.insert(flo_samples.begin(), { f0/20.0, f0/10.0, f0/5.0, f0/2.0 });
}
const double flo_bhp_limit = -flo(frates(controls.bhp_limit));
if (flo_samples.back() < flo_bhp_limit) {
flo_samples.push_back(flo_bhp_limit);
}
for (double& x : flo_samples) {
x = -x;
}
// Find bhp values for inflow relation corresponding to flo samples.
std::vector<double> bhp_samples;
for (double flo_sample : flo_samples) {
if (flo_sample < -flo_bhp_limit) {
// We would have to go under the bhp limit to obtain a
// flow of this magnitude. We associate all such flows
// with simply the bhp limit. The first one
// encountered is considered valid, the rest not. They
// are therefore skipped.
bhp_samples.push_back(controls.bhp_limit);
break;
}
auto eq = [&flo, &frates, flo_sample](double bhp) {
return flo(frates(bhp)) - flo_sample;
};
// TODO: replace hardcoded low/high limits.
const double low = 10.0 * unit::barsa;
const double high = 600.0 * unit::barsa;
const int max_iteration = 50;
const double flo_tolerance = 1e-6 * std::fabs(flo_samples.back());
int iteration = 0;
try {
const double solved_bhp = RegulaFalsiBisection<>::
solve(eq, low, high, max_iteration, flo_tolerance, iteration);
bhp_samples.push_back(solved_bhp);
}
catch (...) {
// Use previous value (or max value if at start) if we failed.
bhp_samples.push_back(bhp_samples.empty() ? high : bhp_samples.back());
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE_EXTRACT_SAMPLES",
"Robust bhp(thp) solve failed extracting bhp values at flo samples for well " + baseif_.name());
}
}
// Find bhp values for VFP relation corresponding to flo samples.
const int num_samples = bhp_samples.size(); // Note that this can be smaller than flo_samples.size()
std::vector<double> fbhp_samples(num_samples);
for (int ii = 0; ii < num_samples; ++ii) {
fbhp_samples[ii] = fbhp(frates(bhp_samples[ii]));
}
// #define EXTRA_THP_DEBUGGING
#ifdef EXTRA_THP_DEBUGGING
std::string dbgmsg;
dbgmsg += "flo: ";
for (int ii = 0; ii < num_samples; ++ii) {
dbgmsg += " " + std::to_string(flo_samples[ii]);
}
dbgmsg += "\nbhp: ";
for (int ii = 0; ii < num_samples; ++ii) {
dbgmsg += " " + std::to_string(bhp_samples[ii]);
}
dbgmsg += "\nfbhp: ";
for (int ii = 0; ii < num_samples; ++ii) {
dbgmsg += " " + std::to_string(fbhp_samples[ii]);
}
OpmLog::debug(dbgmsg);
#endif // EXTRA_THP_DEBUGGING
// Look for sign changes for the (fbhp_samples - bhp_samples) piecewise linear curve.
// We only look at the valid
int sign_change_index = -1;
for (int ii = 0; ii < num_samples - 1; ++ii) {
const double curr = fbhp_samples[ii] - bhp_samples[ii];
const double next = fbhp_samples[ii + 1] - bhp_samples[ii + 1];
if (curr * next < 0.0) {
// Sign change in the [ii, ii + 1] interval.
sign_change_index = ii; // May overwrite, thereby choosing the highest-flo solution.
}
}
// Handle the no solution case.
if (sign_change_index == -1) {
return std::optional<double>();
}
// Solve for the proper solution in the given interval.
auto eq = [&fbhp, &frates](double bhp) {
return fbhp(frates(bhp)) - bhp;
};
// TODO: replace hardcoded low/high limits.
const double low = bhp_samples[sign_change_index + 1];
const double high = bhp_samples[sign_change_index];
const int max_iteration = 50;
const double bhp_tolerance = 0.01 * unit::barsa;
int iteration = 0;
if (low == high) {
// We are in the high flow regime where the bhp_samples
// are all equal to the bhp_limit.
assert(low == controls.bhp_limit);
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE",
"Robust bhp(thp) solve failed for well " + baseif_.name());
return std::optional<double>();
}
try {
const double solved_bhp = RegulaFalsiBisection<>::
solve(eq, low, high, max_iteration, bhp_tolerance, iteration);
#ifdef EXTRA_THP_DEBUGGING
OpmLog::debug("***** " + name() + " solved_bhp = " + std::to_string(solved_bhp)
+ " flo_bhp_limit = " + std::to_string(flo_bhp_limit));
#endif // EXTRA_THP_DEBUGGING
return solved_bhp;
}
catch (...) {
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE",
"Robust bhp(thp) solve failed for well " + baseif_.name());
return std::optional<double>();
}
}
template<class Scalar>
std::optional<double>
StandardWellGeneric<Scalar>::
computeBhpAtThpLimitInj(const std::function<std::vector<double>(const double)>& frates,
const SummaryState& summary_state,
DeferredLogger& deferred_logger) const
{
// Given a VFP function returning bhp as a function of phase
// rates and thp:
// fbhp(rates, thp),
// a function extracting the particular flow rate used for VFP
// lookups:
// flo(rates)
// and the inflow function (assuming the reservoir is fixed):
// frates(bhp)
// we want to solve the equation:
// fbhp(frates(bhp, thplimit)) - bhp = 0
// for bhp.
//
// This may result in 0, 1 or 2 solutions. If two solutions,
// the one corresponding to the lowest bhp (and therefore
// highest rate) is returned.
//
// In order to detect these situations, we will find piecewise
// linear approximations both to the inverse of the frates
// function and to the fbhp function.
//
// We first take the FLO sample points of the VFP curve, and
// find the corresponding bhp values by solving the equation:
// flo(frates(bhp)) - flo_sample = 0
// for bhp, for each flo_sample. The resulting (flo_sample,
// bhp_sample) values give a piecewise linear approximation to
// the true inverse inflow function, at the same flo values as
// the VFP data.
//
// Then we extract a piecewise linear approximation from the
// multilinear fbhp() by evaluating it at the flo_sample
// points, with fractions given by the frates(bhp_sample)
// values.
//
// When we have both piecewise linear curves defined on the
// same flo_sample points, it is easy to distinguish between
// the 0, 1 or 2 solution cases, and obtain the right interval
// in which to solve for the solution we want (with highest
// flow in case of 2 solutions).
static constexpr int Water = BlackoilPhases::Aqua;
static constexpr int Oil = BlackoilPhases::Liquid;
static constexpr int Gas = BlackoilPhases::Vapour;
// Make the fbhp() function.
const auto& controls = baseif_.wellEcl().injectionControls(summary_state);
const auto& table = baseif_.vfpProperties()->getInj()->getTable(controls.vfp_table_number);
const double vfp_ref_depth = table.getDatumDepth();
const double thp_limit = baseif_.getTHPConstraint(summary_state);
const double dp = wellhelpers::computeHydrostaticCorrection(baseif_.refDepth(), vfp_ref_depth, getRho(), baseif_.gravity());
auto fbhp = [this, &controls, thp_limit, dp](const std::vector<double>& rates) {
assert(rates.size() == 3);
return baseif_.vfpProperties()->getInj()
->bhp(controls.vfp_table_number, rates[Water], rates[Oil], rates[Gas], thp_limit) - dp;
};
// Make the flo() function.
auto flo = [&table](const std::vector<double>& rates) {
return detail::getFlo(table, rates[Water], rates[Oil], rates[Gas]);
};
// Get the flo samples, add extra samples at low rates and bhp
// limit point if necessary.
std::vector<double> flo_samples = table.getFloAxis();
if (flo_samples[0] > 0.0) {
const double f0 = flo_samples[0];
flo_samples.insert(flo_samples.begin(), { f0/20.0, f0/10.0, f0/5.0, f0/2.0 });
}
const double flo_bhp_limit = flo(frates(controls.bhp_limit));
if (flo_samples.back() < flo_bhp_limit) {
flo_samples.push_back(flo_bhp_limit);
}
// Find bhp values for inflow relation corresponding to flo samples.
std::vector<double> bhp_samples;
for (double flo_sample : flo_samples) {
if (flo_sample > flo_bhp_limit) {
// We would have to go over the bhp limit to obtain a
// flow of this magnitude. We associate all such flows
// with simply the bhp limit. The first one
// encountered is considered valid, the rest not. They
// are therefore skipped.
bhp_samples.push_back(controls.bhp_limit);
break;
}
auto eq = [&flo, &frates, flo_sample](double bhp) {
return flo(frates(bhp)) - flo_sample;
};
// TODO: replace hardcoded low/high limits.
const double low = 10.0 * unit::barsa;
const double high = 800.0 * unit::barsa;
const int max_iteration = 50;
const double flo_tolerance = 1e-6 * std::fabs(flo_samples.back());
int iteration = 0;
try {
const double solved_bhp = RegulaFalsiBisection<>::
solve(eq, low, high, max_iteration, flo_tolerance, iteration);
bhp_samples.push_back(solved_bhp);
}
catch (...) {
// Use previous value (or max value if at start) if we failed.
bhp_samples.push_back(bhp_samples.empty() ? low : bhp_samples.back());
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE_EXTRACT_SAMPLES",
"Robust bhp(thp) solve failed extracting bhp values at flo samples for well " + baseif_.name());
}
}
// Find bhp values for VFP relation corresponding to flo samples.
const int num_samples = bhp_samples.size(); // Note that this can be smaller than flo_samples.size()
std::vector<double> fbhp_samples(num_samples);
for (int ii = 0; ii < num_samples; ++ii) {
fbhp_samples[ii] = fbhp(frates(bhp_samples[ii]));
}
// #define EXTRA_THP_DEBUGGING
#ifdef EXTRA_THP_DEBUGGING
std::string dbgmsg;
dbgmsg += "flo: ";
for (int ii = 0; ii < num_samples; ++ii) {
dbgmsg += " " + std::to_string(flo_samples[ii]);
}
dbgmsg += "\nbhp: ";
for (int ii = 0; ii < num_samples; ++ii) {
dbgmsg += " " + std::to_string(bhp_samples[ii]);
}
dbgmsg += "\nfbhp: ";
for (int ii = 0; ii < num_samples; ++ii) {
dbgmsg += " " + std::to_string(fbhp_samples[ii]);
}
OpmLog::debug(dbgmsg);
#endif // EXTRA_THP_DEBUGGING
// Look for sign changes for the (fbhp_samples - bhp_samples) piecewise linear curve.
// We only look at the valid
int sign_change_index = -1;
for (int ii = 0; ii < num_samples - 1; ++ii) {
const double curr = fbhp_samples[ii] - bhp_samples[ii];
const double next = fbhp_samples[ii + 1] - bhp_samples[ii + 1];
if (curr * next < 0.0) {
// Sign change in the [ii, ii + 1] interval.
sign_change_index = ii; // May overwrite, thereby choosing the highest-flo solution.
}
}
// Handle the no solution case.
if (sign_change_index == -1) {
return std::optional<double>();
}
// Solve for the proper solution in the given interval.
auto eq = [&fbhp, &frates](double bhp) {
return fbhp(frates(bhp)) - bhp;
};
// TODO: replace hardcoded low/high limits.
const double low = bhp_samples[sign_change_index + 1];
const double high = bhp_samples[sign_change_index];
const int max_iteration = 50;
const double bhp_tolerance = 0.01 * unit::barsa;
int iteration = 0;
if (low == high) {
// We are in the high flow regime where the bhp_samples
// are all equal to the bhp_limit.
assert(low == controls.bhp_limit);
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE",
"Robust bhp(thp) solve failed for well " + baseif_.name());
return std::optional<double>();
}
try {
const double solved_bhp = RegulaFalsiBisection<>::
solve(eq, low, high, max_iteration, bhp_tolerance, iteration);
#ifdef EXTRA_THP_DEBUGGING
OpmLog::debug("***** " + name() + " solved_bhp = " + std::to_string(solved_bhp)
+ " flo_bhp_limit = " + std::to_string(flo_bhp_limit));
#endif // EXTRA_THP_DEBUGGING
return solved_bhp;
}
catch (...) {
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE",
"Robust bhp(thp) solve failed for well " + baseif_.name());
return std::optional<double>();
}
}
template<class Scalar>
void
StandardWellGeneric<Scalar>::
checkConvergenceControlEq(const WellState& well_state,
ConvergenceReport& report,
DeferredLogger& deferred_logger,
const double max_residual_allowed) const
{
double control_tolerance = 0.;
using CR = ConvergenceReport;
CR::WellFailure::Type ctrltype = CR::WellFailure::Type::Invalid;
const int well_index = baseif_.indexOfWell();
if (baseif_.wellIsStopped()) {
ctrltype = CR::WellFailure::Type::ControlRate;
control_tolerance = 1.e-6; // use smaller tolerance for zero control?
}
else if (baseif_.isInjector() )
{
auto current = well_state.currentInjectionControl(well_index);
switch(current) {
case Well::InjectorCMode::THP:
ctrltype = CR::WellFailure::Type::ControlTHP;
control_tolerance = 1.e4; // 0.1 bar
break;
case Well::InjectorCMode::BHP:
ctrltype = CR::WellFailure::Type::ControlBHP;
control_tolerance = 1.e3; // 0.01 bar
break;
case Well::InjectorCMode::RATE:
case Well::InjectorCMode::RESV:
ctrltype = CR::WellFailure::Type::ControlRate;
control_tolerance = 1.e-4; //
break;
case Well::InjectorCMode::GRUP:
ctrltype = CR::WellFailure::Type::ControlRate;
control_tolerance = 1.e-6; //
break;
default:
OPM_DEFLOG_THROW(std::runtime_error, "Unknown well control control types for well " << baseif_.name(), deferred_logger);
}
}
else if (baseif_.isProducer() )
{
auto current = well_state.currentProductionControl(well_index);
switch(current) {
case Well::ProducerCMode::THP:
ctrltype = CR::WellFailure::Type::ControlTHP;
control_tolerance = 1.e4; // 0.1 bar
break;
case Well::ProducerCMode::BHP:
ctrltype = CR::WellFailure::Type::ControlBHP;
control_tolerance = 1.e3; // 0.01 bar
break;
case Well::ProducerCMode::ORAT:
case Well::ProducerCMode::WRAT:
case Well::ProducerCMode::GRAT:
case Well::ProducerCMode::LRAT:
case Well::ProducerCMode::RESV:
case Well::ProducerCMode::CRAT:
ctrltype = CR::WellFailure::Type::ControlRate;
control_tolerance = 1.e-4; // smaller tolerance for rate control
break;
case Well::ProducerCMode::GRUP:
ctrltype = CR::WellFailure::Type::ControlRate;
control_tolerance = 1.e-6; // smaller tolerance for rate control
break;
default:
OPM_DEFLOG_THROW(std::runtime_error, "Unknown well control control types for well " << baseif_.name(), deferred_logger);
}
}
const double well_control_residual = std::abs(this->resWell_[0][Bhp_]);
const int dummy_component = -1;
if (std::isnan(well_control_residual)) {
report.setWellFailed({ctrltype, CR::Severity::NotANumber, dummy_component, baseif_.name()});
} else if (well_control_residual > max_residual_allowed * 10.) {
report.setWellFailed({ctrltype, CR::Severity::TooLarge, dummy_component, baseif_.name()});
} else if ( well_control_residual > control_tolerance) {
report.setWellFailed({ctrltype, CR::Severity::Normal, dummy_component, baseif_.name()});
}
}
template<class Scalar>
void
StandardWellGeneric<Scalar>::
checkConvergencePolyMW(const std::vector<double>& res,
ConvergenceReport& report,
const double maxResidualAllowed) const
{
if (baseif_.isInjector()) {
// checking the convergence of the perforation rates
const double wat_vel_tol = 1.e-8;
const int dummy_component = -1;
using CR = ConvergenceReport;
const auto wat_vel_failure_type = CR::WellFailure::Type::MassBalance;
for (int perf = 0; perf < baseif_.numPerfs(); ++perf) {
const double wat_vel_residual = res[Bhp_ + 1 + perf];
if (std::isnan(wat_vel_residual)) {
report.setWellFailed({wat_vel_failure_type, CR::Severity::NotANumber, dummy_component, baseif_.name()});
} else if (wat_vel_residual > maxResidualAllowed * 10.) {
report.setWellFailed({wat_vel_failure_type, CR::Severity::TooLarge, dummy_component, baseif_.name()});
} else if (wat_vel_residual > wat_vel_tol) {
report.setWellFailed({wat_vel_failure_type, CR::Severity::Normal, dummy_component, baseif_.name()});
}
}
// checking the convergence of the skin pressure
const double pskin_tol = 1000.; // 1000 pascal
const auto pskin_failure_type = CR::WellFailure::Type::Pressure;
for (int perf = 0; perf < baseif_.numPerfs(); ++perf) {
const double pskin_residual = res[Bhp_ + 1 + perf + baseif_.numPerfs()];
if (std::isnan(pskin_residual)) {
report.setWellFailed({pskin_failure_type, CR::Severity::NotANumber, dummy_component, baseif_.name()});
} else if (pskin_residual > maxResidualAllowed * 10.) {
report.setWellFailed({pskin_failure_type, CR::Severity::TooLarge, dummy_component, baseif_.name()});
} else if (pskin_residual > pskin_tol) {
report.setWellFailed({pskin_failure_type, CR::Severity::Normal, dummy_component, baseif_.name()});
}
}
}
}
#if HAVE_CUDA || HAVE_OPENCL
template<class Scalar>
void
StandardWellGeneric<Scalar>::
getNumBlocks(unsigned int& numBlocks) const
{
numBlocks = duneB_.nonzeroes();
}
#endif
template class StandardWellGeneric<double>;
}