opm-simulators/opm/simulators/linalg/BlackoilAmgCpr.hpp
Arne Morten Kvarving 4978e72039 bump required dune version to 2.6
remove compatiblity code with older versions
2020-02-06 16:24:39 +01:00

174 lines
8.1 KiB
C++

/*
Copyright 2017 Dr. Blatt - HPC-Simulation-Software & Services
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_AMGCPR_HEADER_INCLUDED
#define OPM_AMGCPR_HEADER_INCLUDED
#include <opm/simulators/linalg/twolevelmethodcpr.hh>
#include <opm/simulators/linalg/matrixblock.hh>
#include <opm/simulators/linalg/ParallelOverlappingILU0.hpp>
#include <opm/simulators/linalg/FlowLinearSolverParameters.hpp>
#include <opm/simulators/linalg/CPRPreconditioner.hpp>
#include <opm/simulators/linalg/amgcpr.hh>
#include <dune/istl/paamg/twolevelmethod.hh>
#include <dune/istl/paamg/aggregates.hh>
#include <dune/istl/bvector.hh>
#include <dune/istl/bcrsmatrix.hh>
#include <dune/istl/preconditioners.hh>
#include <dune/istl/schwarz.hh>
#include <dune/istl/operators.hh>
#include <dune/istl/scalarproducts.hh>
#include <dune/common/fvector.hh>
#include <dune/common/fmatrix.hh>
namespace Opm
{
/**
* \brief An algebraic twolevel or multigrid approach for solving blackoil (supports CPR with and without AMG)
*
* This preconditioner first decouples the component used for coarsening using a simple scaling
* approach (e.g. Scheichl, Masson 2013,\see scaleMatrixDRS). Then it constructs the
* coarse level system. The coupling is defined by the weights corresponding to the element located at
* (COMPONENT_INDEX, VARIABLE_INDEX) in the block matrix. Then the coarse level system is constructed
* either by extracting these elements, or by applying aggregation to them directly. This coarse level
* can be solved either by AMG or by ILU. The preconditioner is configured using CPRParameter.
* \tparam O The type of the operator (encapsulating a BCRSMatrix).
* \tparam S The type of the smoother.
* \tparam C The type of coarsening criterion to use.
* \tparam P The type of the class describing the parallelization.
* \tparam COMPONENT_INDEX The index of the component to use for coarsening (usually water).
* \tparam VARIABLE_INDEX The index of the variable to use for coarsening (usually pressure).
*/
template<typename O, typename S, typename SC, typename C,
typename P, std::size_t COMPONENT_INDEX, std::size_t VARIABLE_INDEX>
class BlackoilAmgCpr
: public Dune::Preconditioner<typename O::domain_type, typename O::range_type>
{
public:
/** \brief The type of the operator (encapsulating a BCRSMatrix). */
using Operator = O;
/** \brief The type of coarsening criterion to use. */
using Criterion = C;
/** \brief The type of the class describing the parallelization. */
using Communication = P;
/** \brief The type of the smoother. */
using Smoother = S;
/** \brief The type of the smoother arguments for construction. */
using SmootherArgs = typename Dune::Amg::SmootherTraits<Smoother>::Arguments;
protected:
using Matrix = typename Operator::matrix_type;
using CoarseOperator = typename Detail::ScalarType<Operator>::value;
using CoarseSmoother = typename Detail::ScalarType<SC>::value;
using FineCriterion =
typename Detail::OneComponentCriterionType<Criterion,COMPONENT_INDEX, VARIABLE_INDEX>::value;
using CoarseCriterion = typename Detail::ScalarType<Criterion>::value;
using LevelTransferPolicy =
OneComponentAggregationLevelTransferPolicy<Operator,
FineCriterion,
Communication,
COMPONENT_INDEX,
VARIABLE_INDEX>;
using CoarseSolverPolicy =
Detail::OneStepAMGCoarseSolverPolicy<CoarseOperator,
CoarseSmoother,
CoarseCriterion,
LevelTransferPolicy>;
using TwoLevelMethod =
Dune::Amg::TwoLevelMethodCpr<Operator,
CoarseSolverPolicy,
Smoother>;
public:
Dune::SolverCategory::Category category() const override
{
return std::is_same<Communication, Dune::Amg::SequentialInformation>::value ?
Dune::SolverCategory::sequential : Dune::SolverCategory::overlapping;
}
/**
* \brief Constructor.
* \param param The parameters used for configuring the solver.
* \param fineOperator The operator of the fine level.
* \param criterion The criterion describing the coarsening approach.
* \param smargs The arguments for constructing the smoother.
* \param comm The information about the parallelization.
*/
BlackoilAmgCpr(const CPRParameter& param,
const typename TwoLevelMethod::FineDomainType& weights,
const Operator& fineOperator, const Criterion& criterion,
const SmootherArgs& smargs, const Communication& comm)
: param_(param),
weights_(weights),
scaledMatrix_(Detail::scaleMatrixDRS(fineOperator, COMPONENT_INDEX, weights_, param)),
scaledMatrixOperator_(Detail::createOperator(fineOperator, *scaledMatrix_, comm)),
smoother_(Detail::constructSmoother<Smoother>(*scaledMatrixOperator_,
smargs, comm)),
levelTransferPolicy_(criterion, comm, param.cpr_pressure_aggregation_),
coarseSolverPolicy_(&param, smargs, criterion),
twoLevelMethod_(*scaledMatrixOperator_,
smoother_,
levelTransferPolicy_,
coarseSolverPolicy_, 0, 1)
{
}
void updatePreconditioner(const Operator& fineOperator,
const SmootherArgs& smargs,
const Communication& comm)
{
*scaledMatrix_ = *Detail::scaleMatrixDRS(fineOperator, COMPONENT_INDEX, weights_, param_);
smoother_ = Detail::constructSmoother<Smoother>(*scaledMatrixOperator_, smargs, comm);
twoLevelMethod_.updatePreconditioner(*scaledMatrixOperator_,
smoother_,
coarseSolverPolicy_);
}
void pre(typename TwoLevelMethod::FineDomainType& x,
typename TwoLevelMethod::FineRangeType& b) override
{
twoLevelMethod_.pre(x,b);
}
void post(typename TwoLevelMethod::FineDomainType& x) override
{
twoLevelMethod_.post(x);
}
void apply(typename TwoLevelMethod::FineDomainType& v,
const typename TwoLevelMethod::FineRangeType& d) override
{
auto scaledD = d;
Detail::scaleVectorDRS(scaledD, COMPONENT_INDEX, param_, weights_);
twoLevelMethod_.apply(v, scaledD);
}
private:
const CPRParameter& param_;
const typename TwoLevelMethod::FineDomainType& weights_;
std::unique_ptr<Matrix> scaledMatrix_;
std::unique_ptr<Operator> scaledMatrixOperator_;
std::shared_ptr<Smoother> smoother_;
LevelTransferPolicy levelTransferPolicy_;
CoarseSolverPolicy coarseSolverPolicy_;
TwoLevelMethod twoLevelMethod_;
};
} // end namespace Opm
#endif