mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-15 19:51:54 -06:00
4cb8556f42
The simplifications are: - Do not pass cell indices to fluidViscosity(), fluidReciprocFVF(). - Pass b (reciprocal f.v.f.) to fluidDensity() instead of pressure etc. This saves one call to fluidReciprocFVF(), that is removed from fluidDensity(). Instead the previously stored quantity is passed to fluidDensity() as an argument.
501 lines
20 KiB
C++
501 lines
20 KiB
C++
/*
|
|
Copyright 2013, 2015 SINTEF ICT, Applied Mathematics.
|
|
Copyright 2014, 2015 Statoil ASA.
|
|
Copyright 2014, 2015 Dr. Markus Blatt - HPC-Simulation-Software & Services
|
|
Copyright 2015 NTNU
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#ifndef OPM_BLACKOILMODELBASE_HEADER_INCLUDED
|
|
#define OPM_BLACKOILMODELBASE_HEADER_INCLUDED
|
|
|
|
#include <cassert>
|
|
|
|
#include <opm/autodiff/AutoDiffBlock.hpp>
|
|
#include <opm/autodiff/AutoDiffHelpers.hpp>
|
|
#include <opm/autodiff/BlackoilPropsAdInterface.hpp>
|
|
#include <opm/autodiff/LinearisedBlackoilResidual.hpp>
|
|
#include <opm/autodiff/NewtonIterationBlackoilInterface.hpp>
|
|
#include <opm/autodiff/BlackoilModelEnums.hpp>
|
|
|
|
#include <array>
|
|
|
|
struct Wells;
|
|
|
|
namespace Opm {
|
|
|
|
namespace parameter { class ParameterGroup; }
|
|
class DerivedGeology;
|
|
class RockCompressibility;
|
|
class NewtonIterationBlackoilInterface;
|
|
|
|
|
|
/// Struct for containing iteration variables.
|
|
struct DefaultBlackoilSolutionState
|
|
{
|
|
typedef AutoDiffBlock<double> ADB;
|
|
explicit DefaultBlackoilSolutionState(const int np)
|
|
: pressure ( ADB::null())
|
|
, temperature( ADB::null())
|
|
, saturation(np, ADB::null())
|
|
, rs ( ADB::null())
|
|
, rv ( ADB::null())
|
|
, qs ( ADB::null())
|
|
, bhp ( ADB::null())
|
|
, canonical_phase_pressures(3, ADB::null())
|
|
{
|
|
}
|
|
ADB pressure;
|
|
ADB temperature;
|
|
std::vector<ADB> saturation;
|
|
ADB rs;
|
|
ADB rv;
|
|
ADB qs;
|
|
ADB bhp;
|
|
// Below are quantities stored in the state for optimization purposes.
|
|
std::vector<ADB> canonical_phase_pressures; // Always has 3 elements, even if only 2 phases active.
|
|
};
|
|
|
|
|
|
|
|
|
|
/// Traits to encapsulate the types used by classes using or
|
|
/// extending this model. Forward declared here, must be
|
|
/// specialised for each concrete model class.
|
|
template <class ConcreteModel>
|
|
struct ModelTraits;
|
|
|
|
|
|
/// A model implementation for three-phase black oil.
|
|
///
|
|
/// The simulator is capable of handling three-phase problems
|
|
/// where gas can be dissolved in oil and vice versa. It
|
|
/// uses an industry-standard TPFA discretization with per-phase
|
|
/// upwind weighting of mobilities.
|
|
///
|
|
/// It uses automatic differentiation via the class AutoDiffBlock
|
|
/// to simplify assembly of the jacobian matrix.
|
|
/// \tparam Grid UnstructuredGrid or CpGrid.
|
|
/// \tparam Implementation Provides concrete state types.
|
|
template<class Grid, class Implementation>
|
|
class BlackoilModelBase
|
|
{
|
|
public:
|
|
// --------- Types and enums ---------
|
|
typedef AutoDiffBlock<double> ADB;
|
|
typedef ADB::V V;
|
|
typedef ADB::M M;
|
|
|
|
typedef typename ModelTraits<Implementation>::ReservoirState ReservoirState;
|
|
typedef typename ModelTraits<Implementation>::WellState WellState;
|
|
typedef typename ModelTraits<Implementation>::ModelParameters ModelParameters;
|
|
typedef typename ModelTraits<Implementation>::SolutionState SolutionState;
|
|
|
|
// --------- Public methods ---------
|
|
|
|
/// Construct the model. It will retain references to the
|
|
/// arguments of this functions, and they are expected to
|
|
/// remain in scope for the lifetime of the solver.
|
|
/// \param[in] param parameters
|
|
/// \param[in] grid grid data structure
|
|
/// \param[in] fluid fluid properties
|
|
/// \param[in] geo rock properties
|
|
/// \param[in] rock_comp_props if non-null, rock compressibility properties
|
|
/// \param[in] wells well structure
|
|
/// \param[in] linsolver linear solver
|
|
/// \param[in] has_disgas turn on dissolved gas
|
|
/// \param[in] has_vapoil turn on vaporized oil feature
|
|
/// \param[in] terminal_output request output to cout/cerr
|
|
BlackoilModelBase(const ModelParameters& param,
|
|
const Grid& grid ,
|
|
const BlackoilPropsAdInterface& fluid,
|
|
const DerivedGeology& geo ,
|
|
const RockCompressibility* rock_comp_props,
|
|
const Wells* wells,
|
|
const NewtonIterationBlackoilInterface& linsolver,
|
|
const bool has_disgas,
|
|
const bool has_vapoil,
|
|
const bool terminal_output);
|
|
|
|
/// \brief Set threshold pressures that prevent or reduce flow.
|
|
/// This prevents flow across faces if the potential
|
|
/// difference is less than the threshold. If the potential
|
|
/// difference is greater, the threshold value is subtracted
|
|
/// before calculating flow. This is treated symmetrically, so
|
|
/// flow is prevented or reduced in both directions equally.
|
|
/// \param[in] threshold_pressures_by_face array of size equal to the number of faces
|
|
/// of the grid passed in the constructor.
|
|
void setThresholdPressures(const std::vector<double>& threshold_pressures_by_face);
|
|
|
|
/// Called once before each time step.
|
|
/// \param[in] dt time step size
|
|
/// \param[in, out] reservoir_state reservoir state variables
|
|
/// \param[in, out] well_state well state variables
|
|
void prepareStep(const double dt,
|
|
ReservoirState& reservoir_state,
|
|
WellState& well_state);
|
|
|
|
/// Called once after each time step.
|
|
/// In this class, this function does nothing.
|
|
/// \param[in] dt time step size
|
|
/// \param[in, out] reservoir_state reservoir state variables
|
|
/// \param[in, out] well_state well state variables
|
|
void afterStep(const double dt,
|
|
ReservoirState& reservoir_state,
|
|
WellState& well_state);
|
|
|
|
/// Assemble the residual and Jacobian of the nonlinear system.
|
|
/// \param[in] reservoir_state reservoir state variables
|
|
/// \param[in, out] well_state well state variables
|
|
/// \param[in] initial_assembly pass true if this is the first call to assemble() in this timestep
|
|
void assemble(const ReservoirState& reservoir_state,
|
|
WellState& well_state,
|
|
const bool initial_assembly);
|
|
|
|
/// \brief Compute the residual norms of the mass balance for each phase,
|
|
/// the well flux, and the well equation.
|
|
/// \return a vector that contains for each phase the norm of the mass balance
|
|
/// and afterwards the norm of the residual of the well flux and the well equation.
|
|
std::vector<double> computeResidualNorms() const;
|
|
|
|
/// The size (number of unknowns) of the nonlinear system of equations.
|
|
int sizeNonLinear() const;
|
|
|
|
/// Number of linear iterations used in last call to solveJacobianSystem().
|
|
int linearIterationsLastSolve() const;
|
|
|
|
/// Solve the Jacobian system Jx = r where J is the Jacobian and
|
|
/// r is the residual.
|
|
V solveJacobianSystem() const;
|
|
|
|
/// Apply an update to the primary variables, chopped if appropriate.
|
|
/// \param[in] dx updates to apply to primary variables
|
|
/// \param[in, out] reservoir_state reservoir state variables
|
|
/// \param[in, out] well_state well state variables
|
|
void updateState(const V& dx,
|
|
ReservoirState& reservoir_state,
|
|
WellState& well_state);
|
|
|
|
/// Return true if output to cout is wanted.
|
|
bool terminalOutputEnabled() const;
|
|
|
|
/// Compute convergence based on total mass balance (tol_mb) and maximum
|
|
/// residual mass balance (tol_cnv).
|
|
/// \param[in] dt timestep length
|
|
/// \param[in] iteration current iteration number
|
|
bool getConvergence(const double dt, const int iteration);
|
|
|
|
/// The number of active phases in the model.
|
|
int numPhases() const;
|
|
|
|
protected:
|
|
|
|
// --------- Types and enums ---------
|
|
|
|
typedef Eigen::Array<double,
|
|
Eigen::Dynamic,
|
|
Eigen::Dynamic,
|
|
Eigen::RowMajor> DataBlock;
|
|
|
|
struct ReservoirResidualQuant {
|
|
ReservoirResidualQuant();
|
|
std::vector<ADB> accum; // Accumulations
|
|
ADB mflux; // Mass flux (surface conditions)
|
|
ADB b; // Reciprocal FVF
|
|
ADB dh; // Pressure drop across int. interfaces
|
|
ADB mob; // Phase mobility (per cell)
|
|
};
|
|
|
|
struct WellOps {
|
|
WellOps(const Wells* wells);
|
|
M w2p; // well -> perf (scatter)
|
|
M p2w; // perf -> well (gather)
|
|
};
|
|
|
|
// --------- Data members ---------
|
|
|
|
const Grid& grid_;
|
|
const BlackoilPropsAdInterface& fluid_;
|
|
const DerivedGeology& geo_;
|
|
const RockCompressibility* rock_comp_props_;
|
|
const Wells* wells_;
|
|
const NewtonIterationBlackoilInterface& linsolver_;
|
|
// For each canonical phase -> true if active
|
|
const std::vector<bool> active_;
|
|
// Size = # active phases. Maps active -> canonical phase indices.
|
|
const std::vector<int> canph_;
|
|
const std::vector<int> cells_; // All grid cells
|
|
HelperOps ops_;
|
|
const WellOps wops_;
|
|
const bool has_disgas_;
|
|
const bool has_vapoil_;
|
|
|
|
ModelParameters param_;
|
|
bool use_threshold_pressure_;
|
|
V threshold_pressures_by_interior_face_;
|
|
|
|
std::vector<ReservoirResidualQuant> rq_;
|
|
std::vector<PhasePresence> phaseCondition_;
|
|
V isRs_;
|
|
V isRv_;
|
|
V isSg_;
|
|
V well_perforation_pressure_diffs_; // Diff to bhp for each well perforation.
|
|
|
|
LinearisedBlackoilResidual residual_;
|
|
|
|
/// \brief Whether we print something to std::cout
|
|
bool terminal_output_;
|
|
|
|
std::vector<int> primalVariable_;
|
|
V pvdt_;
|
|
|
|
// --------- Protected methods ---------
|
|
|
|
/// Access the most-derived class used for
|
|
/// static polymorphism (CRTP).
|
|
Implementation& asImpl()
|
|
{
|
|
return static_cast<Implementation&>(*this);
|
|
}
|
|
|
|
/// Access the most-derived class used for
|
|
/// static polymorphism (CRTP).
|
|
const Implementation& asImpl() const
|
|
{
|
|
return static_cast<const Implementation&>(*this);
|
|
}
|
|
|
|
// return true if wells are available
|
|
bool wellsActive() const { return wells_ ? wells_->number_of_wells > 0 : false ; }
|
|
// return wells object
|
|
const Wells& wells () const { assert( bool(wells_ != 0) ); return *wells_; }
|
|
|
|
void
|
|
makeConstantState(SolutionState& state) const;
|
|
|
|
SolutionState
|
|
variableState(const ReservoirState& x,
|
|
const WellState& xw) const;
|
|
|
|
std::vector<V>
|
|
variableStateInitials(const ReservoirState& x,
|
|
const WellState& xw) const;
|
|
void
|
|
variableReservoirStateInitials(const ReservoirState& x,
|
|
std::vector<V>& vars0) const;
|
|
void
|
|
variableWellStateInitials(const WellState& xw,
|
|
std::vector<V>& vars0) const;
|
|
|
|
std::vector<int>
|
|
variableStateIndices() const;
|
|
|
|
std::vector<int>
|
|
variableWellStateIndices() const;
|
|
|
|
SolutionState
|
|
variableStateExtractVars(const ReservoirState& x,
|
|
const std::vector<int>& indices,
|
|
std::vector<ADB>& vars) const;
|
|
|
|
void
|
|
variableStateExtractWellsVars(const std::vector<int>& indices,
|
|
std::vector<ADB>& vars,
|
|
SolutionState& state) const;
|
|
|
|
void
|
|
computeAccum(const SolutionState& state,
|
|
const int aix );
|
|
|
|
void computeWellConnectionPressures(const SolutionState& state,
|
|
const WellState& xw);
|
|
|
|
void
|
|
assembleMassBalanceEq(const SolutionState& state);
|
|
|
|
void
|
|
solveWellEq(const std::vector<ADB>& mob_perfcells,
|
|
const std::vector<ADB>& b_perfcells,
|
|
SolutionState& state,
|
|
WellState& well_state);
|
|
|
|
void
|
|
computeWellFlux(const SolutionState& state,
|
|
const std::vector<ADB>& mob_perfcells,
|
|
const std::vector<ADB>& b_perfcells,
|
|
V& aliveWells,
|
|
std::vector<ADB>& cq_s);
|
|
|
|
void
|
|
updatePerfPhaseRatesAndPressures(const std::vector<ADB>& cq_s,
|
|
const SolutionState& state,
|
|
WellState& xw);
|
|
|
|
void
|
|
addWellFluxEq(const std::vector<ADB>& cq_s,
|
|
const SolutionState& state);
|
|
|
|
void
|
|
addWellContributionToMassBalanceEq(const std::vector<ADB>& cq_s,
|
|
const SolutionState& state,
|
|
const WellState& xw);
|
|
|
|
void
|
|
addWellControlEq(const SolutionState& state,
|
|
const WellState& xw,
|
|
const V& aliveWells);
|
|
|
|
void updateWellControls(WellState& xw) const;
|
|
|
|
void updateWellState(const V& dwells,
|
|
WellState& well_state);
|
|
|
|
bool getWellConvergence(const int iteration);
|
|
|
|
std::vector<ADB>
|
|
computePressures(const ADB& po,
|
|
const ADB& sw,
|
|
const ADB& so,
|
|
const ADB& sg) const;
|
|
|
|
V
|
|
computeGasPressure(const V& po,
|
|
const V& sw,
|
|
const V& so,
|
|
const V& sg) const;
|
|
|
|
std::vector<ADB>
|
|
computeRelPerm(const SolutionState& state) const;
|
|
|
|
void
|
|
computeMassFlux(const int actph ,
|
|
const V& transi,
|
|
const ADB& kr ,
|
|
const ADB& p ,
|
|
const SolutionState& state );
|
|
|
|
void applyThresholdPressures(ADB& dp);
|
|
|
|
ADB
|
|
fluidViscosity(const int phase,
|
|
const ADB& p ,
|
|
const ADB& temp ,
|
|
const ADB& rs ,
|
|
const ADB& rv ,
|
|
const std::vector<PhasePresence>& cond) const;
|
|
|
|
ADB
|
|
fluidReciprocFVF(const int phase,
|
|
const ADB& p ,
|
|
const ADB& temp ,
|
|
const ADB& rs ,
|
|
const ADB& rv ,
|
|
const std::vector<PhasePresence>& cond) const;
|
|
|
|
ADB
|
|
fluidDensity(const int phase,
|
|
const ADB& b,
|
|
const ADB& rs,
|
|
const ADB& rv) const;
|
|
|
|
V
|
|
fluidRsSat(const V& p,
|
|
const V& so,
|
|
const std::vector<int>& cells) const;
|
|
|
|
ADB
|
|
fluidRsSat(const ADB& p,
|
|
const ADB& so,
|
|
const std::vector<int>& cells) const;
|
|
|
|
V
|
|
fluidRvSat(const V& p,
|
|
const V& so,
|
|
const std::vector<int>& cells) const;
|
|
|
|
ADB
|
|
fluidRvSat(const ADB& p,
|
|
const ADB& so,
|
|
const std::vector<int>& cells) const;
|
|
|
|
ADB
|
|
poroMult(const ADB& p) const;
|
|
|
|
ADB
|
|
transMult(const ADB& p) const;
|
|
|
|
const std::vector<PhasePresence>
|
|
phaseCondition() const {return phaseCondition_;}
|
|
|
|
void
|
|
classifyCondition(const ReservoirState& state);
|
|
|
|
|
|
/// update the primal variable for Sg, Rv or Rs. The Gas phase must
|
|
/// be active to call this method.
|
|
void
|
|
updatePrimalVariableFromState(const ReservoirState& state);
|
|
|
|
/// Update the phaseCondition_ member based on the primalVariable_ member.
|
|
/// Also updates isRs_, isRv_ and isSg_;
|
|
void
|
|
updatePhaseCondFromPrimalVariable();
|
|
|
|
/// \brief Compute the reduction within the convergence check.
|
|
/// \param[in] B A matrix with MaxNumPhases columns and the same number rows
|
|
/// as the number of cells of the grid. B.col(i) contains the values
|
|
/// for phase i.
|
|
/// \param[in] tempV A matrix with MaxNumPhases columns and the same number rows
|
|
/// as the number of cells of the grid. tempV.col(i) contains the
|
|
/// values
|
|
/// for phase i.
|
|
/// \param[in] R A matrix with MaxNumPhases columns and the same number rows
|
|
/// as the number of cells of the grid. B.col(i) contains the values
|
|
/// for phase i.
|
|
/// \param[out] R_sum An array of size MaxNumPhases where entry i contains the sum
|
|
/// of R for the phase i.
|
|
/// \param[out] maxCoeff An array of size MaxNumPhases where entry i contains the
|
|
/// maximum of tempV for the phase i.
|
|
/// \param[out] B_avg An array of size MaxNumPhases where entry i contains the average
|
|
/// of B for the phase i.
|
|
/// \param[out] maxNormWell The maximum of the well equations for each phase.
|
|
/// \param[in] nc The number of cells of the local grid.
|
|
/// \param[in] nw The number of wells on the local grid.
|
|
/// \return The total pore volume over all cells.
|
|
double
|
|
convergenceReduction(const Eigen::Array<double, Eigen::Dynamic, MaxNumPhases>& B,
|
|
const Eigen::Array<double, Eigen::Dynamic, MaxNumPhases>& tempV,
|
|
const Eigen::Array<double, Eigen::Dynamic, MaxNumPhases>& R,
|
|
std::array<double,MaxNumPhases>& R_sum,
|
|
std::array<double,MaxNumPhases>& maxCoeff,
|
|
std::array<double,MaxNumPhases>& B_avg,
|
|
std::vector<double>& maxNormWell,
|
|
int nc,
|
|
int nw) const;
|
|
|
|
double dpMaxRel() const { return param_.dp_max_rel_; }
|
|
double dsMax() const { return param_.ds_max_; }
|
|
double drMaxRel() const { return param_.dr_max_rel_; }
|
|
double maxResidualAllowed() const { return param_.max_residual_allowed_; }
|
|
|
|
};
|
|
} // namespace Opm
|
|
|
|
#include "BlackoilModelBase_impl.hpp"
|
|
|
|
#endif // OPM_BLACKOILMODELBASE_HEADER_INCLUDED
|