opm-simulators/opm/simulators/aquifers/AquiferNumerical.hpp
Bård Skaflestad 14a63a4636 Synchronise Face-Area Fractions Between All Processes
We need a global view of face-area fractions if aquifer connections
happen to be shared between processes.  Add a new helper function,

    BlackoilAquiferModel::computeConnectionAreaFraction()

that performs a collective operation to compute the total face areas
and then defers to the local aquifer objects to compute their face
area fractions.

While here, also split the initialisation of analytic aquifers into
two parts, one for the face area and connection mappings, and one
for the connection depths.  Run the former as part of the object
constructor and the latter as part of 'initQuantities()'.  This
ensures that we can computeConnectionAreaFraction() for all analytic
aquifers before assigning solution quantities from the restart file.
2023-05-25 09:50:51 +02:00

345 lines
13 KiB
C++

/*
Copyright (C) 2020 Equinor ASA
Copyright (C) 2020 SINTEF Digital
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_AQUIFERNUMERICAL_HEADER_INCLUDED
#define OPM_AQUIFERNUMERICAL_HEADER_INCLUDED
#include <opm/input/eclipse/EclipseState/Aquifer/NumericalAquifer/SingleNumericalAquifer.hpp>
#include <opm/material/common/MathToolbox.hpp>
#include <opm/material/densead/Evaluation.hpp>
#include <opm/output/data/Aquifer.hpp>
#include <opm/simulators/aquifers/AquiferInterface.hpp>
#include <opm/simulators/utils/DeferredLoggingErrorHelpers.hpp>
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <unordered_map>
#include <utility>
#include <vector>
namespace Opm
{
template <typename TypeTag>
class AquiferNumerical : public AquiferInterface<TypeTag>
{
public:
using BlackoilIndices = GetPropType<TypeTag, Properties::Indices>;
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
using ExtensiveQuantities = GetPropType<TypeTag, Properties::ExtensiveQuantities>;
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
using GridView = GetPropType<TypeTag, Properties::GridView>;
using IntensiveQuantities = GetPropType<TypeTag, Properties::IntensiveQuantities>;
using MaterialLaw = GetPropType<TypeTag, Properties::MaterialLaw>;
using Simulator = GetPropType<TypeTag, Properties::Simulator>;
enum { dimWorld = GridView::dimensionworld };
enum { numPhases = FluidSystem::numPhases };
static constexpr int numEq = BlackoilIndices::numEq;
using Eval = DenseAd::Evaluation<double, numEq>;
using Toolbox = MathToolbox<Eval>;
using typename AquiferInterface<TypeTag>::RateVector;
// Constructor
AquiferNumerical(const SingleNumericalAquifer& aquifer,
const Simulator& ebos_simulator)
: AquiferInterface<TypeTag>(aquifer.id(), ebos_simulator)
, flux_rate_ (0.0)
, cumulative_flux_(0.0)
, init_pressure_ (aquifer.numCells(), 0.0)
{
this->cell_to_aquifer_cell_idx_.resize(this->ebos_simulator_.gridView().size(/*codim=*/0), -1);
auto aquifer_on_process = false;
for (std::size_t idx = 0; idx < aquifer.numCells(); ++idx) {
const auto* cell = aquifer.getCellPrt(idx);
// Due to parallelisation, the cell might not exist in the current process
const int compressed_idx = ebos_simulator.vanguard().compressedIndexForInterior(cell->global_index);
if (compressed_idx >= 0) {
this->cell_to_aquifer_cell_idx_[compressed_idx] = idx;
aquifer_on_process = true;
}
}
if (aquifer_on_process) {
this->checkConnectsToReservoir();
}
}
static AquiferNumerical serializationTestObject(const Simulator& ebos_simulator)
{
AquiferNumerical result({}, ebos_simulator);
result.flux_rate_ = 1.0;
result.cumulative_flux_ = 2.0;
result.init_pressure_ = {3.0, 4.0};
result.pressure_ = 5.0;
return result;
}
void initFromRestart(const data::Aquifers& aquiferSoln) override
{
auto xaqPos = aquiferSoln.find(this->aquiferID());
if (xaqPos == aquiferSoln.end())
return;
if (this->connects_to_reservoir_) {
this->cumulative_flux_ = xaqPos->second.volume;
}
if (const auto* aqData = xaqPos->second.typeData.template get<data::AquiferType::Numerical>();
aqData != nullptr)
{
this->init_pressure_ = aqData->initPressure;
}
this->solution_set_from_restart_ = true;
}
void beginTimeStep() override {}
void addToSource(RateVector&, const unsigned, const unsigned) override {}
void endTimeStep() override
{
this->pressure_ = this->calculateAquiferPressure();
this->flux_rate_ = this->calculateAquiferFluxRate();
this->cumulative_flux_ += this->flux_rate_ * this->ebos_simulator_.timeStepSize();
}
data::AquiferData aquiferData() const override
{
data::AquiferData data;
data.aquiferID = this->aquiferID();
data.pressure = this->pressure_;
data.fluxRate = this->flux_rate_;
data.volume = this->cumulative_flux_;
auto* aquNum = data.typeData.template create<data::AquiferType::Numerical>();
aquNum->initPressure = this->init_pressure_;
return data;
}
void initialSolutionApplied() override
{
if (this->solution_set_from_restart_) {
return;
}
this->pressure_ = this->calculateAquiferPressure(this->init_pressure_);
this->flux_rate_ = 0.;
this->cumulative_flux_ = 0.;
}
void computeFaceAreaFraction(const std::vector<double>& /*total_face_area*/) override
{}
double totalFaceArea() const override
{
return 1.0;
}
template<class Serializer>
void serializeOp(Serializer& serializer)
{
serializer(flux_rate_);
serializer(cumulative_flux_);
serializer(init_pressure_);
serializer(pressure_);
}
bool operator==(const AquiferNumerical& rhs) const
{
return this->flux_rate_ == rhs.flux_rate_ &&
this->cumulative_flux_ == rhs.cumulative_flux_ &&
this->init_pressure_ == rhs.init_pressure_ &&
this->pressure_ == rhs.pressure_;
}
double cumulativeFlux() const
{
return this->cumulative_flux_;
}
private:
void checkConnectsToReservoir()
{
ElementContext elem_ctx(this->ebos_simulator_);
auto elemIt = std::find_if(this->ebos_simulator_.gridView().template begin</*codim=*/0>(),
this->ebos_simulator_.gridView().template end</*codim=*/0>(),
[&elem_ctx, this](const auto& elem) -> bool
{
elem_ctx.updateStencil(elem);
const auto cell_index = elem_ctx
.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0);
return this->cell_to_aquifer_cell_idx_[cell_index] == 0;
});
assert ((elemIt != this->ebos_simulator_.gridView().template end</*codim=*/0>())
&& "Internal error locating numerical aquifer's connecting cell");
this->connects_to_reservoir_ =
elemIt->partitionType() == Dune::InteriorEntity;
}
double calculateAquiferPressure() const
{
auto capture = std::vector<double>(this->init_pressure_.size(), 0.0);
return this->calculateAquiferPressure(capture);
}
double calculateAquiferPressure(std::vector<double>& cell_pressure) const
{
double sum_pressure_watervolume = 0.;
double sum_watervolume = 0.;
ElementContext elem_ctx(this->ebos_simulator_);
const auto& gridView = this->ebos_simulator_.gridView();
OPM_BEGIN_PARALLEL_TRY_CATCH();
for (const auto& elem : elements(gridView, Dune::Partitions::interior)) {
elem_ctx.updatePrimaryStencil(elem);
const size_t cell_index = elem_ctx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0);
const int idx = this->cell_to_aquifer_cell_idx_[cell_index];
if (idx < 0) {
continue;
}
elem_ctx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
const auto& iq0 = elem_ctx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0);
const auto& fs = iq0.fluidState();
// TODO: the porosity of the cells are still wrong for numerical aquifer cells
// Because the dofVolume still based on the grid information.
// The pore volume is correct. Extra efforts will be done to get sensible porosity value here later.
const double water_saturation = fs.saturation(this->phaseIdx_()).value();
const double porosity = iq0.porosity().value();
const double volume = elem_ctx.dofTotalVolume(0, 0);
// TODO: not sure we should use water pressure here
const double water_pressure_reservoir = fs.pressure(this->phaseIdx_()).value();
const double water_volume = volume * porosity * water_saturation;
sum_pressure_watervolume += water_volume * water_pressure_reservoir;
sum_watervolume += water_volume;
cell_pressure[idx] = water_pressure_reservoir;
}
OPM_END_PARALLEL_TRY_CATCH("AquiferNumerical::calculateAquiferPressure() failed: ", this->ebos_simulator_.vanguard().grid().comm());
const auto& comm = this->ebos_simulator_.vanguard().grid().comm();
comm.sum(&sum_pressure_watervolume, 1);
comm.sum(&sum_watervolume, 1);
// Ensure all processes have same notion of the aquifer cells' pressure values.
comm.sum(cell_pressure.data(), cell_pressure.size());
return sum_pressure_watervolume / sum_watervolume;
}
template <class ElemCtx>
double getWaterFlux(const ElemCtx& elem_ctx, unsigned face_idx) const
{
const auto& exQuants = elem_ctx.extensiveQuantities(face_idx, /*timeIdx*/ 0);
const double water_flux = Toolbox::value(exQuants.volumeFlux(this->phaseIdx_()));
return water_flux;
}
double calculateAquiferFluxRate() const
{
double aquifer_flux = 0.0;
if (! this->connects_to_reservoir_) {
return aquifer_flux;
}
ElementContext elem_ctx(this->ebos_simulator_);
const auto& gridView = this->ebos_simulator_.gridView();
for (const auto& elem : elements(gridView, Dune::Partitions::interior)) {
// elem_ctx.updatePrimaryStencil(elem);
elem_ctx.updateStencil(elem);
const std::size_t cell_index = elem_ctx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0);
const int idx = this->cell_to_aquifer_cell_idx_[cell_index];
// we only need the first aquifer cell
if (idx != 0) {
continue;
}
const std::size_t num_interior_faces = elem_ctx.numInteriorFaces(/*timeIdx*/ 0);
// const auto &problem = elem_ctx.problem();
const auto& stencil = elem_ctx.stencil(0);
// const auto& inQuants = elem_ctx.intensiveQuantities(0, /*timeIdx*/ 0);
for (std::size_t face_idx = 0; face_idx < num_interior_faces; ++face_idx) {
const auto& face = stencil.interiorFace(face_idx);
// dof index
const std::size_t i = face.interiorIndex();
const std::size_t j = face.exteriorIndex();
// compressed index
// const size_t I = stencil.globalSpaceIndex(i);
const std::size_t J = stencil.globalSpaceIndex(j);
assert(stencil.globalSpaceIndex(i) == cell_index);
// we do not consider the flux within aquifer cells
// we only need the flux to the connections
if (this->cell_to_aquifer_cell_idx_[J] > 0) {
continue;
}
elem_ctx.updateAllIntensiveQuantities();
elem_ctx.updateAllExtensiveQuantities();
const double water_flux = getWaterFlux(elem_ctx,face_idx);
const std::size_t up_id = water_flux >= 0.0 ? i : j;
const auto& intQuantsIn = elem_ctx.intensiveQuantities(up_id, 0);
const double invB = Toolbox::value(intQuantsIn.fluidState().invB(this->phaseIdx_()));
const double face_area = face.area();
aquifer_flux += water_flux * invB * face_area;
}
// we only need to handle the first aquifer cell, we can exit loop here
break;
}
return aquifer_flux;
}
double flux_rate_; // aquifer influx rate
double cumulative_flux_; // cumulative aquifer influx
std::vector<double> init_pressure_{};
double pressure_; // aquifer pressure
bool solution_set_from_restart_ {false};
bool connects_to_reservoir_ {false};
// TODO: maybe unordered_map can also do the work to save memory?
std::vector<int> cell_to_aquifer_cell_idx_;
};
} // namespace Opm
#endif