mirror of
https://github.com/OPM/opm-simulators.git
synced 2024-11-25 18:50:19 -06:00
718 lines
24 KiB
C++
718 lines
24 KiB
C++
/*
|
|
Copyright 2017 SINTEF Digital, Mathematics and Cybernetics.
|
|
Copyright 2017 Statoil ASA.
|
|
Copyright 2018 IRIS
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <config.h>
|
|
#include <opm/simulators/wells/WellInterfaceGeneric.hpp>
|
|
|
|
#include <opm/common/ErrorMacros.hpp>
|
|
|
|
#include <opm/input/eclipse/Schedule/Well/WellBrineProperties.hpp>
|
|
#include <opm/input/eclipse/Schedule/Well/WellConnections.hpp>
|
|
#include <opm/input/eclipse/Schedule/Well/WellFoamProperties.hpp>
|
|
#include <opm/input/eclipse/Schedule/Well/WellMICPProperties.hpp>
|
|
#include <opm/input/eclipse/Schedule/Well/WellPolymerProperties.hpp>
|
|
#include <opm/input/eclipse/Schedule/Well/WellTestState.hpp>
|
|
#include <opm/input/eclipse/Schedule/Well/WVFPEXP.hpp>
|
|
#include <opm/simulators/utils/DeferredLoggingErrorHelpers.hpp>
|
|
#include <opm/simulators/wells/PerforationData.hpp>
|
|
#include <opm/simulators/wells/ParallelWellInfo.hpp>
|
|
#include <opm/simulators/wells/VFPHelpers.hpp>
|
|
#include <opm/simulators/wells/VFPProperties.hpp>
|
|
#include <opm/simulators/wells/WellBhpThpCalculator.hpp>
|
|
#include <opm/simulators/wells/WellHelpers.hpp>
|
|
#include <opm/simulators/wells/WellState.hpp>
|
|
#include <opm/simulators/wells/WellTest.hpp>
|
|
|
|
#include <fmt/format.h>
|
|
|
|
#include <cassert>
|
|
#include <cmath>
|
|
#include <cstddef>
|
|
#include <stdexcept>
|
|
|
|
namespace Opm
|
|
{
|
|
|
|
WellInterfaceGeneric::WellInterfaceGeneric(const Well& well,
|
|
const ParallelWellInfo& pw_info,
|
|
const int time_step,
|
|
const int pvtRegionIdx,
|
|
const int num_components,
|
|
const int num_phases,
|
|
const int index_of_well,
|
|
const std::vector<PerforationData>& perf_data)
|
|
: well_ecl_(well)
|
|
, parallel_well_info_(pw_info)
|
|
, current_step_(time_step)
|
|
, pvtRegionIdx_(pvtRegionIdx)
|
|
, num_components_(num_components)
|
|
, number_of_phases_(num_phases)
|
|
, index_of_well_(index_of_well)
|
|
, perf_data_(&perf_data)
|
|
, ipr_a_(num_components)
|
|
, ipr_b_(num_components)
|
|
{
|
|
assert(well.name()==pw_info.name());
|
|
assert(std::is_sorted(perf_data.begin(), perf_data.end(),
|
|
[](const auto& perf1, const auto& perf2){
|
|
return perf1.ecl_index < perf2.ecl_index;
|
|
}));
|
|
if (time_step < 0) {
|
|
OPM_THROW(std::invalid_argument, "Negative time step is used to construct WellInterface");
|
|
}
|
|
|
|
ref_depth_ = well.getRefDepth();
|
|
|
|
// We do not want to count SHUT perforations here, so
|
|
// it would be wrong to use wells.getConnections().size().
|
|
number_of_perforations_ = perf_data.size();
|
|
|
|
// perforations related
|
|
{
|
|
well_cells_.resize(number_of_perforations_);
|
|
well_index_.resize(number_of_perforations_);
|
|
saturation_table_number_.resize(number_of_perforations_);
|
|
int perf = 0;
|
|
for (const auto& pd : perf_data) {
|
|
well_cells_[perf] = pd.cell_index;
|
|
well_index_[perf] = pd.connection_transmissibility_factor;
|
|
saturation_table_number_[perf] = pd.satnum_id;
|
|
++perf;
|
|
}
|
|
}
|
|
|
|
// initialization of the completions mapping
|
|
initCompletions();
|
|
|
|
well_efficiency_factor_ = 1.0;
|
|
|
|
this->wellStatus_ = Well::Status::OPEN;
|
|
if (well.getStatus() == Well::Status::STOP) {
|
|
this->wellStatus_ = Well::Status::STOP;
|
|
}
|
|
|
|
wsolvent_ = 0.0;
|
|
|
|
well_control_log_.clear();
|
|
}
|
|
|
|
// Currently the VFP calculations requires three-phase input data, see
|
|
// the documentation for keyword VFPPROD and its implementation in
|
|
// VFPProdProperties.cpp. However, by setting the gas flow rate to a dummy
|
|
// value in VFPPROD record 5 (GFR values) and supplying a dummy input value
|
|
// for the gas rate to the methods in VFPProdProperties.cpp, we can extend
|
|
// the VFP calculations to the two-phase oil-water case.
|
|
void WellInterfaceGeneric::adaptRatesForVFP(std::vector<double>& rates) const
|
|
{
|
|
const auto& pu = this->phaseUsage();
|
|
if (pu.num_phases == 2) {
|
|
if ( pu.phase_used[BlackoilPhases::Aqua] == 1
|
|
&& pu.phase_used[BlackoilPhases::Liquid] == 1
|
|
&& pu.phase_used[BlackoilPhases::Vapour] == 0)
|
|
{
|
|
assert(rates.size() == 2);
|
|
rates.push_back(0.0); // set gas rate to zero
|
|
}
|
|
else {
|
|
throw std::logic_error("Two-phase VFP calculation only "
|
|
"supported for oil and water");
|
|
}
|
|
}
|
|
}
|
|
|
|
const std::vector<PerforationData>& WellInterfaceGeneric::perforationData() const
|
|
{
|
|
return *perf_data_;
|
|
}
|
|
|
|
const std::string& WellInterfaceGeneric::name() const
|
|
{
|
|
return well_ecl_.name();
|
|
}
|
|
|
|
bool WellInterfaceGeneric::isInjector() const
|
|
{
|
|
return well_ecl_.isInjector();
|
|
}
|
|
|
|
bool WellInterfaceGeneric::isProducer() const
|
|
{
|
|
return well_ecl_.isProducer();
|
|
}
|
|
|
|
int WellInterfaceGeneric::indexOfWell() const
|
|
{
|
|
return index_of_well_;
|
|
}
|
|
|
|
bool WellInterfaceGeneric::getAllowCrossFlow() const
|
|
{
|
|
return well_ecl_.getAllowCrossFlow();
|
|
}
|
|
|
|
const Well& WellInterfaceGeneric::wellEcl() const
|
|
{
|
|
return well_ecl_;
|
|
}
|
|
|
|
const PhaseUsage& WellInterfaceGeneric::phaseUsage() const
|
|
{
|
|
assert(phase_usage_ != nullptr);
|
|
|
|
return *phase_usage_;
|
|
}
|
|
|
|
double WellInterfaceGeneric::wsolvent() const
|
|
{
|
|
return wsolvent_;
|
|
}
|
|
|
|
double WellInterfaceGeneric::rsRvInj() const
|
|
{
|
|
return well_ecl_.getInjectionProperties().rsRvInj;
|
|
}
|
|
|
|
void WellInterfaceGeneric::initInjMult(const std::vector<double>& max_inj_mult)
|
|
{
|
|
// prev_inj_multiplier_ will stay unchanged during the time step
|
|
// while inj_multiplier_ might be updated during the time step
|
|
this->prev_inj_multiplier_ = max_inj_mult;
|
|
// initializing the inj_multipler_ to be 1.0
|
|
this->inj_multiplier_ = std::vector<double>(max_inj_mult.size(), 1.);
|
|
}
|
|
|
|
void WellInterfaceGeneric::updateInjMult(std::vector<double>& inj_multipliers, DeferredLogger& deferred_logger) const
|
|
{
|
|
if (inj_multipliers.size() != this->inj_multiplier_.size()) {
|
|
OPM_DEFLOG_THROW(std::runtime_error,
|
|
fmt::format("We do not support changing connection numbers during simulation with WINJMULT "
|
|
"for well {}", name()),
|
|
deferred_logger);
|
|
}
|
|
|
|
inj_multipliers = this->inj_multiplier_;
|
|
}
|
|
|
|
|
|
|
|
double WellInterfaceGeneric::getInjMult(const int perf,
|
|
const double bhp,
|
|
const double perf_pres) const
|
|
{
|
|
assert(!this->isProducer());
|
|
|
|
double multiplier = 1.;
|
|
|
|
const auto perf_ecl_index = this->perforationData()[perf].ecl_index;
|
|
const bool is_wrev = this->well_ecl_.getInjMultMode() == Well::InjMultMode::WREV;
|
|
|
|
const bool active_injmult = (is_wrev && this->well_ecl_.aciveWellInjMult()) ||
|
|
this->well_ecl_.getConnections()[perf_ecl_index].activeInjMult();
|
|
|
|
if (active_injmult) {
|
|
const auto& injmult= is_wrev ? this->well_ecl_.getWellInjMult()
|
|
: this->well_ecl_.getConnections()[perf_ecl_index].injmult();
|
|
const double pres = is_wrev ? bhp : perf_pres;
|
|
|
|
const auto frac_press = injmult.fracture_pressure;
|
|
const auto gradient = injmult.multiplier_gradient;
|
|
if (pres > frac_press) {
|
|
multiplier = 1. + (pres - frac_press) * gradient;
|
|
}
|
|
}
|
|
|
|
// for CIRR mode, if there is no active WINJMULT setup, we will use the previous injection multiplier,
|
|
// to mimic keeping the existing fracturing open
|
|
if (this->well_ecl_.getInjMultMode() == Well::InjMultMode::CIRR) {
|
|
multiplier = std::max(multiplier, this->prev_inj_multiplier_[perf_ecl_index]);
|
|
}
|
|
|
|
this->inj_multiplier_[perf_ecl_index] = multiplier;
|
|
return multiplier;
|
|
}
|
|
|
|
|
|
|
|
|
|
bool WellInterfaceGeneric::wellHasTHPConstraints(const SummaryState& summaryState) const
|
|
{
|
|
// only wells under prediction mode can have THP constraint
|
|
if (!this->wellEcl().predictionMode()) {
|
|
return false;
|
|
}
|
|
|
|
if (dynamic_thp_limit_) {
|
|
return true;
|
|
}
|
|
|
|
return WellBhpThpCalculator(*this).wellHasTHPConstraints(summaryState);
|
|
}
|
|
|
|
void WellInterfaceGeneric::updateWellTestState(const SingleWellState& ws,
|
|
const double& simulationTime,
|
|
const bool& writeMessageToOPMLog,
|
|
WellTestState& wellTestState,
|
|
DeferredLogger& deferred_logger) const
|
|
{
|
|
// updating well test state based on Economic limits for operable wells
|
|
if (this->isOperableAndSolvable()) {
|
|
WellTest(*this).updateWellTestStateEconomic(ws, simulationTime, writeMessageToOPMLog, wellTestState, deferred_logger);
|
|
} else {
|
|
// updating well test state based on physical (THP/BHP) limits.
|
|
WellTest(*this).updateWellTestStatePhysical(simulationTime, writeMessageToOPMLog, wellTestState, deferred_logger);
|
|
}
|
|
|
|
// TODO: well can be shut/closed due to other reasons
|
|
}
|
|
|
|
double WellInterfaceGeneric::getTHPConstraint(const SummaryState& summaryState) const
|
|
{
|
|
if (dynamic_thp_limit_) {
|
|
return *dynamic_thp_limit_;
|
|
}
|
|
|
|
return WellBhpThpCalculator(*this).getTHPConstraint(summaryState);
|
|
}
|
|
|
|
bool WellInterfaceGeneric::underPredictionMode() const
|
|
{
|
|
return well_ecl_.predictionMode();
|
|
}
|
|
|
|
void WellInterfaceGeneric::initCompletions()
|
|
{
|
|
assert(completions_.empty() );
|
|
|
|
const WellConnections& connections = well_ecl_.getConnections();
|
|
const std::size_t num_conns = connections.size();
|
|
|
|
int num_active_connections = 0;
|
|
auto my_next_perf = perf_data_->begin();
|
|
for (std::size_t c = 0; c < num_conns; ++c) {
|
|
if (my_next_perf == perf_data_->end())
|
|
{
|
|
break;
|
|
}
|
|
if (my_next_perf->ecl_index > c)
|
|
{
|
|
continue;
|
|
}
|
|
assert(my_next_perf->ecl_index == c);
|
|
if (connections[c].state() == Connection::State::OPEN) {
|
|
completions_[connections[c].complnum()].push_back(num_active_connections++);
|
|
}
|
|
++my_next_perf;
|
|
}
|
|
assert(my_next_perf == perf_data_->end());
|
|
}
|
|
|
|
void WellInterfaceGeneric::closeCompletions(const WellTestState& wellTestState)
|
|
{
|
|
const auto& connections = well_ecl_.getConnections();
|
|
int perfIdx = 0;
|
|
for (const auto& connection : connections) {
|
|
if (connection.state() == Connection::State::OPEN) {
|
|
if (wellTestState.completion_is_closed(name(), connection.complnum())) {
|
|
this->well_index_[perfIdx] = 0.0;
|
|
}
|
|
perfIdx++;
|
|
}
|
|
}
|
|
}
|
|
|
|
void WellInterfaceGeneric::setVFPProperties(const VFPProperties* vfp_properties_arg)
|
|
{
|
|
vfp_properties_ = vfp_properties_arg;
|
|
}
|
|
|
|
void WellInterfaceGeneric::setGuideRate(const GuideRate* guide_rate_arg)
|
|
{
|
|
guide_rate_ = guide_rate_arg;
|
|
}
|
|
|
|
void WellInterfaceGeneric::setWellEfficiencyFactor(const double efficiency_factor)
|
|
{
|
|
well_efficiency_factor_ = efficiency_factor;
|
|
}
|
|
|
|
void WellInterfaceGeneric::setRepRadiusPerfLength()
|
|
{
|
|
const int nperf = number_of_perforations_;
|
|
|
|
perf_rep_radius_.clear();
|
|
perf_length_.clear();
|
|
bore_diameters_.clear();
|
|
|
|
perf_rep_radius_.reserve(nperf);
|
|
perf_length_.reserve(nperf);
|
|
bore_diameters_.reserve(nperf);
|
|
|
|
const WellConnections& connections = well_ecl_.getConnections();
|
|
const std::size_t num_conns = connections.size();
|
|
int num_active_connections = 0;
|
|
auto my_next_perf = perf_data_->begin();
|
|
for (std::size_t c = 0; c < num_conns; ++c) {
|
|
if (my_next_perf == perf_data_->end())
|
|
{
|
|
break;
|
|
}
|
|
if (my_next_perf->ecl_index > c)
|
|
{
|
|
continue;
|
|
}
|
|
assert(my_next_perf->ecl_index == c);
|
|
const auto& connection = connections[c];
|
|
if (connection.state() == Connection::State::OPEN) {
|
|
double radius = connection.rw();
|
|
double re = connection.re(); // area equivalent radius of the grid block
|
|
double perf_length = connection.connectionLength(); // the length of the well perforation
|
|
const double repR = std::sqrt(re * radius);
|
|
perf_rep_radius_.push_back(repR);
|
|
perf_length_.push_back(perf_length);
|
|
bore_diameters_.push_back(2. * radius);
|
|
num_active_connections++;
|
|
}
|
|
++my_next_perf;
|
|
}
|
|
assert(my_next_perf == perf_data_->end());
|
|
assert(num_active_connections == nperf);
|
|
}
|
|
|
|
void WellInterfaceGeneric::setWsolvent(const double wsolvent)
|
|
{
|
|
wsolvent_ = wsolvent;
|
|
}
|
|
|
|
void WellInterfaceGeneric::setDynamicThpLimit(const double thp_limit)
|
|
{
|
|
dynamic_thp_limit_ = thp_limit;
|
|
}
|
|
|
|
std::optional<double> WellInterfaceGeneric::getDynamicThpLimit() const
|
|
{
|
|
return dynamic_thp_limit_;
|
|
}
|
|
|
|
void WellInterfaceGeneric::updatePerforatedCell(std::vector<bool>& is_cell_perforated)
|
|
{
|
|
|
|
for (int perf_idx = 0; perf_idx<number_of_perforations_; ++perf_idx) {
|
|
is_cell_perforated[well_cells_[perf_idx]] = true;
|
|
}
|
|
}
|
|
|
|
bool WellInterfaceGeneric::isVFPActive(DeferredLogger& deferred_logger) const
|
|
{
|
|
// since the well_controls only handles the VFP number when THP constraint/target is there.
|
|
// we need to get the table number through the parser, in case THP constraint/target is not there.
|
|
// When THP control/limit is not active, if available VFP table is provided, we will still need to
|
|
// update THP value. However, it will only used for output purpose.
|
|
if (isProducer()) { // producer
|
|
const int table_id = well_ecl_.vfp_table_number();
|
|
if (table_id <= 0) {
|
|
return false;
|
|
} else {
|
|
if (vfp_properties_->getProd()->hasTable(table_id)) {
|
|
return true;
|
|
} else {
|
|
OPM_DEFLOG_THROW(std::runtime_error,
|
|
fmt::format("VFPPROD table {} is specified "
|
|
"for well {}, while we could not access it during simulation",
|
|
table_id, name()),
|
|
deferred_logger);
|
|
}
|
|
}
|
|
|
|
} else { // injector
|
|
const int table_id = well_ecl_.vfp_table_number();
|
|
if (table_id <= 0) {
|
|
return false;
|
|
} else {
|
|
if (vfp_properties_->getInj()->hasTable(table_id)) {
|
|
return true;
|
|
} else {
|
|
OPM_DEFLOG_THROW(std::runtime_error,
|
|
fmt::format("VFPINJ table {} is specified "
|
|
"for well {}, while we could not access it during simulation",
|
|
table_id, name()),
|
|
deferred_logger);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
bool WellInterfaceGeneric::isOperableAndSolvable() const
|
|
{
|
|
return operability_status_.isOperableAndSolvable();
|
|
}
|
|
|
|
bool WellInterfaceGeneric::useVfpExplicit() const
|
|
{
|
|
const auto& wvfpexp = well_ecl_.getWVFPEXP();
|
|
return ((wvfpexp.explicit_lookup() && !changedToOpenThisStep())|| operability_status_.use_vfpexplicit);
|
|
}
|
|
|
|
bool WellInterfaceGeneric::thpLimitViolatedButNotSwitched() const
|
|
{
|
|
return operability_status_.thp_limit_violated_but_not_switched;
|
|
}
|
|
|
|
double WellInterfaceGeneric::getALQ(const WellState& well_state) const
|
|
{
|
|
// no alq for injectors.
|
|
if (isInjector())
|
|
return 0.0;
|
|
|
|
return well_state.getALQ(name());
|
|
}
|
|
|
|
void WellInterfaceGeneric::reportWellSwitching(const SingleWellState& ws, DeferredLogger& deferred_logger) const
|
|
{
|
|
if (well_control_log_.empty())
|
|
return;
|
|
|
|
std::string from = well_control_log_[0];
|
|
std::string to;
|
|
if (isInjector()) {
|
|
to = WellInjectorCMode2String(ws.injection_cmode);
|
|
} else {
|
|
to = WellProducerCMode2String(ws.production_cmode);
|
|
}
|
|
// only report the final switching
|
|
if (from != to) {
|
|
deferred_logger.info(fmt::format(" Well {} control mode changed from {} to {}",
|
|
name(), from, to));
|
|
}
|
|
}
|
|
|
|
bool WellInterfaceGeneric::isPressureControlled(const WellState& well_state) const
|
|
{
|
|
const auto& ws = well_state.well(this->index_of_well_);
|
|
if (this->isInjector()) {
|
|
const Well::InjectorCMode& current = ws.injection_cmode;
|
|
return current == Well::InjectorCMode::THP ||
|
|
current == Well::InjectorCMode::BHP;
|
|
} else {
|
|
const Well::ProducerCMode& current = ws.production_cmode;
|
|
return current == Well::ProducerCMode::THP ||
|
|
current == Well::ProducerCMode::BHP;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
bool WellInterfaceGeneric::wellUnderZeroRateTarget(const SummaryState& summary_state,
|
|
const WellState& well_state) const
|
|
{
|
|
if (this->isProducer()) { // producers
|
|
const auto prod_controls = this->well_ecl_.productionControls(summary_state);
|
|
const auto prod_mode = well_state.well(this->indexOfWell()).production_cmode;
|
|
return wellhelpers::rateControlWithZeroProdTarget(prod_controls, prod_mode);
|
|
} else { // injectors
|
|
const auto inj_controls = this->well_ecl_.injectionControls(summary_state);
|
|
const auto inj_mode = well_state.well(this->indexOfWell()).injection_cmode;
|
|
return wellhelpers::rateControlWithZeroInjTarget(inj_controls, inj_mode);
|
|
}
|
|
}
|
|
|
|
bool WellInterfaceGeneric::stopppedOrZeroRateTarget(const SummaryState& summary_state,
|
|
const WellState& well_state) const
|
|
{
|
|
return (this->wellIsStopped() || this->wellUnderZeroRateTarget(summary_state, well_state));
|
|
|
|
}
|
|
|
|
double WellInterfaceGeneric::wmicrobes_() const
|
|
{
|
|
auto injectorType = this->well_ecl_.injectorType();
|
|
|
|
if (injectorType == InjectorType::WATER) {
|
|
WellMICPProperties microbes = this->well_ecl_.getMICPProperties();
|
|
const double microbial_injection_concentration = microbes.m_microbialConcentration;
|
|
return microbial_injection_concentration;
|
|
} else {
|
|
// Not a water injection well => no microbes.
|
|
return 0.0;
|
|
}
|
|
}
|
|
|
|
double WellInterfaceGeneric::wfoam_() const
|
|
{
|
|
auto injectorType = this->well_ecl_.injectorType();
|
|
|
|
if (injectorType == InjectorType::GAS) {
|
|
WellFoamProperties fprop = this->well_ecl_.getFoamProperties();
|
|
return fprop.m_foamConcentration;
|
|
} else {
|
|
// Not a gas injection well => no foam.
|
|
return 0.0;
|
|
}
|
|
}
|
|
|
|
double WellInterfaceGeneric::wsalt_() const
|
|
{
|
|
auto injectorType = this->well_ecl_.injectorType();
|
|
|
|
if (injectorType == InjectorType::WATER) {
|
|
WellBrineProperties fprop = this->well_ecl_.getBrineProperties();
|
|
return fprop.m_saltConcentration;
|
|
} else {
|
|
// Not a water injection well => no salt (?).
|
|
return 0.0;
|
|
}
|
|
}
|
|
|
|
double WellInterfaceGeneric::woxygen_() const
|
|
{
|
|
auto injectorType = this->well_ecl_.injectorType();
|
|
|
|
if (injectorType == InjectorType::WATER) {
|
|
WellMICPProperties oxygen = this->well_ecl_.getMICPProperties();
|
|
const double oxygen_injection_concentration = oxygen.m_oxygenConcentration;
|
|
return oxygen_injection_concentration;
|
|
} else {
|
|
// Not a water injection well => no oxygen.
|
|
return 0.0;
|
|
}
|
|
}
|
|
|
|
double WellInterfaceGeneric::wpolymer_() const
|
|
{
|
|
auto injectorType = this->well_ecl_.injectorType();
|
|
|
|
if (injectorType == InjectorType::WATER) {
|
|
WellPolymerProperties polymer = this->well_ecl_.getPolymerProperties();
|
|
const double polymer_injection_concentration = polymer.m_polymerConcentration;
|
|
return polymer_injection_concentration;
|
|
} else {
|
|
// Not a water injection well => no polymer.
|
|
return 0.0;
|
|
}
|
|
}
|
|
|
|
double WellInterfaceGeneric::wurea_() const
|
|
{
|
|
auto injectorType = this->well_ecl_.injectorType();
|
|
|
|
if (injectorType == InjectorType::WATER) {
|
|
WellMICPProperties urea = this->well_ecl_.getMICPProperties();
|
|
const double urea_injection_concentration = urea.m_ureaConcentration / 10.; //Dividing by scaling factor 10
|
|
return urea_injection_concentration;
|
|
} else {
|
|
// Not a water injection well => no urea.
|
|
return 0.0;
|
|
}
|
|
}
|
|
|
|
int WellInterfaceGeneric::polymerTable_() const
|
|
{
|
|
return this->well_ecl_.getPolymerProperties().m_skprpolytable;
|
|
}
|
|
|
|
int WellInterfaceGeneric::polymerWaterTable_() const
|
|
{
|
|
return this->well_ecl_.getPolymerProperties().m_skprwattable;
|
|
}
|
|
|
|
int WellInterfaceGeneric::polymerInjTable_() const
|
|
{
|
|
return this->well_ecl_.getPolymerProperties().m_plymwinjtable;
|
|
}
|
|
|
|
std::pair<bool,bool> WellInterfaceGeneric::
|
|
computeWellPotentials(std::vector<double>& well_potentials,
|
|
const WellState& well_state)
|
|
{
|
|
const int np = this->number_of_phases_;
|
|
well_potentials.resize(np, 0.0);
|
|
|
|
// Stopped wells have zero potential.
|
|
if (this->wellIsStopped()) {
|
|
return {false, false};
|
|
}
|
|
this->operability_status_.has_negative_potentials = false;
|
|
|
|
// If the well is pressure controlled the potential equals the rate.
|
|
bool thp_controlled_well = false;
|
|
bool bhp_controlled_well = false;
|
|
bool compute_potential = true;
|
|
const auto& ws = well_state.well(this->index_of_well_);
|
|
if (this->isInjector()) {
|
|
const Well::InjectorCMode& current = ws.injection_cmode;
|
|
if (current == Well::InjectorCMode::THP) {
|
|
thp_controlled_well = true;
|
|
}
|
|
if (current == Well::InjectorCMode::BHP) {
|
|
bhp_controlled_well = true;
|
|
}
|
|
} else {
|
|
const Well::ProducerCMode& current = ws.production_cmode;
|
|
if (current == Well::ProducerCMode::THP) {
|
|
thp_controlled_well = true;
|
|
}
|
|
if (current == Well::ProducerCMode::BHP) {
|
|
bhp_controlled_well = true;
|
|
}
|
|
}
|
|
|
|
if (!this->changed_to_open_this_step_ &&
|
|
(thp_controlled_well || bhp_controlled_well)) {
|
|
double total_rate = 0.0;
|
|
const double sign = this->isInjector() ? 1.0 : -1.0;
|
|
for (int phase = 0; phase < np; ++phase){
|
|
total_rate += sign * ws.surface_rates[phase];
|
|
}
|
|
// for pressure controlled wells the well rates are the potentials
|
|
// if the rates are trivial we are most probably looking at the newly
|
|
// opened well, and we therefore make the effort of computing the potentials anyway.
|
|
if (total_rate > 0) {
|
|
for (int phase = 0; phase < np; ++phase){
|
|
well_potentials[phase] = sign * ws.surface_rates[phase];
|
|
}
|
|
compute_potential = false;
|
|
}
|
|
}
|
|
|
|
return {compute_potential, bhp_controlled_well};
|
|
}
|
|
|
|
void WellInterfaceGeneric::
|
|
checkNegativeWellPotentials(std::vector<double>& well_potentials,
|
|
const bool checkOperability,
|
|
DeferredLogger& deferred_logger)
|
|
{
|
|
const double sign = this->isInjector() ? 1.0 : -1.0;
|
|
double total_potential = 0.0;
|
|
for (int phase = 0; phase < this->number_of_phases_; ++phase) {
|
|
well_potentials[phase] *= sign;
|
|
total_potential += well_potentials[phase];
|
|
}
|
|
if (total_potential < 0.0 && checkOperability) {
|
|
// wells with negative potentials are not operable
|
|
this->operability_status_.has_negative_potentials = true;
|
|
const std::string msg = std::string("well ") + this->name() +
|
|
": has negative potentials and is not operable";
|
|
deferred_logger.warning("NEGATIVE_POTENTIALS_INOPERABLE", msg);
|
|
}
|
|
}
|
|
|
|
} // namespace Opm
|