mirror of
https://github.com/OPM/opm-simulators.git
synced 2024-12-28 02:00:59 -06:00
840a29f8ef
This commit ensures that compute inter-region flow rates on all ranks and collect those on the I/O rank using CollectDataToIORank. We add a trivial EclInterRegFlowMap data member to the communication object. This data member only knows the pertinent FIP region array names, but uses existing read/write support to collect contributions from all ranks into this "global" object. We then pass this global object on to the summary evaluation routine.
596 lines
24 KiB
C++
596 lines
24 KiB
C++
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
|
// vi: set et ts=4 sw=4 sts=4:
|
|
/*
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
Consult the COPYING file in the top-level source directory of this
|
|
module for the precise wording of the license and the list of
|
|
copyright holders.
|
|
*/
|
|
|
|
#include <config.h>
|
|
#include <ebos/eclgenericwriter.hh>
|
|
|
|
#include <opm/grid/CpGrid.hpp>
|
|
#include <opm/grid/cpgrid/GridHelpers.hpp>
|
|
#include <opm/grid/polyhedralgrid.hh>
|
|
#include <opm/grid/utility/cartesianToCompressed.hpp>
|
|
|
|
#include <opm/output/eclipse/EclipseIO.hpp>
|
|
#include <opm/output/eclipse/RestartValue.hpp>
|
|
#include <opm/output/eclipse/Summary.hpp>
|
|
|
|
#include <opm/input/eclipse/EclipseState/EclipseState.hpp>
|
|
#include <opm/input/eclipse/EclipseState/SummaryConfig/SummaryConfig.hpp>
|
|
#include <opm/input/eclipse/Schedule/Action/State.hpp>
|
|
#include <opm/input/eclipse/Schedule/Schedule.hpp>
|
|
#include <opm/input/eclipse/Schedule/SummaryState.hpp>
|
|
#include <opm/input/eclipse/Schedule/UDQ/UDQState.hpp>
|
|
#include <opm/input/eclipse/Units/UnitSystem.hpp>
|
|
|
|
#include <dune/grid/common/mcmgmapper.hh>
|
|
|
|
#if HAVE_DUNE_FEM
|
|
#include <dune/fem/gridpart/adaptiveleafgridpart.hh>
|
|
#include <dune/fem/gridpart/common/gridpart2gridview.hh>
|
|
#include <ebos/femcpgridcompat.hh>
|
|
#endif
|
|
|
|
#if HAVE_MPI
|
|
#include <mpi.h>
|
|
#endif
|
|
|
|
#include <array>
|
|
#include <string>
|
|
#include <unordered_map>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
namespace {
|
|
|
|
/*!
|
|
* \brief Detect whether two cells are direct vertical neighbours.
|
|
*
|
|
* I.e. have the same i and j index and all cartesian cells between them
|
|
* along the vertical column are inactive.
|
|
*
|
|
* \tparam CM The type of the cartesian index mapper.
|
|
* \param cartMapper The mapper onto cartesian indices.
|
|
* \param cartesianToActive The mapping of cartesian indices to active indices.
|
|
* \param smallGlobalIndex The cartesian cell index of the cell with smaller index
|
|
* \param largeGlobalIndex The cartesian cell index of the cell with larger index
|
|
* \return True if the cells have the same i and j indices and all cartesian cells
|
|
* between them are inactive.
|
|
*/
|
|
bool directVerticalNeighbors(const std::array<int, 3>& cartDims,
|
|
const std::unordered_map<int,int>& cartesianToActive,
|
|
int smallGlobalIndex, int largeGlobalIndex)
|
|
{
|
|
assert(smallGlobalIndex <= largeGlobalIndex);
|
|
std::array<int, 3> ijk1, ijk2;
|
|
auto globalToIjk = [cartDims](int gc) {
|
|
std::array<int, 3> ijk;
|
|
ijk[0] = gc % cartDims[0];
|
|
gc /= cartDims[0];
|
|
ijk[1] = gc % cartDims[1];
|
|
ijk[2] = gc / cartDims[1];
|
|
return ijk;
|
|
};
|
|
ijk1 = globalToIjk(smallGlobalIndex);
|
|
ijk2 = globalToIjk(largeGlobalIndex);
|
|
assert(ijk2[2]>=ijk1[2]);
|
|
|
|
if ( ijk1[0] == ijk2[0] && ijk1[1] == ijk2[1] && (ijk2[2] - ijk1[2]) > 1)
|
|
{
|
|
assert((largeGlobalIndex-smallGlobalIndex)%(cartDims[0]*cartDims[1])==0);
|
|
for ( int gi = smallGlobalIndex + cartDims[0] * cartDims[1]; gi < largeGlobalIndex;
|
|
gi += cartDims[0] * cartDims[1] )
|
|
{
|
|
if ( cartesianToActive.find( gi ) != cartesianToActive.end() )
|
|
{
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
} else
|
|
return false;
|
|
}
|
|
|
|
std::unordered_map<std::string, Opm::data::InterRegFlowMap>
|
|
getInterRegFlowsAsMap(const Opm::EclInterRegFlowMap& map)
|
|
{
|
|
auto maps = std::unordered_map<std::string, Opm::data::InterRegFlowMap>{};
|
|
|
|
const auto& regionNames = map.names();
|
|
auto flows = map.getInterRegFlows();
|
|
const auto nmap = regionNames.size();
|
|
|
|
maps.reserve(nmap);
|
|
for (auto mapID = 0*nmap; mapID < nmap; ++mapID) {
|
|
maps.emplace(regionNames[mapID], std::move(flows[mapID]));
|
|
}
|
|
|
|
return maps;
|
|
}
|
|
|
|
struct EclWriteTasklet : public Opm::TaskletInterface
|
|
{
|
|
Opm::Action::State actionState_;
|
|
Opm::WellTestState wtestState_;
|
|
Opm::SummaryState summaryState_;
|
|
Opm::UDQState udqState_;
|
|
Opm::EclipseIO& eclIO_;
|
|
int reportStepNum_;
|
|
bool isSubStep_;
|
|
double secondsElapsed_;
|
|
Opm::RestartValue restartValue_;
|
|
bool writeDoublePrecision_;
|
|
|
|
explicit EclWriteTasklet(const Opm::Action::State& actionState,
|
|
const Opm::WellTestState& wtestState,
|
|
const Opm::SummaryState& summaryState,
|
|
const Opm::UDQState& udqState,
|
|
Opm::EclipseIO& eclIO,
|
|
int reportStepNum,
|
|
bool isSubStep,
|
|
double secondsElapsed,
|
|
Opm::RestartValue restartValue,
|
|
bool writeDoublePrecision)
|
|
: actionState_(actionState)
|
|
, wtestState_(wtestState)
|
|
, summaryState_(summaryState)
|
|
, udqState_(udqState)
|
|
, eclIO_(eclIO)
|
|
, reportStepNum_(reportStepNum)
|
|
, isSubStep_(isSubStep)
|
|
, secondsElapsed_(secondsElapsed)
|
|
, restartValue_(restartValue)
|
|
, writeDoublePrecision_(writeDoublePrecision)
|
|
{ }
|
|
|
|
// callback to eclIO serial writeTimeStep method
|
|
void run()
|
|
{
|
|
eclIO_.writeTimeStep(actionState_,
|
|
wtestState_,
|
|
summaryState_,
|
|
udqState_,
|
|
reportStepNum_,
|
|
isSubStep_,
|
|
secondsElapsed_,
|
|
restartValue_,
|
|
writeDoublePrecision_);
|
|
}
|
|
};
|
|
|
|
}
|
|
|
|
namespace Opm {
|
|
|
|
template<class Grid, class EquilGrid, class GridView, class ElementMapper, class Scalar>
|
|
EclGenericWriter<Grid,EquilGrid,GridView,ElementMapper,Scalar>::
|
|
EclGenericWriter(const Schedule& schedule,
|
|
const EclipseState& eclState,
|
|
const SummaryConfig& summaryConfig,
|
|
const Grid& grid,
|
|
const EquilGrid* equilGrid,
|
|
const GridView& gridView,
|
|
const Dune::CartesianIndexMapper<Grid>& cartMapper,
|
|
const Dune::CartesianIndexMapper<EquilGrid>* equilCartMapper,
|
|
bool enableAsyncOutput,
|
|
bool enableEsmry )
|
|
: collectToIORank_(grid,
|
|
equilGrid,
|
|
gridView,
|
|
cartMapper,
|
|
equilCartMapper,
|
|
summaryConfig.fip_regions_interreg_flow())
|
|
, grid_(grid)
|
|
, gridView_(gridView)
|
|
, schedule_(schedule)
|
|
, eclState_(eclState)
|
|
, summaryConfig_(summaryConfig)
|
|
, cartMapper_(cartMapper)
|
|
, equilCartMapper_(equilCartMapper)
|
|
, equilGrid_(equilGrid)
|
|
{
|
|
if (collectToIORank_.isIORank()) {
|
|
eclIO_.reset(new EclipseIO(eclState_,
|
|
UgGridHelpers::createEclipseGrid(*equilGrid, eclState_.getInputGrid()),
|
|
schedule_,
|
|
summaryConfig_, "", enableEsmry));
|
|
|
|
const auto& wbp_calculators = eclIO_->summary().wbp_calculators( schedule.size() - 1 );
|
|
wbp_index_list_ = wbp_calculators.index_list();
|
|
}
|
|
if (collectToIORank_.isParallel()) {
|
|
const auto& comm = grid_.comm();
|
|
unsigned long size = wbp_index_list_.size();
|
|
comm.broadcast(&size, 1, collectToIORank_.ioRank);
|
|
if (!collectToIORank_.isIORank())
|
|
wbp_index_list_.resize( size );
|
|
comm.broadcast(wbp_index_list_.data(), size, collectToIORank_.ioRank);
|
|
}
|
|
// create output thread if enabled and rank is I/O rank
|
|
// async output is enabled by default if pthread are enabled
|
|
int numWorkerThreads = 0;
|
|
if (enableAsyncOutput && collectToIORank_.isIORank())
|
|
numWorkerThreads = 1;
|
|
taskletRunner_.reset(new TaskletRunner(numWorkerThreads));
|
|
}
|
|
|
|
template<class Grid, class EquilGrid, class GridView, class ElementMapper, class Scalar>
|
|
const EclipseIO& EclGenericWriter<Grid,EquilGrid,GridView,ElementMapper,Scalar>::
|
|
eclIO() const
|
|
{
|
|
assert(eclIO_);
|
|
return *eclIO_;
|
|
}
|
|
|
|
template<class Grid, class EquilGrid, class GridView, class ElementMapper, class Scalar>
|
|
void EclGenericWriter<Grid,EquilGrid,GridView,ElementMapper,Scalar>::
|
|
writeInit()
|
|
{
|
|
if (collectToIORank_.isIORank()) {
|
|
std::map<std::string, std::vector<int> > integerVectors;
|
|
if (collectToIORank_.isParallel())
|
|
integerVectors.emplace("MPI_RANK", collectToIORank_.globalRanks());
|
|
auto cartMap = cartesianToCompressed(equilGrid_->size(0),
|
|
UgGridHelpers::globalCell(*equilGrid_));
|
|
eclIO_->writeInitial(computeTrans_(cartMap), integerVectors, exportNncStructure_(cartMap));
|
|
}
|
|
}
|
|
|
|
template<class Grid, class EquilGrid, class GridView, class ElementMapper, class Scalar>
|
|
data::Solution EclGenericWriter<Grid,EquilGrid,GridView,ElementMapper,Scalar>::
|
|
computeTrans_(const std::unordered_map<int,int>& cartesianToActive) const
|
|
{
|
|
const auto& cartMapper = *equilCartMapper_;
|
|
const auto& cartDims = cartMapper.cartesianDimensions();
|
|
const int globalSize = cartDims[0]*cartDims[1]*cartDims[2];
|
|
|
|
data::CellData tranx = {UnitSystem::measure::transmissibility, std::vector<double>(globalSize), data::TargetType::INIT};
|
|
data::CellData trany = {UnitSystem::measure::transmissibility, std::vector<double>(globalSize), data::TargetType::INIT};
|
|
data::CellData tranz = {UnitSystem::measure::transmissibility, std::vector<double>(globalSize), data::TargetType::INIT};
|
|
|
|
for (size_t i = 0; i < tranx.data.size(); ++i) {
|
|
tranx.data[0] = 0.0;
|
|
trany.data[0] = 0.0;
|
|
tranz.data[0] = 0.0;
|
|
}
|
|
|
|
using GlobalGridView = typename EquilGrid::LeafGridView;
|
|
const GlobalGridView& globalGridView = equilGrid_->leafGridView();
|
|
using GlobElementMapper = Dune::MultipleCodimMultipleGeomTypeMapper<GlobalGridView>;
|
|
GlobElementMapper globalElemMapper(globalGridView, Dune::mcmgElementLayout());
|
|
|
|
auto elemIt = globalGridView.template begin</*codim=*/0>();
|
|
const auto& elemEndIt = globalGridView.template end</*codim=*/0>();
|
|
for (; elemIt != elemEndIt; ++ elemIt) {
|
|
const auto& elem = *elemIt;
|
|
|
|
auto isIt = globalGridView.ibegin(elem);
|
|
const auto& isEndIt = globalGridView.iend(elem);
|
|
for (; isIt != isEndIt; ++ isIt) {
|
|
const auto& is = *isIt;
|
|
|
|
if (!is.neighbor())
|
|
continue; // intersection is on the domain boundary
|
|
|
|
unsigned c1 = globalElemMapper.index(is.inside());
|
|
unsigned c2 = globalElemMapper.index(is.outside());
|
|
|
|
if (c1 > c2)
|
|
continue; // we only need to handle each connection once, thank you.
|
|
|
|
// Ordering of compressed and uncompressed index should be the same
|
|
const int cartIdx1 = cartMapper.cartesianIndex( c1 );
|
|
const int cartIdx2 = cartMapper.cartesianIndex( c2 );
|
|
// Ordering of compressed and uncompressed index should be the same
|
|
assert(cartIdx1 <= cartIdx2);
|
|
int gc1 = std::min(cartIdx1, cartIdx2);
|
|
int gc2 = std::max(cartIdx1, cartIdx2);
|
|
|
|
if (gc2 - gc1 == 1 && cartDims[0] > 1 ) {
|
|
tranx.data[gc1] = globalTrans().transmissibility(c1, c2);
|
|
continue; // skip other if clauses as they are false, last one needs some computation
|
|
}
|
|
|
|
if (gc2 - gc1 == cartDims[0] && cartDims[1] > 1) {
|
|
trany.data[gc1] = globalTrans().transmissibility(c1, c2);
|
|
continue; // skipt next if clause as it needs some computation
|
|
}
|
|
|
|
if ( gc2 - gc1 == cartDims[0]*cartDims[1] ||
|
|
directVerticalNeighbors(cartDims, cartesianToActive, gc1, gc2))
|
|
tranz.data[gc1] = globalTrans().transmissibility(c1, c2);
|
|
}
|
|
}
|
|
|
|
return {{"TRANX", tranx},
|
|
{"TRANY", trany},
|
|
{"TRANZ", tranz}};
|
|
}
|
|
|
|
template<class Grid, class EquilGrid, class GridView, class ElementMapper, class Scalar>
|
|
std::vector<NNCdata> EclGenericWriter<Grid,EquilGrid,GridView,ElementMapper,Scalar>::
|
|
exportNncStructure_(const std::unordered_map<int,int>& cartesianToActive) const
|
|
{
|
|
std::size_t nx = eclState_.getInputGrid().getNX();
|
|
std::size_t ny = eclState_.getInputGrid().getNY();
|
|
auto nncData = eclState_.getInputNNC().input();
|
|
const auto& unitSystem = eclState_.getDeckUnitSystem();
|
|
std::vector<NNCdata> outputNnc;
|
|
std::size_t index = 0;
|
|
|
|
for( const auto& entry : nncData ) {
|
|
// test whether NNC is not a neighboring connection
|
|
// cell2>=cell1 holds due to sortNncAndApplyEditnnc
|
|
assert( entry.cell2 >= entry.cell1 );
|
|
auto cellDiff = entry.cell2 - entry.cell1;
|
|
|
|
if (cellDiff != 1 && cellDiff != nx && cellDiff != nx*ny) {
|
|
auto tt = unitSystem.from_si(UnitSystem::measure::transmissibility, entry.trans);
|
|
// Eclipse ignores NNCs (with EDITNNC applied) that are small. Seems like the threshold is 1.0e-6
|
|
if ( tt >= 1.0e-6 )
|
|
outputNnc.emplace_back(entry.cell1, entry.cell2, entry.trans);
|
|
}
|
|
++index;
|
|
}
|
|
|
|
using GlobalGridView = typename EquilGrid::LeafGridView;
|
|
const GlobalGridView& globalGridView = equilGrid_->leafGridView();
|
|
using GlobElementMapper = Dune::MultipleCodimMultipleGeomTypeMapper<GlobalGridView>;
|
|
GlobElementMapper globalElemMapper(globalGridView, Dune::mcmgElementLayout());
|
|
|
|
// Cartesian index mapper for the serial I/O grid
|
|
const auto& equilCartMapper = *equilCartMapper_;
|
|
const auto& cartDims = cartMapper_.cartesianDimensions();
|
|
auto elemIt = globalGridView.template begin</*codim=*/0>();
|
|
const auto& elemEndIt = globalGridView.template end</*codim=*/0>();
|
|
for (; elemIt != elemEndIt; ++ elemIt) {
|
|
const auto& elem = *elemIt;
|
|
|
|
auto isIt = globalGridView.ibegin(elem);
|
|
const auto& isEndIt = globalGridView.iend(elem);
|
|
for (; isIt != isEndIt; ++ isIt) {
|
|
const auto& is = *isIt;
|
|
|
|
if (!is.neighbor())
|
|
continue; // intersection is on the domain boundary
|
|
|
|
unsigned c1 = globalElemMapper.index(is.inside());
|
|
unsigned c2 = globalElemMapper.index(is.outside());
|
|
|
|
if (c1 > c2)
|
|
continue; // we only need to handle each connection once, thank you.
|
|
|
|
std::size_t cc1 = equilCartMapper.cartesianIndex( c1 ); //globalIOGrid_.globalCell()[c1];
|
|
std::size_t cc2 = equilCartMapper.cartesianIndex( c2 ); //globalIOGrid_.globalCell()[c2];
|
|
|
|
if ( cc2 < cc1 )
|
|
std::swap(cc1, cc2);
|
|
|
|
auto cellDiff = cc2 - cc1;
|
|
|
|
if (cellDiff != 1 &&
|
|
cellDiff != nx &&
|
|
cellDiff != nx*ny &&
|
|
!directVerticalNeighbors(cartDims, cartesianToActive, cc1, cc2)) {
|
|
// We need to check whether an NNC for this face was also specified
|
|
// via the NNC keyword in the deck (i.e. in the first origNncSize entries.
|
|
auto t = globalTrans().transmissibility(c1, c2);
|
|
auto candidate = std::lower_bound(nncData.begin(), nncData.end(), NNCdata(cc1, cc2, 0.0));
|
|
|
|
while ( candidate != nncData.end() && candidate->cell1 == cc1
|
|
&& candidate->cell2 == cc2) {
|
|
t -= candidate->trans;
|
|
++candidate;
|
|
}
|
|
// eclipse ignores NNCs with zero transmissibility (different threshold than for NNC
|
|
// with corresponding EDITNNC above). In addition we do set small transmissibilties
|
|
// to zero when setting up the simulator. These will be ignored here, too.
|
|
auto tt = unitSystem.from_si(UnitSystem::measure::transmissibility, std::abs(t));
|
|
if ( tt > 1e-12 )
|
|
outputNnc.push_back({cc1, cc2, t});
|
|
}
|
|
}
|
|
}
|
|
return outputNnc;
|
|
}
|
|
|
|
template<class Grid, class EquilGrid, class GridView, class ElementMapper, class Scalar>
|
|
void EclGenericWriter<Grid,EquilGrid,GridView,ElementMapper,Scalar>::
|
|
doWriteOutput(const int reportStepNum,
|
|
const bool isSubStep,
|
|
data::Solution&& localCellData,
|
|
data::Wells&& localWellData,
|
|
data::GroupAndNetworkValues&& localGroupAndNetworkData,
|
|
data::Aquifers&& localAquiferData,
|
|
WellTestState&& localWTestState,
|
|
const Action::State& actionState,
|
|
const UDQState& udqState,
|
|
const SummaryState& summaryState,
|
|
const std::vector<Scalar>& thresholdPressure,
|
|
Scalar curTime,
|
|
Scalar nextStepSize,
|
|
bool doublePrecision)
|
|
{
|
|
const auto isParallel = this->collectToIORank_.isParallel();
|
|
|
|
RestartValue restartValue {
|
|
isParallel ? this->collectToIORank_.globalCellData()
|
|
: std::move(localCellData),
|
|
|
|
isParallel ? this->collectToIORank_.globalWellData()
|
|
: std::move(localWellData),
|
|
|
|
isParallel ? this->collectToIORank_.globalGroupAndNetworkData()
|
|
: std::move(localGroupAndNetworkData),
|
|
|
|
isParallel ? this->collectToIORank_.globalAquiferData()
|
|
: std::move(localAquiferData)
|
|
};
|
|
|
|
if (eclState_.getSimulationConfig().useThresholdPressure()) {
|
|
restartValue.addExtra("THRESHPR", UnitSystem::measure::pressure,
|
|
thresholdPressure);
|
|
}
|
|
|
|
// Add suggested next timestep to extra data.
|
|
if (! isSubStep) {
|
|
restartValue.addExtra("OPMEXTRA", std::vector<double>(1, nextStepSize));
|
|
}
|
|
|
|
// first, create a tasklet to write the data for the current time
|
|
// step to disk
|
|
auto eclWriteTasklet = std::make_shared<EclWriteTasklet>(
|
|
actionState,
|
|
isParallel ? this->collectToIORank_.globalWellTestState() : std::move(localWTestState),
|
|
summaryState, udqState, *this->eclIO_,
|
|
reportStepNum, isSubStep, curTime, std::move(restartValue), doublePrecision);
|
|
|
|
// then, make sure that the previous I/O request has been completed
|
|
// and the number of incomplete tasklets does not increase between
|
|
// time steps
|
|
this->taskletRunner_->barrier();
|
|
|
|
// finally, start a new output writing job
|
|
this->taskletRunner_->dispatch(std::move(eclWriteTasklet));
|
|
}
|
|
|
|
template<class Grid, class EquilGrid, class GridView, class ElementMapper, class Scalar>
|
|
void EclGenericWriter<Grid,EquilGrid,GridView,ElementMapper,Scalar>::
|
|
evalSummary(const int reportStepNum,
|
|
const Scalar curTime,
|
|
const std::map<std::size_t, double>& wbpData,
|
|
const data::Wells& localWellData,
|
|
const data::GroupAndNetworkValues& localGroupAndNetworkData,
|
|
const std::map<int,data::AquiferData>& localAquiferData,
|
|
const std::map<std::pair<std::string, int>, double>& blockData,
|
|
const std::map<std::string, double>& miscSummaryData,
|
|
const std::map<std::string, std::vector<double>>& regionData,
|
|
const Inplace& inplace,
|
|
const Inplace& initialInPlace,
|
|
const EclInterRegFlowMap& interRegionFlowMap,
|
|
SummaryState& summaryState,
|
|
UDQState& udqState)
|
|
{
|
|
std::vector<char> buffer;
|
|
if (collectToIORank_.isIORank()) {
|
|
const auto& summary = eclIO_->summary();
|
|
auto wbp_calculators = summary.wbp_calculators(reportStepNum);
|
|
|
|
for (const auto& [global_index, pressure] : wbpData)
|
|
wbp_calculators.add_pressure( global_index, pressure );
|
|
|
|
const auto& wellData = this->collectToIORank_.isParallel()
|
|
? this->collectToIORank_.globalWellData()
|
|
: localWellData;
|
|
|
|
const auto& groupAndNetworkData = this->collectToIORank_.isParallel()
|
|
? this->collectToIORank_.globalGroupAndNetworkData()
|
|
: localGroupAndNetworkData;
|
|
|
|
const auto& aquiferData = this->collectToIORank_.isParallel()
|
|
? this->collectToIORank_.globalAquiferData()
|
|
: localAquiferData;
|
|
|
|
summary.eval(summaryState,
|
|
reportStepNum,
|
|
curTime,
|
|
wellData,
|
|
groupAndNetworkData,
|
|
miscSummaryData,
|
|
initialInPlace,
|
|
inplace,
|
|
wbp_calculators,
|
|
regionData,
|
|
blockData,
|
|
aquiferData,
|
|
getInterRegFlowsAsMap(interRegionFlowMap));
|
|
|
|
// Off-by-one-fun: The reportStepNum argument corresponds to the
|
|
// report step these results will be written to, whereas the
|
|
// argument to UDQ function evaluation corresponds to the report
|
|
// step we are currently on.
|
|
auto udq_step = reportStepNum - 1;
|
|
const auto& udq_config = schedule_.getUDQConfig(udq_step);
|
|
udq_config.eval( udq_step, schedule_.wellMatcher(udq_step), summaryState, udqState);
|
|
|
|
buffer = summaryState.serialize();
|
|
}
|
|
if (collectToIORank_.isParallel()) {
|
|
#ifdef HAVE_MPI
|
|
unsigned long buffer_size = buffer.size();
|
|
grid_.comm().broadcast(&buffer_size, 1, collectToIORank_.ioRank);
|
|
if (!collectToIORank_.isIORank())
|
|
buffer.resize( buffer_size );
|
|
|
|
grid_.comm().broadcast(buffer.data(), buffer_size, collectToIORank_.ioRank);
|
|
if (!collectToIORank_.isIORank()) {
|
|
SummaryState& st = summaryState;
|
|
st.deserialize(buffer);
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
|
|
template<class Grid, class EquilGrid, class GridView, class ElementMapper, class Scalar>
|
|
const typename EclGenericWriter<Grid,EquilGrid,GridView,ElementMapper,Scalar>::TransmissibilityType&
|
|
EclGenericWriter<Grid,EquilGrid,GridView,ElementMapper,Scalar>::
|
|
globalTrans() const
|
|
{
|
|
assert (globalTrans_);
|
|
return *globalTrans_;
|
|
}
|
|
|
|
#if HAVE_DUNE_FEM
|
|
template class EclGenericWriter<Dune::CpGrid,
|
|
Dune::CpGrid,
|
|
Dune::GridView<Dune::Fem::GridPart2GridViewTraits<Dune::Fem::AdaptiveLeafGridPart<Dune::CpGrid, Dune::PartitionIteratorType(4), false>>>,
|
|
Dune::MultipleCodimMultipleGeomTypeMapper<Dune::GridView<Dune::Fem::GridPart2GridViewTraits<Dune::Fem::AdaptiveLeafGridPart<Dune::CpGrid, Dune::PartitionIteratorType(4), false>>>>,
|
|
double>;
|
|
template class EclGenericWriter<Dune::CpGrid,
|
|
Dune::CpGrid,
|
|
Dune::Fem::GridPart2GridViewImpl<
|
|
Dune::Fem::AdaptiveLeafGridPart<
|
|
Dune::CpGrid,
|
|
Dune::PartitionIteratorType(4),
|
|
false>>,
|
|
Dune::MultipleCodimMultipleGeomTypeMapper<
|
|
Dune::Fem::GridPart2GridViewImpl<
|
|
Dune::Fem::AdaptiveLeafGridPart<
|
|
Dune::CpGrid,
|
|
Dune::PartitionIteratorType(4),
|
|
false>>>,
|
|
double>;
|
|
#else
|
|
template class EclGenericWriter<Dune::CpGrid,
|
|
Dune::CpGrid,
|
|
Dune::GridView<Dune::DefaultLeafGridViewTraits<Dune::CpGrid>>,
|
|
Dune::MultipleCodimMultipleGeomTypeMapper<Dune::GridView<Dune::DefaultLeafGridViewTraits<Dune::CpGrid>>>,
|
|
double>;
|
|
#endif
|
|
|
|
template class EclGenericWriter<Dune::PolyhedralGrid<3,3,double>,
|
|
Dune::PolyhedralGrid<3,3,double>,
|
|
Dune::GridView<Dune::PolyhedralGridViewTraits<3, 3, double, Dune::PartitionIteratorType(4)>>,
|
|
Dune::MultipleCodimMultipleGeomTypeMapper<Dune::GridView<Dune::PolyhedralGridViewTraits<3,3,double,Dune::PartitionIteratorType(4)>>>,
|
|
double>;
|
|
|
|
} // namespace Opm
|