opm-simulators/opm/models/common/darcyfluxmodule.hh
2020-05-18 15:52:45 +02:00

569 lines
22 KiB
C++

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \brief This file contains the necessary classes to calculate the
* volumetric fluxes out of a pressure potential gradient using the
* Darcy relation.
*/
#ifndef EWOMS_DARCY_FLUX_MODULE_HH
#define EWOMS_DARCY_FLUX_MODULE_HH
#include "multiphasebaseproperties.hh"
#include <opm/models/common/quantitycallbacks.hh>
#include <opm/material/common/Valgrind.hpp>
#include <opm/material/common/Unused.hpp>
#include <opm/material/common/Exceptions.hpp>
#include <dune/common/fvector.hh>
#include <dune/common/fmatrix.hh>
#include <cmath>
BEGIN_PROPERTIES
END_PROPERTIES
namespace Opm {
template <class TypeTag>
class DarcyIntensiveQuantities;
template <class TypeTag>
class DarcyExtensiveQuantities;
template <class TypeTag>
class DarcyBaseProblem;
/*!
* \ingroup FluxModules
* \brief Specifies a flux module which uses the Darcy relation.
*/
template <class TypeTag>
struct DarcyFluxModule
{
typedef DarcyIntensiveQuantities<TypeTag> FluxIntensiveQuantities;
typedef DarcyExtensiveQuantities<TypeTag> FluxExtensiveQuantities;
typedef DarcyBaseProblem<TypeTag> FluxBaseProblem;
/*!
* \brief Register all run-time parameters for the flux module.
*/
static void registerParameters()
{ }
};
/*!
* \ingroup FluxModules
* \brief Provides the defaults for the parameters required by the
* Darcy velocity approach.
*/
template <class TypeTag>
class DarcyBaseProblem
{ };
/*!
* \ingroup FluxModules
* \brief Provides the intensive quantities for the Darcy flux module
*/
template <class TypeTag>
class DarcyIntensiveQuantities
{
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
protected:
void update_(const ElementContext& elemCtx OPM_UNUSED,
unsigned dofIdx OPM_UNUSED,
unsigned timeIdx OPM_UNUSED)
{ }
};
/*!
* \ingroup FluxModules
* \brief Provides the Darcy flux module
*
* The commonly used Darcy relation looses its validity for Reynolds numbers \f$ Re <
* 1\f$. If one encounters flow velocities in porous media above this threshold, the
* Forchheimer approach can be used.
*
* The Darcy equation is given by the following relation:
*
* \f[
\vec{v}_\alpha =
\left( \nabla p_\alpha - \rho_\alpha \vec{g}\right)
\frac{\mu_\alpha}{k_{r,\alpha} K}
\f]
*/
template <class TypeTag>
class DarcyExtensiveQuantities
{
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, Evaluation) Evaluation;
typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
typedef typename GET_PROP_TYPE(TypeTag, ExtensiveQuantities) Implementation;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef typename GET_PROP_TYPE(TypeTag, MaterialLaw) MaterialLaw;
enum { dimWorld = GridView::dimensionworld };
enum { numPhases = GET_PROP_VALUE(TypeTag, NumPhases) };
typedef typename Opm::MathToolbox<Evaluation> Toolbox;
typedef typename FluidSystem::template ParameterCache<Evaluation> ParameterCache;
typedef Dune::FieldVector<Evaluation, dimWorld> EvalDimVector;
typedef Dune::FieldVector<Scalar, dimWorld> DimVector;
typedef Dune::FieldMatrix<Scalar, dimWorld, dimWorld> DimMatrix;
public:
/*!
* \brief Returns the intrinsic permeability tensor for a given
* sub-control volume face.
*/
const DimMatrix& intrinsicPermability() const
{ return K_; }
/*!
* \brief Return the pressure potential gradient of a fluid phase
* at the face's integration point [Pa/m]
*
* \param phaseIdx The index of the fluid phase
*/
const EvalDimVector& potentialGrad(unsigned phaseIdx) const
{ return potentialGrad_[phaseIdx]; }
/*!
* \brief Return the filter velocity of a fluid phase at the
* face's integration point [m/s]
*
* \param phaseIdx The index of the fluid phase
*/
const EvalDimVector& filterVelocity(unsigned phaseIdx) const
{ return filterVelocity_[phaseIdx]; }
/*!
* \brief Return the volume flux of a fluid phase at the face's integration point
* \f$[m^3/s / m^2]\f$
*
* This is the fluid volume of a phase per second and per square meter of face
* area.
*
* \param phaseIdx The index of the fluid phase
*/
const Evaluation& volumeFlux(unsigned phaseIdx) const
{ return volumeFlux_[phaseIdx]; }
protected:
short upstreamIndex_(unsigned phaseIdx) const
{ return upstreamDofIdx_[phaseIdx]; }
short downstreamIndex_(unsigned phaseIdx) const
{ return downstreamDofIdx_[phaseIdx]; }
/*!
* \brief Calculate the gradients which are required to determine the volumetric fluxes
*
* The the upwind directions is also determined by method.
*/
void calculateGradients_(const ElementContext& elemCtx,
unsigned faceIdx,
unsigned timeIdx)
{
const auto& gradCalc = elemCtx.gradientCalculator();
Opm::PressureCallback<TypeTag> pressureCallback(elemCtx);
const auto& scvf = elemCtx.stencil(timeIdx).interiorFace(faceIdx);
const auto& faceNormal = scvf.normal();
unsigned i = scvf.interiorIndex();
unsigned j = scvf.exteriorIndex();
interiorDofIdx_ = static_cast<short>(i);
exteriorDofIdx_ = static_cast<short>(j);
unsigned focusDofIdx = elemCtx.focusDofIndex();
// calculate the "raw" pressure gradient
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
if (!elemCtx.model().phaseIsConsidered(phaseIdx)) {
Opm::Valgrind::SetUndefined(potentialGrad_[phaseIdx]);
continue;
}
pressureCallback.setPhaseIndex(phaseIdx);
gradCalc.calculateGradient(potentialGrad_[phaseIdx],
elemCtx,
faceIdx,
pressureCallback);
Opm::Valgrind::CheckDefined(potentialGrad_[phaseIdx]);
}
// correct the pressure gradients by the gravitational acceleration
if (EWOMS_GET_PARAM(TypeTag, bool, EnableGravity)) {
// estimate the gravitational acceleration at a given SCV face
// using the arithmetic mean
const auto& gIn = elemCtx.problem().gravity(elemCtx, i, timeIdx);
const auto& gEx = elemCtx.problem().gravity(elemCtx, j, timeIdx);
const auto& intQuantsIn = elemCtx.intensiveQuantities(i, timeIdx);
const auto& intQuantsEx = elemCtx.intensiveQuantities(j, timeIdx);
const auto& posIn = elemCtx.pos(i, timeIdx);
const auto& posEx = elemCtx.pos(j, timeIdx);
const auto& posFace = scvf.integrationPos();
// the distance between the centers of the control volumes
DimVector distVecIn(posIn);
DimVector distVecEx(posEx);
DimVector distVecTotal(posEx);
distVecIn -= posFace;
distVecEx -= posFace;
distVecTotal -= posIn;
Scalar absDistTotalSquared = distVecTotal.two_norm2();
for (unsigned phaseIdx=0; phaseIdx < numPhases; phaseIdx++) {
if (!elemCtx.model().phaseIsConsidered(phaseIdx))
continue;
// calculate the hydrostatic pressure at the integration point of the face
Evaluation pStatIn;
if (std::is_same<Scalar, Evaluation>::value ||
interiorDofIdx_ == static_cast<int>(focusDofIdx))
{
const Evaluation& rhoIn = intQuantsIn.fluidState().density(phaseIdx);
pStatIn = - rhoIn*(gIn*distVecIn);
}
else {
Scalar rhoIn = Toolbox::value(intQuantsIn.fluidState().density(phaseIdx));
pStatIn = - rhoIn*(gIn*distVecIn);
}
// the quantities on the exterior side of the face do not influence the
// result for the TPFA scheme, so they can be treated as scalar values.
Evaluation pStatEx;
if (std::is_same<Scalar, Evaluation>::value ||
exteriorDofIdx_ == static_cast<int>(focusDofIdx))
{
const Evaluation& rhoEx = intQuantsEx.fluidState().density(phaseIdx);
pStatEx = - rhoEx*(gEx*distVecEx);
}
else {
Scalar rhoEx = Toolbox::value(intQuantsEx.fluidState().density(phaseIdx));
pStatEx = - rhoEx*(gEx*distVecEx);
}
// compute the hydrostatic gradient between the two control volumes (this
// gradient exhibitis the same direction as the vector between the two
// control volume centers and the length (pStaticExterior -
// pStaticInterior)/distanceInteriorToExterior
Dune::FieldVector<Evaluation, dimWorld> f(distVecTotal);
f *= (pStatEx - pStatIn)/absDistTotalSquared;
// calculate the final potential gradient
for (unsigned dimIdx = 0; dimIdx < dimWorld; ++dimIdx)
potentialGrad_[phaseIdx][dimIdx] += f[dimIdx];
for (unsigned dimIdx = 0; dimIdx < potentialGrad_[phaseIdx].size(); ++dimIdx) {
if (!Opm::isfinite(potentialGrad_[phaseIdx][dimIdx])) {
throw Opm::NumericalIssue("Non-finite potential gradient for phase '"
+std::string(FluidSystem::phaseName(phaseIdx))+"'");
}
}
}
}
Opm::Valgrind::SetUndefined(K_);
elemCtx.problem().intersectionIntrinsicPermeability(K_, elemCtx, faceIdx, timeIdx);
Opm::Valgrind::CheckDefined(K_);
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
if (!elemCtx.model().phaseIsConsidered(phaseIdx)) {
Opm::Valgrind::SetUndefined(potentialGrad_[phaseIdx]);
continue;
}
// determine the upstream and downstream DOFs
Evaluation tmp = 0.0;
for (unsigned dimIdx = 0; dimIdx < faceNormal.size(); ++dimIdx)
tmp += potentialGrad_[phaseIdx][dimIdx]*faceNormal[dimIdx];
if (tmp > 0) {
upstreamDofIdx_[phaseIdx] = exteriorDofIdx_;
downstreamDofIdx_[phaseIdx] = interiorDofIdx_;
}
else {
upstreamDofIdx_[phaseIdx] = interiorDofIdx_;
downstreamDofIdx_[phaseIdx] = exteriorDofIdx_;
}
// we only carry the derivatives along if the upstream DOF is the one which
// we currently focus on
const auto& up = elemCtx.intensiveQuantities(upstreamDofIdx_[phaseIdx], timeIdx);
if (upstreamDofIdx_[phaseIdx] == static_cast<int>(focusDofIdx))
mobility_[phaseIdx] = up.mobility(phaseIdx);
else
mobility_[phaseIdx] = Toolbox::value(up.mobility(phaseIdx));
}
}
/*!
* \brief Calculate the gradients at the grid boundary which are required to
* determine the volumetric fluxes
*
* The the upwind directions is also determined by method.
*/
template <class FluidState>
void calculateBoundaryGradients_(const ElementContext& elemCtx,
unsigned boundaryFaceIdx,
unsigned timeIdx,
const FluidState& fluidState)
{
const auto& gradCalc = elemCtx.gradientCalculator();
Opm::BoundaryPressureCallback<TypeTag, FluidState> pressureCallback(elemCtx, fluidState);
// calculate the pressure gradient
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
if (!elemCtx.model().phaseIsConsidered(phaseIdx)) {
Opm::Valgrind::SetUndefined(potentialGrad_[phaseIdx]);
continue;
}
pressureCallback.setPhaseIndex(phaseIdx);
gradCalc.calculateBoundaryGradient(potentialGrad_[phaseIdx],
elemCtx,
boundaryFaceIdx,
pressureCallback);
Opm::Valgrind::CheckDefined(potentialGrad_[phaseIdx]);
}
const auto& scvf = elemCtx.stencil(timeIdx).boundaryFace(boundaryFaceIdx);
auto i = scvf.interiorIndex();
interiorDofIdx_ = static_cast<short>(i);
exteriorDofIdx_ = -1;
int focusDofIdx = elemCtx.focusDofIndex();
// calculate the intrinsic permeability
const auto& intQuantsIn = elemCtx.intensiveQuantities(i, timeIdx);
K_ = intQuantsIn.intrinsicPermeability();
// correct the pressure gradients by the gravitational acceleration
if (EWOMS_GET_PARAM(TypeTag, bool, EnableGravity)) {
// estimate the gravitational acceleration at a given SCV face
// using the arithmetic mean
const auto& gIn = elemCtx.problem().gravity(elemCtx, i, timeIdx);
const auto& posIn = elemCtx.pos(i, timeIdx);
const auto& posFace = scvf.integrationPos();
// the distance between the face center and the center of the control volume
DimVector distVecIn(posIn);
distVecIn -= posFace;
Scalar absDist = distVecIn.two_norm();
Scalar gTimesDist = gIn*distVecIn;
for (unsigned phaseIdx=0; phaseIdx < numPhases; phaseIdx++) {
if (!elemCtx.model().phaseIsConsidered(phaseIdx))
continue;
// calculate the hydrostatic pressure at the integration point of the face
Evaluation rhoIn = intQuantsIn.fluidState().density(phaseIdx);
Evaluation pStatIn = - gTimesDist*rhoIn;
Opm::Valgrind::CheckDefined(pStatIn);
// compute the hydrostatic gradient between the two control volumes (this
// gradient exhibitis the same direction as the vector between the two
// control volume centers and the length (pStaticExterior -
// pStaticInterior)/distanceInteriorToExterior. Note that for the
// boundary, 'pStaticExterior' is zero as the boundary pressure is
// defined on boundary face's integration point...
EvalDimVector f(distVecIn);
f *= - pStatIn/absDist;
// calculate the final potential gradient
for (unsigned dimIdx = 0; dimIdx < dimWorld; ++dimIdx)
potentialGrad_[phaseIdx][dimIdx] += f[dimIdx];
Opm::Valgrind::CheckDefined(potentialGrad_[phaseIdx]);
for (unsigned dimIdx = 0; dimIdx < potentialGrad_[phaseIdx].size(); ++dimIdx) {
if (!Opm::isfinite(potentialGrad_[phaseIdx][dimIdx])) {
throw Opm::NumericalIssue("Non finite potential gradient for phase '"
+std::string(FluidSystem::phaseName(phaseIdx))+"'");
}
}
}
}
// determine the upstream and downstream DOFs
const auto& faceNormal = scvf.normal();
const auto& matParams = elemCtx.problem().materialLawParams(elemCtx, i, timeIdx);
Scalar kr[numPhases];
MaterialLaw::relativePermeabilities(kr, matParams, fluidState);
Opm::Valgrind::CheckDefined(kr);
for (unsigned phaseIdx=0; phaseIdx < numPhases; phaseIdx++) {
if (!elemCtx.model().phaseIsConsidered(phaseIdx))
continue;
Evaluation tmp = 0.0;
for (unsigned dimIdx = 0; dimIdx < faceNormal.size(); ++dimIdx)
tmp += potentialGrad_[phaseIdx][dimIdx]*faceNormal[dimIdx];
if (tmp > 0) {
upstreamDofIdx_[phaseIdx] = exteriorDofIdx_;
downstreamDofIdx_[phaseIdx] = interiorDofIdx_;
}
else {
upstreamDofIdx_[phaseIdx] = interiorDofIdx_;
downstreamDofIdx_[phaseIdx] = exteriorDofIdx_;
}
// take the phase mobility from the DOF in upstream direction
if (upstreamDofIdx_[phaseIdx] < 0) {
if (interiorDofIdx_ == focusDofIdx)
mobility_[phaseIdx] =
kr[phaseIdx] / fluidState.viscosity(phaseIdx);
else
mobility_[phaseIdx] =
Toolbox::value(kr[phaseIdx])
/ Toolbox::value(fluidState.viscosity(phaseIdx));
}
else if (upstreamDofIdx_[phaseIdx] != focusDofIdx)
mobility_[phaseIdx] = Toolbox::value(intQuantsIn.mobility(phaseIdx));
else
mobility_[phaseIdx] = intQuantsIn.mobility(phaseIdx);
Opm::Valgrind::CheckDefined(mobility_[phaseIdx]);
}
}
/*!
* \brief Calculate the volumetric fluxes of all phases
*
* The pressure potentials and upwind directions must already be
* determined before calling this method!
*/
void calculateFluxes_(const ElementContext& elemCtx, unsigned scvfIdx, unsigned timeIdx)
{
const auto& scvf = elemCtx.stencil(timeIdx).interiorFace(scvfIdx);
const DimVector& normal = scvf.normal();
Opm::Valgrind::CheckDefined(normal);
for (unsigned phaseIdx=0; phaseIdx < numPhases; phaseIdx++) {
filterVelocity_[phaseIdx] = 0.0;
volumeFlux_[phaseIdx] = 0.0;
if (!elemCtx.model().phaseIsConsidered(phaseIdx))
continue;
asImp_().calculateFilterVelocity_(phaseIdx);
Opm::Valgrind::CheckDefined(filterVelocity_[phaseIdx]);
volumeFlux_[phaseIdx] = 0.0;
for (unsigned i = 0; i < normal.size(); ++i)
volumeFlux_[phaseIdx] += filterVelocity_[phaseIdx][i] * normal[i];
}
}
/*!
* \brief Calculate the volumetric fluxes at a boundary face of all fluid phases
*
* The pressure potentials and upwind directions must already be determined before
* calling this method!
*/
void calculateBoundaryFluxes_(const ElementContext& elemCtx,
unsigned boundaryFaceIdx,
unsigned timeIdx)
{
const auto& scvf = elemCtx.stencil(timeIdx).boundaryFace(boundaryFaceIdx);
const DimVector& normal = scvf.normal();
Opm::Valgrind::CheckDefined(normal);
for (unsigned phaseIdx=0; phaseIdx < numPhases; phaseIdx++) {
if (!elemCtx.model().phaseIsConsidered(phaseIdx)) {
filterVelocity_[phaseIdx] = 0.0;
volumeFlux_[phaseIdx] = 0.0;
continue;
}
asImp_().calculateFilterVelocity_(phaseIdx);
Opm::Valgrind::CheckDefined(filterVelocity_[phaseIdx]);
volumeFlux_[phaseIdx] = 0.0;
for (unsigned i = 0; i < normal.size(); ++i)
volumeFlux_[phaseIdx] += filterVelocity_[phaseIdx][i] * normal[i];
}
}
void calculateFilterVelocity_(unsigned phaseIdx)
{
#ifndef NDEBUG
assert(Opm::isfinite(mobility_[phaseIdx]));
for (unsigned i = 0; i < K_.M(); ++ i)
for (unsigned j = 0; j < K_.N(); ++ j)
assert(std::isfinite(K_[i][j]));
#endif
K_.mv(potentialGrad_[phaseIdx], filterVelocity_[phaseIdx]);
filterVelocity_[phaseIdx] *= - mobility_[phaseIdx];
#ifndef NDEBUG
for (unsigned i = 0; i < filterVelocity_[phaseIdx].size(); ++ i)
assert(Opm::isfinite(filterVelocity_[phaseIdx][i]));
#endif
}
private:
Implementation& asImp_()
{ return *static_cast<Implementation*>(this); }
const Implementation& asImp_() const
{ return *static_cast<const Implementation*>(this); }
protected:
// intrinsic permeability tensor and its square root
DimMatrix K_;
// mobilities of all fluid phases [1 / (Pa s)]
Evaluation mobility_[numPhases];
// filter velocities of all phases [m/s]
EvalDimVector filterVelocity_[numPhases];
// the volumetric flux of all fluid phases over the control
// volume's face [m^3/s / m^2]
Evaluation volumeFlux_[numPhases];
// pressure potential gradients of all phases [Pa / m]
EvalDimVector potentialGrad_[numPhases];
// upstream, downstream, interior and exterior DOFs
short upstreamDofIdx_[numPhases];
short downstreamDofIdx_[numPhases];
short interiorDofIdx_;
short exteriorDofIdx_;
};
} // namespace Opm
#endif