opm-simulators/examples/problems/cuvetteproblem.hh
Andreas Lauser 4f92ec5865 consistently rename "heat conduction" to "thermal conduction" and use "solid energy" laws
according to wikipedia the term "heat" is the energy transferred due
to a temperature gradient, i.e., it only makes sense if such a
gradient is present and this is not necessary for the storage term.

this means that technically the term "heat conductivity" is
meaningful, but "thermal conductivity" is IMO more consistent.

this has partially already been done in opm-material and eWoms it was
pretty inconsistent, so it also requires a patch in opm-material.
2018-01-04 15:27:02 +01:00

638 lines
22 KiB
C++

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Ewoms::CuvetteProblem
*/
#ifndef EWOMS_CUVETTE_PROBLEM_HH
#define EWOMS_CUVETTE_PROBLEM_HH
#include <ewoms/models/pvs/pvsproperties.hh>
#include <opm/material/fluidstates/CompositionalFluidState.hpp>
#include <opm/material/fluidstates/ImmiscibleFluidState.hpp>
#include <opm/material/fluidsystems/H2OAirMesityleneFluidSystem.hpp>
#include <opm/material/fluidmatrixinteractions/ThreePhaseParkerVanGenuchten.hpp>
#include <opm/material/fluidmatrixinteractions/LinearMaterial.hpp>
#include <opm/material/thermal/ConstantSolidHeatCapLaw.hpp>
#include <opm/material/thermal/SomertonThermalConductionLaw.hpp>
#include <opm/material/constraintsolvers/MiscibleMultiPhaseComposition.hpp>
#include <opm/material/fluidmatrixinteractions/MaterialTraits.hpp>
#include <opm/common/Valgrind.hpp>
#include <opm/common/Unused.hpp>
#include <dune/grid/yaspgrid.hh>
#include <dune/grid/io/file/dgfparser/dgfyasp.hh>
#include <dune/common/version.hh>
#include <dune/common/fvector.hh>
#include <dune/common/fmatrix.hh>
#include <string>
namespace Ewoms {
template <class TypeTag>
class CuvetteProblem;
}
namespace Ewoms {
namespace Properties {
// create a new type tag for the cuvette steam injection problem
NEW_TYPE_TAG(CuvetteBaseProblem);
// Set the grid type
SET_TYPE_PROP(CuvetteBaseProblem, Grid, Dune::YaspGrid<2>);
// Set the problem property
SET_TYPE_PROP(CuvetteBaseProblem, Problem, Ewoms::CuvetteProblem<TypeTag>);
// Set the fluid system
SET_TYPE_PROP(
CuvetteBaseProblem, FluidSystem,
Opm::FluidSystems::H2OAirMesitylene<typename GET_PROP_TYPE(TypeTag, Scalar)>);
// Enable gravity
SET_BOOL_PROP(CuvetteBaseProblem, EnableGravity, true);
// Set the maximum time step
SET_SCALAR_PROP(CuvetteBaseProblem, MaxTimeStepSize, 600.);
// Set the material Law
SET_PROP(CuvetteBaseProblem, MaterialLaw)
{
private:
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef Opm::ThreePhaseMaterialTraits<
Scalar,
/*wettingPhaseIdx=*/FluidSystem::waterPhaseIdx,
/*nonWettingPhaseIdx=*/FluidSystem::naplPhaseIdx,
/*gasPhaseIdx=*/FluidSystem::gasPhaseIdx> Traits;
public:
typedef Opm::ThreePhaseParkerVanGenuchten<Traits> type;
};
// set the energy storage law for the solid phase
SET_TYPE_PROP(CuvetteBaseProblem, SolidEnergyLaw,
Opm::ConstantSolidHeatCapLaw<typename GET_PROP_TYPE(TypeTag, Scalar)>);
// Set the thermal conduction law
SET_PROP(CuvetteBaseProblem, ThermalConductionLaw)
{
private:
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
public:
// define the material law parameterized by absolute saturations
typedef Opm::SomertonThermalConductionLaw<FluidSystem, Scalar> type;
};
// The default for the end time of the simulation
SET_SCALAR_PROP(CuvetteBaseProblem, EndTime, 180);
// The default for the initial time step size of the simulation
SET_SCALAR_PROP(CuvetteBaseProblem, InitialTimeStepSize, 1);
// The default DGF file to load
SET_STRING_PROP(CuvetteBaseProblem, GridFile, "./data/cuvette_11x4.dgf");
} // namespace Properties
} // namespace Ewoms
namespace Ewoms {
/*!
* \ingroup TestProblems
*
* \brief Non-isothermal three-phase gas injection problem where a hot gas
* is injected into a unsaturated porous medium with a residually
* trapped NAPL contamination.
*
* The domain is a quasi-two-dimensional container (cuvette). Its
* dimensions are 1.5 m x 0.74 m. The top and bottom boundaries are
* closed, the right boundary is a free-flow boundary allowing fluids
* to escape. From the left, an injection of a hot water-air mixture
* is injected. The set-up is aimed at remediating an initial NAPL
* (Non-Aquoeus Phase Liquid) contamination in the domain. The
* contamination is initially placed partly into the ambient coarse
* sand and partly into a fine sand lens.
*
* This simulation can be varied through assigning different boundary conditions
* at the left boundary as described in Class (2001):
* Theorie und numerische Modellierung nichtisothermer Mehrphasenprozesse in
* NAPL-kontaminierten poroesen Medien, Dissertation, Eigenverlag des Instituts
* fuer Wasserbau
*
* To see the basic effect and the differences to scenarios with pure
* steam or pure air injection, it is sufficient to simulate this
* problem to about 2-3 hours simulation time. Complete remediation
* of the domain requires much longer (about 10 days simulated time).
*/
template <class TypeTag>
class CuvetteProblem : public GET_PROP_TYPE(TypeTag, BaseProblem)
{
typedef typename GET_PROP_TYPE(TypeTag, BaseProblem) ParentType;
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
typedef typename GET_PROP_TYPE(TypeTag, MaterialLaw) MaterialLaw;
typedef typename GET_PROP_TYPE(TypeTag, MaterialLawParams) MaterialLawParams;
typedef typename GET_PROP_TYPE(TypeTag, ThermalConductionLawParams) ThermalConductionLawParams;
typedef typename GET_PROP_TYPE(TypeTag, SolidEnergyLawParams) SolidEnergyLawParams;
typedef typename GET_PROP_TYPE(TypeTag, EqVector) EqVector;
typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) PrimaryVariables;
typedef typename GET_PROP_TYPE(TypeTag, RateVector) RateVector;
typedef typename GET_PROP_TYPE(TypeTag, BoundaryRateVector) BoundaryRateVector;
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
typedef typename GET_PROP_TYPE(TypeTag, Model) Model;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
// copy some indices for convenience
typedef typename GET_PROP_TYPE(TypeTag, Indices) Indices;
enum { numPhases = FluidSystem::numPhases };
enum { numComponents = FluidSystem::numComponents };
enum { waterPhaseIdx = FluidSystem::waterPhaseIdx };
enum { naplPhaseIdx = FluidSystem::naplPhaseIdx };
enum { gasPhaseIdx = FluidSystem::gasPhaseIdx };
enum { H2OIdx = FluidSystem::H2OIdx };
enum { airIdx = FluidSystem::airIdx };
enum { NAPLIdx = FluidSystem::NAPLIdx };
enum { conti0EqIdx = Indices::conti0EqIdx };
// Grid and world dimension
enum { dimWorld = GridView::dimensionworld };
typedef typename GridView::ctype CoordScalar;
typedef Dune::FieldVector<CoordScalar, dimWorld> GlobalPosition;
typedef Dune::FieldMatrix<Scalar, dimWorld, dimWorld> DimMatrix;
public:
/*!
* \copydoc Doxygen::defaultProblemConstructor
*/
CuvetteProblem(Simulator& simulator)
: ParentType(simulator)
, eps_(1e-6)
{ }
/*!
* \copydoc FvBaseProblem::finishInit
*/
void finishInit()
{
ParentType::finishInit();
if (Opm::Valgrind::IsRunning())
FluidSystem::init(/*minT=*/283.15, /*maxT=*/500.0, /*nT=*/20,
/*minp=*/0.8e5, /*maxp=*/2e5, /*np=*/10);
else
FluidSystem::init(/*minT=*/283.15, /*maxT=*/500.0, /*nT=*/200,
/*minp=*/0.8e5, /*maxp=*/2e5, /*np=*/100);
// intrinsic permeabilities
fineK_ = this->toDimMatrix_(6.28e-12);
coarseK_ = this->toDimMatrix_(9.14e-10);
// porosities
finePorosity_ = 0.42;
coarsePorosity_ = 0.42;
// parameters for the capillary pressure law
#if 1
// three-phase Parker -- van Genuchten law
fineMaterialParams_.setVgAlpha(0.0005);
coarseMaterialParams_.setVgAlpha(0.005);
fineMaterialParams_.setVgN(4.0);
coarseMaterialParams_.setVgN(4.0);
coarseMaterialParams_.setkrRegardsSnr(true);
fineMaterialParams_.setkrRegardsSnr(true);
// residual saturations
fineMaterialParams_.setSwr(0.1201);
fineMaterialParams_.setSwrx(0.1201);
fineMaterialParams_.setSnr(0.0701);
fineMaterialParams_.setSgr(0.0101);
coarseMaterialParams_.setSwr(0.1201);
coarseMaterialParams_.setSwrx(0.1201);
coarseMaterialParams_.setSnr(0.0701);
coarseMaterialParams_.setSgr(0.0101);
#else
// linear material law
fineMaterialParams_.setPcMinSat(gasPhaseIdx, 0);
fineMaterialParams_.setPcMaxSat(gasPhaseIdx, 0);
fineMaterialParams_.setPcMinSat(naplPhaseIdx, 0);
fineMaterialParams_.setPcMaxSat(naplPhaseIdx, -1000);
fineMaterialParams_.setPcMinSat(waterPhaseIdx, 0);
fineMaterialParams_.setPcMaxSat(waterPhaseIdx, -10000);
coarseMaterialParams_.setPcMinSat(gasPhaseIdx, 0);
coarseMaterialParams_.setPcMaxSat(gasPhaseIdx, 0);
coarseMaterialParams_.setPcMinSat(naplPhaseIdx, 0);
coarseMaterialParams_.setPcMaxSat(naplPhaseIdx, -100);
coarseMaterialParams_.setPcMinSat(waterPhaseIdx, 0);
coarseMaterialParams_.setPcMaxSat(waterPhaseIdx, -1000);
// residual saturations
fineMaterialParams_.setResidSat(waterPhaseIdx, 0.1201);
fineMaterialParams_.setResidSat(naplPhaseIdx, 0.0701);
fineMaterialParams_.setResidSat(gasPhaseIdx, 0.0101);
coarseMaterialParams_.setResidSat(waterPhaseIdx, 0.1201);
coarseMaterialParams_.setResidSat(naplPhaseIdx, 0.0701);
coarseMaterialParams_.setResidSat(gasPhaseIdx, 0.0101);
#endif
fineMaterialParams_.finalize();
coarseMaterialParams_.finalize();
// initialize parameters for the thermal conduction law
computeThermalCondParams_(thermalCondParams_, finePorosity_);
// assume constant volumetric heat capacity and granite
solidEnergyLawParams_.setSolidHeatCapacity(790.0 // specific heat capacity of granite [J / (kg K)]
* 2700.0); // density of granite [kg/m^3]
solidEnergyLawParams_.finalize();
initInjectFluidState_();
}
/*!
* \name Auxiliary methods
*/
//! \{
/*!
* \copydoc FvBaseProblem::shouldWriteRestartFile
*
* This problem writes a restart file after every time step.
*/
bool shouldWriteRestartFile() const
{ return true; }
/*!
* \copydoc FvBaseProblem::name
*/
std::string name() const
{ return std::string("cuvette_") + Model::name(); }
/*!
* \copydoc FvBaseProblem::endTimeStep
*/
void endTimeStep()
{
#ifndef NDEBUG
this->model().checkConservativeness();
// Calculate storage terms
EqVector storage;
this->model().globalStorage(storage);
// Write mass balance information for rank 0
if (this->gridView().comm().rank() == 0) {
std::cout << "Storage: " << storage << std::endl << std::flush;
}
#endif // NDEBUG
}
//! \}
/*!
* \name Soil parameters
*/
//! \{
/*!
* \copydoc FvBaseMultiPhaseProblem::temperature
*/
template <class Context>
Scalar temperature(const Context& context OPM_UNUSED,
unsigned spaceIdx OPM_UNUSED,
unsigned timeIdx OPM_UNUSED) const
{ return 293.15; /* [K] */ }
/*!
* \copydoc FvBaseMultiPhaseProblem::intrinsicPermeability
*/
template <class Context>
const DimMatrix& intrinsicPermeability(const Context& context, unsigned spaceIdx,
unsigned timeIdx) const
{
const GlobalPosition& pos = context.pos(spaceIdx, timeIdx);
if (isFineMaterial_(pos))
return fineK_;
return coarseK_;
}
/*!
* \copydoc FvBaseMultiPhaseProblem::porosity
*/
template <class Context>
Scalar porosity(const Context& context, unsigned spaceIdx, unsigned timeIdx) const
{
const GlobalPosition& pos = context.pos(spaceIdx, timeIdx);
if (isFineMaterial_(pos))
return finePorosity_;
else
return coarsePorosity_;
}
/*!
* \copydoc FvBaseMultiPhaseProblem::materialLawParams
*/
template <class Context>
const MaterialLawParams& materialLawParams(const Context& context,
unsigned spaceIdx, unsigned timeIdx) const
{
const GlobalPosition& pos = context.pos(spaceIdx, timeIdx);
if (isFineMaterial_(pos))
return fineMaterialParams_;
else
return coarseMaterialParams_;
}
/*!
* \copydoc FvBaseMultiPhaseProblem::thermalConductionParams
*/
template <class Context>
const ThermalConductionLawParams &
thermalConductionParams(const Context& context OPM_UNUSED,
unsigned spaceIdx OPM_UNUSED,
unsigned timeIdx OPM_UNUSED) const
{ return thermalCondParams_; }
//! \}
/*!
* \name Boundary conditions
*/
//! \{
/*!
* \copydoc FvBaseProblem::boundary
*/
template <class Context>
void boundary(BoundaryRateVector& values, const Context& context,
unsigned spaceIdx, unsigned timeIdx) const
{
const auto& pos = context.pos(spaceIdx, timeIdx);
if (onRightBoundary_(pos)) {
Opm::CompositionalFluidState<Scalar, FluidSystem> fs;
initialFluidState_(fs, context, spaceIdx, timeIdx);
values.setFreeFlow(context, spaceIdx, timeIdx, fs);
values.setNoFlow();
}
else if (onLeftBoundary_(pos)) {
// injection
RateVector molarRate;
// inject with the same composition as the gas phase of
// the injection fluid state
Scalar molarInjectionRate = 0.3435; // [mol/(m^2 s)]
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx)
molarRate[conti0EqIdx + compIdx] =
-molarInjectionRate
* injectFluidState_.moleFraction(gasPhaseIdx, compIdx);
// calculate the total mass injection rate [kg / (m^2 s)
Scalar massInjectionRate =
molarInjectionRate
* injectFluidState_.averageMolarMass(gasPhaseIdx);
// set the boundary rate vector [J / (m^2 s)]
values.setMolarRate(molarRate);
values.setEnthalpyRate(-injectFluidState_.enthalpy(gasPhaseIdx) * massInjectionRate);
}
else
values.setNoFlow();
}
//! \}
/*!
* \name Volumetric terms
*/
//! \{
/*!
* \copydoc FvBaseProblem::initial
*/
template <class Context>
void initial(PrimaryVariables& values, const Context& context, unsigned spaceIdx,
unsigned timeIdx) const
{
Opm::CompositionalFluidState<Scalar, FluidSystem> fs;
initialFluidState_(fs, context, spaceIdx, timeIdx);
const auto& matParams = materialLawParams(context, spaceIdx, timeIdx);
values.assignMassConservative(fs, matParams, /*inEquilibrium=*/false);
}
/*!
* \copydoc FvBaseProblem::source
*
* For this problem, the source term of all components is 0
* everywhere.
*/
template <class Context>
void source(RateVector& rate,
const Context& context OPM_UNUSED,
unsigned spaceIdx OPM_UNUSED,
unsigned timeIdx OPM_UNUSED) const
{ rate = Scalar(0.0); }
//! \}
private:
bool onLeftBoundary_(const GlobalPosition& pos) const
{ return pos[0] < eps_; }
bool onRightBoundary_(const GlobalPosition& pos) const
{ return pos[0] > this->boundingBoxMax()[0] - eps_; }
bool onLowerBoundary_(const GlobalPosition& pos) const
{ return pos[1] < eps_; }
bool onUpperBoundary_(const GlobalPosition& pos) const
{ return pos[1] > this->boundingBoxMax()[1] - eps_; }
bool isContaminated_(const GlobalPosition& pos) const
{
return (0.20 <= pos[0]) && (pos[0] <= 0.80) && (0.4 <= pos[1])
&& (pos[1] <= 0.65);
}
bool isFineMaterial_(const GlobalPosition& pos) const
{
if (0.13 <= pos[0] && 1.20 >= pos[0] && 0.32 <= pos[1] && pos[1] <= 0.57)
return true;
else if (pos[1] <= 0.15 && 1.20 <= pos[0])
return true;
else
return false;
}
template <class FluidState, class Context>
void initialFluidState_(FluidState& fs, const Context& context,
unsigned spaceIdx, unsigned timeIdx) const
{
const GlobalPosition& pos = context.pos(spaceIdx, timeIdx);
fs.setTemperature(293.0 /*[K]*/);
Scalar pw = 1e5;
if (isContaminated_(pos)) {
fs.setSaturation(waterPhaseIdx, 0.12);
fs.setSaturation(naplPhaseIdx, 0.07);
fs.setSaturation(gasPhaseIdx, 1 - 0.12 - 0.07);
// set the capillary pressures
const auto& matParams = materialLawParams(context, spaceIdx, timeIdx);
Scalar pc[numPhases];
MaterialLaw::capillaryPressures(pc, matParams, fs);
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx)
fs.setPressure(phaseIdx, pw + (pc[phaseIdx] - pc[waterPhaseIdx]));
// compute the phase compositions
typedef Opm::MiscibleMultiPhaseComposition<Scalar, FluidSystem> MMPC;
typename FluidSystem::template ParameterCache<Scalar> paramCache;
MMPC::solve(fs, paramCache, /*setViscosity=*/true, /*setEnthalpy=*/true);
}
else {
fs.setSaturation(waterPhaseIdx, 0.12);
fs.setSaturation(gasPhaseIdx, 1 - fs.saturation(waterPhaseIdx));
fs.setSaturation(naplPhaseIdx, 0);
// set the capillary pressures
const auto& matParams = materialLawParams(context, spaceIdx, timeIdx);
Scalar pc[numPhases];
MaterialLaw::capillaryPressures(pc, matParams, fs);
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx)
fs.setPressure(phaseIdx, pw + (pc[phaseIdx] - pc[waterPhaseIdx]));
// compute the phase compositions
typedef Opm::MiscibleMultiPhaseComposition<Scalar, FluidSystem> MMPC;
typename FluidSystem::template ParameterCache<Scalar> paramCache;
MMPC::solve(fs, paramCache, /*setViscosity=*/true, /*setEnthalpy=*/true);
// set the contaminant mole fractions to zero. this is a little bit hacky...
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
fs.setMoleFraction(phaseIdx, NAPLIdx, 0.0);
if (phaseIdx == naplPhaseIdx)
continue;
Scalar sumx = 0;
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx)
sumx += fs.moleFraction(phaseIdx, compIdx);
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx)
fs.setMoleFraction(phaseIdx, compIdx,
fs.moleFraction(phaseIdx, compIdx) / sumx);
}
}
}
void computeThermalCondParams_(ThermalConductionLawParams& params, Scalar poro)
{
Scalar lambdaGranite = 2.8; // [W / (K m)]
// create a Fluid state which has all phases present
Opm::ImmiscibleFluidState<Scalar, FluidSystem> fs;
fs.setTemperature(293.15);
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
fs.setPressure(phaseIdx, 1.0135e5);
}
typename FluidSystem::template ParameterCache<Scalar> paramCache;
paramCache.updateAll(fs);
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
Scalar rho = FluidSystem::density(fs, paramCache, phaseIdx);
fs.setDensity(phaseIdx, rho);
}
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
Scalar lambdaSaturated;
if (FluidSystem::isLiquid(phaseIdx)) {
Scalar lambdaFluid = FluidSystem::thermalConductivity(fs, paramCache, phaseIdx);
lambdaSaturated =
std::pow(lambdaGranite, (1 - poro))
+
std::pow(lambdaFluid, poro);
}
else
lambdaSaturated = std::pow(lambdaGranite, (1 - poro));
params.setFullySaturatedLambda(phaseIdx, lambdaSaturated);
if (!FluidSystem::isLiquid(phaseIdx))
params.setVacuumLambda(lambdaSaturated);
}
}
void initInjectFluidState_()
{
injectFluidState_.setTemperature(383.0); // [K]
injectFluidState_.setPressure(gasPhaseIdx, 1e5); // [Pa]
injectFluidState_.setSaturation(gasPhaseIdx, 1.0); // [-]
Scalar xgH2O = 0.417;
injectFluidState_.setMoleFraction(gasPhaseIdx, H2OIdx, xgH2O); // [-]
injectFluidState_.setMoleFraction(gasPhaseIdx, airIdx, 1 - xgH2O); // [-]
injectFluidState_.setMoleFraction(gasPhaseIdx, NAPLIdx, 0.0); // [-]
// set the specific enthalpy of the gas phase
typename FluidSystem::template ParameterCache<Scalar> paramCache;
paramCache.updatePhase(injectFluidState_, gasPhaseIdx);
Scalar h = FluidSystem::enthalpy(injectFluidState_, paramCache, gasPhaseIdx);
injectFluidState_.setEnthalpy(gasPhaseIdx, h);
}
DimMatrix fineK_;
DimMatrix coarseK_;
Scalar finePorosity_;
Scalar coarsePorosity_;
MaterialLawParams fineMaterialParams_;
MaterialLawParams coarseMaterialParams_;
ThermalConductionLawParams thermalCondParams_;
SolidEnergyLawParams solidEnergyLawParams_;
Opm::CompositionalFluidState<Scalar, FluidSystem> injectFluidState_;
const Scalar eps_;
};
} // namespace Ewoms
#endif