opm-simulators/examples/problems/fractureproblem.hh
Andreas Lauser 4f92ec5865 consistently rename "heat conduction" to "thermal conduction" and use "solid energy" laws
according to wikipedia the term "heat" is the energy transferred due
to a temperature gradient, i.e., it only makes sense if such a
gradient is present and this is not necessary for the storage term.

this means that technically the term "heat conductivity" is
meaningful, but "thermal conductivity" is IMO more consistent.

this has partially already been done in opm-material and eWoms it was
pretty inconsistent, so it also requires a patch in opm-material.
2018-01-04 15:27:02 +01:00

645 lines
22 KiB
C++

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Ewoms::FractureProblem
*/
#ifndef EWOMS_FRACTURE_PROBLEM_HH
#define EWOMS_FRACTURE_PROBLEM_HH
#if HAVE_DUNE_ALUGRID
// avoid reordering of macro elements, otherwise this problem won't work
#define DISABLE_ALUGRID_SFC_ORDERING 1
#include <dune/alugrid/grid.hh>
#include <dune/alugrid/dgf.hh>
#else
#error "dune-alugrid not found!"
#endif
#include <ewoms/models/discretefracture/discretefracturemodel.hh>
#include <ewoms/io/dgfgridmanager.hh>
#include <opm/material/fluidmatrixinteractions/RegularizedBrooksCorey.hpp>
#include <opm/material/fluidmatrixinteractions/RegularizedVanGenuchten.hpp>
#include <opm/material/fluidmatrixinteractions/LinearMaterial.hpp>
#include <opm/material/fluidmatrixinteractions/EffToAbsLaw.hpp>
#include <opm/material/fluidmatrixinteractions/MaterialTraits.hpp>
#include <opm/material/thermal/SomertonThermalConductionLaw.hpp>
#include <opm/material/thermal/ConstantSolidHeatCapLaw.hpp>
#include <opm/material/fluidsystems/TwoPhaseImmiscibleFluidSystem.hpp>
#include <opm/material/components/SimpleH2O.hpp>
#include <opm/material/components/Dnapl.hpp>
#include <opm/common/Unused.hpp>
#include <dune/common/version.hh>
#include <dune/common/fmatrix.hh>
#include <dune/common/fvector.hh>
#include <iostream>
#include <sstream>
#include <string>
namespace Ewoms {
template <class TypeTag>
class FractureProblem;
}
namespace Ewoms {
namespace Properties {
// Create a type tag for the problem
NEW_TYPE_TAG(FractureProblem, INHERITS_FROM(DiscreteFractureModel));
// Set the grid type
SET_TYPE_PROP(
FractureProblem, Grid,
Dune::ALUGrid</*dim=*/2, /*dimWorld=*/2, Dune::simplex, Dune::nonconforming>);
// Set the GridManager property
SET_TYPE_PROP(FractureProblem, GridManager, Ewoms::DgfGridManager<TypeTag>);
// Set the problem property
SET_TYPE_PROP(FractureProblem, Problem, Ewoms::FractureProblem<TypeTag>);
// Set the wetting phase
SET_PROP(FractureProblem, WettingPhase)
{
private:
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
public:
typedef Opm::LiquidPhase<Scalar, Opm::SimpleH2O<Scalar> > type;
};
// Set the non-wetting phase
SET_PROP(FractureProblem, NonwettingPhase)
{
private:
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
public:
typedef Opm::LiquidPhase<Scalar, Opm::DNAPL<Scalar> > type;
};
// Set the material Law
SET_PROP(FractureProblem, MaterialLaw)
{
private:
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
enum { wettingPhaseIdx = FluidSystem::wettingPhaseIdx };
enum { nonWettingPhaseIdx = FluidSystem::nonWettingPhaseIdx };
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef Opm::TwoPhaseMaterialTraits<Scalar,
/*wettingPhaseIdx=*/FluidSystem::wettingPhaseIdx,
/*nonWettingPhaseIdx=*/FluidSystem::nonWettingPhaseIdx>
Traits;
// define the material law which is parameterized by effective
// saturations
typedef Opm::RegularizedBrooksCorey<Traits> EffectiveLaw;
// typedef RegularizedVanGenuchten<Traits> EffectiveLaw;
// typedef LinearMaterial<Traits> EffectiveLaw;
public:
typedef Opm::EffToAbsLaw<EffectiveLaw> type;
};
// Enable the energy equation
SET_BOOL_PROP(FractureProblem, EnableEnergy, true);
// Set the thermal conduction law
SET_PROP(FractureProblem, ThermalConductionLaw)
{
private:
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
public:
// define the material law parameterized by absolute saturations
typedef Opm::SomertonThermalConductionLaw<FluidSystem, Scalar> type;
};
// set the energy storage law for the solid phase
SET_TYPE_PROP(FractureProblem, SolidEnergyLaw,
Opm::ConstantSolidHeatCapLaw<typename GET_PROP_TYPE(TypeTag, Scalar)>);
// Disable gravity
SET_BOOL_PROP(FractureProblem, EnableGravity, false);
// For this problem, we use constraints to specify the left boundary
SET_BOOL_PROP(FractureProblem, EnableConstraints, true);
// Set the default value for the file name of the grid
SET_STRING_PROP(FractureProblem, GridFile, "data/fracture.art.dgf");
// Set the default value for the end time
SET_SCALAR_PROP(FractureProblem, EndTime, 3e3);
// Set the default value for the initial time step size
SET_SCALAR_PROP(FractureProblem, InitialTimeStepSize, 100);
} // namespace Properties
} // namespace Ewoms
namespace Ewoms {
/*!
* \ingroup TestProblems
*
* \brief Two-phase problem which involves fractures
*
* The domain is initially completely saturated by the oil phase,
* except for the left side, which is fully water saturated. Since the
* capillary pressure in the fractures is lower than in the rock
* matrix and the material is hydrophilic, water infiltrates through
* the fractures and gradually pushes the oil out on the right side,
* where the pressure is kept constant.
*/
template <class TypeTag>
class FractureProblem : public GET_PROP_TYPE(TypeTag, BaseProblem)
{
typedef typename GET_PROP_TYPE(TypeTag, BaseProblem) ParentType;
typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef typename GET_PROP_TYPE(TypeTag, WettingPhase) WettingPhase;
typedef typename GET_PROP_TYPE(TypeTag, NonwettingPhase) NonwettingPhase;
typedef typename GET_PROP_TYPE(TypeTag, Constraints) Constraints;
typedef typename GET_PROP_TYPE(TypeTag, EqVector) EqVector;
typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) PrimaryVariables;
typedef typename GET_PROP_TYPE(TypeTag, BoundaryRateVector) BoundaryRateVector;
typedef typename GET_PROP_TYPE(TypeTag, RateVector) RateVector;
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, MaterialLaw) MaterialLaw;
typedef typename GET_PROP_TYPE(TypeTag, MaterialLawParams) MaterialLawParams;
typedef typename GET_PROP_TYPE(TypeTag, ThermalConductionLawParams) ThermalConductionLawParams;
typedef typename GET_PROP_TYPE(TypeTag, SolidEnergyLawParams) SolidEnergyLawParams;
typedef typename GET_PROP_TYPE(TypeTag, Model) Model;
enum {
// phase indices
wettingPhaseIdx = MaterialLaw::wettingPhaseIdx,
nonWettingPhaseIdx = MaterialLaw::nonWettingPhaseIdx,
// number of phases
numPhases = FluidSystem::numPhases,
// Grid and world dimension
dim = GridView::dimension,
dimWorld = GridView::dimensionworld
};
typedef Opm::ImmiscibleFluidState<Scalar, FluidSystem> FluidState;
typedef Dune::FieldVector<Scalar, dimWorld> GlobalPosition;
typedef Dune::FieldMatrix<Scalar, dimWorld, dimWorld> DimMatrix;
template <int dim>
struct FaceLayout
{
bool contains(Dune::GeometryType gt)
{ return gt.dim() == dim - 1; }
};
typedef Dune::MultipleCodimMultipleGeomTypeMapper<GridView, FaceLayout> FaceMapper;
typedef Ewoms::FractureMapper<TypeTag> FractureMapper;
public:
/*!
* \copydoc Doxygen::defaultProblemConstructor
*/
FractureProblem(Simulator& simulator)
: ParentType(simulator)
{ }
/*!
* \copydoc FvBaseProblem::finishInit
*/
void finishInit()
{
ParentType::finishInit();
eps_ = 3e-6;
temperature_ = 273.15 + 20; // -> 20°C
matrixMaterialParams_.setResidualSaturation(wettingPhaseIdx, 0.0);
matrixMaterialParams_.setResidualSaturation(nonWettingPhaseIdx, 0.0);
fractureMaterialParams_.setResidualSaturation(wettingPhaseIdx, 0.0);
fractureMaterialParams_.setResidualSaturation(nonWettingPhaseIdx, 0.0);
#if 0 // linear
matrixMaterialParams_.setEntryPC(0.0);
matrixMaterialParams_.setMaxPC(2000.0);
fractureMaterialParams_.setEntryPC(0.0);
fractureMaterialParams_.setMaxPC(1000.0);
#endif
#if 1 // Brooks-Corey
matrixMaterialParams_.setEntryPressure(2000);
matrixMaterialParams_.setLambda(2.0);
matrixMaterialParams_.setPcLowSw(1e-1);
fractureMaterialParams_.setEntryPressure(1000);
fractureMaterialParams_.setLambda(2.0);
fractureMaterialParams_.setPcLowSw(5e-2);
#endif
#if 0 // van Genuchten
matrixMaterialParams_.setVgAlpha(0.0037);
matrixMaterialParams_.setVgN(4.7);
fractureMaterialParams_.setVgAlpha(0.0025);
fractureMaterialParams_.setVgN(4.7);
#endif
matrixMaterialParams_.finalize();
fractureMaterialParams_.finalize();
matrixK_ = this->toDimMatrix_(1e-15); // m^2
fractureK_ = this->toDimMatrix_(1e5 * 1e-15); // m^2
matrixPorosity_ = 0.10;
fracturePorosity_ = 0.25;
fractureWidth_ = 1e-3; // [m]
// initialize the energy-related parameters
initEnergyParams_(thermalConductionParams_, matrixPorosity_);
}
/*!
* \name Auxiliary methods
*/
//! \{
/*!
* \copydoc FvBaseProblem::name
*/
std::string name() const
{
std::ostringstream oss;
oss << "fracture_" << Model::name();
return oss.str();
}
/*!
* \brief Called directly after the time integration.
*/
void endTimeStep()
{
#ifndef NDEBUG
// checkConservativeness() does not include the effect of constraints, so we
// disable it for this problem...
//this->model().checkConservativeness();
// Calculate storage terms
EqVector storage;
this->model().globalStorage(storage);
// Write mass balance information for rank 0
if (this->gridView().comm().rank() == 0) {
std::cout << "Storage: " << storage << std::endl << std::flush;
}
#endif // NDEBUG
}
/*!
* \copydoc FvBaseMultiPhaseProblem::temperature
*/
template <class Context>
Scalar temperature(const Context& context OPM_UNUSED,
unsigned spaceIdx OPM_UNUSED,
unsigned timeIdx OPM_UNUSED) const
{ return temperature_; }
// \}
/*!
* \name Soil parameters
*/
//! \{
/*!
* \copydoc FvBaseMultiPhaseProblem::intrinsicPermeability
*/
template <class Context>
const DimMatrix& intrinsicPermeability(const Context& context OPM_UNUSED,
unsigned spaceIdx OPM_UNUSED,
unsigned timeIdx OPM_UNUSED) const
{ return matrixK_; }
/*!
* \brief Intrinsic permeability of fractures.
*
* \copydoc Doxygen::contextParams
*/
template <class Context>
const DimMatrix& fractureIntrinsicPermeability(const Context& context OPM_UNUSED,
unsigned spaceIdx OPM_UNUSED,
unsigned timeIdx OPM_UNUSED) const
{ return fractureK_; }
/*!
* \copydoc FvBaseMultiPhaseProblem::porosity
*/
template <class Context>
Scalar porosity(const Context& context OPM_UNUSED,
unsigned spaceIdx OPM_UNUSED,
unsigned timeIdx OPM_UNUSED) const
{ return matrixPorosity_; }
/*!
* \brief The porosity inside the fractures.
*
* \copydoc Doxygen::contextParams
*/
template <class Context>
Scalar fracturePorosity(const Context& context OPM_UNUSED,
unsigned spaceIdx OPM_UNUSED,
unsigned timeIdx OPM_UNUSED) const
{ return fracturePorosity_; }
/*!
* \copydoc FvBaseMultiPhaseProblem::materialLawParams
*/
template <class Context>
const MaterialLawParams& materialLawParams(const Context& context OPM_UNUSED,
unsigned spaceIdx OPM_UNUSED,
unsigned timeIdx OPM_UNUSED) const
{ return matrixMaterialParams_; }
/*!
* \brief The parameters for the material law inside the fractures.
*
* \copydoc Doxygen::contextParams
*/
template <class Context>
const MaterialLawParams& fractureMaterialLawParams(const Context& context OPM_UNUSED,
unsigned spaceIdx OPM_UNUSED,
unsigned timeIdx OPM_UNUSED) const
{ return fractureMaterialParams_; }
/*!
* \brief Returns the object representating the fracture topology.
*/
const FractureMapper& fractureMapper() const
{ return this->simulator().gridManager().fractureMapper(); }
/*!
* \brief Returns the width of the fracture.
*
* \todo This method should get one face index instead of two
* vertex indices. This probably requires a new context
* class, though.
*
* \param context The execution context.
* \param spaceIdx1 The local index of the edge's first edge.
* \param spaceIdx2 The local index of the edge's second edge.
* \param timeIdx The index used by the time discretization.
*/
template <class Context>
Scalar fractureWidth(const Context& context OPM_UNUSED,
unsigned spaceIdx1 OPM_UNUSED,
unsigned spaceIdx2 OPM_UNUSED,
unsigned timeIdx OPM_UNUSED) const
{ return fractureWidth_; }
/*!
* \copydoc FvBaseMultiPhaseProblem::thermalConductionParams
*/
template <class Context>
const ThermalConductionLawParams&
thermalConductionLawParams(const Context& context OPM_UNUSED,
unsigned spaceIdx OPM_UNUSED,
unsigned timeIdx OPM_UNUSED) const
{ return thermalConductionParams_; }
/*!
* \brief Return the parameters for the energy storage law of the rock
*
* In this case, we assume the rock-matrix to be granite.
*/
template <class Context>
const SolidEnergyLawParams&
solidEnergyLawParams(const Context& context OPM_UNUSED,
unsigned spaceIdx OPM_UNUSED,
unsigned timeIdx OPM_UNUSED) const
{ return solidEnergyParams_; }
// \}
/*!
* \name Boundary conditions
*/
// \{
/*!
* \copydoc FvBaseProblem::boundary
*/
template <class Context>
void boundary(BoundaryRateVector& values, const Context& context,
unsigned spaceIdx, unsigned timeIdx) const
{
const GlobalPosition& pos = context.pos(spaceIdx, timeIdx);
if (onRightBoundary_(pos)) {
// on the right boundary, we impose a free-flow
// (i.e. Dirichlet) condition
FluidState fluidState;
fluidState.setTemperature(temperature_);
fluidState.setSaturation(wettingPhaseIdx, 0.0);
fluidState.setSaturation(nonWettingPhaseIdx,
1.0 - fluidState.saturation(wettingPhaseIdx));
fluidState.setPressure(wettingPhaseIdx, 1e5);
fluidState.setPressure(nonWettingPhaseIdx, fluidState.pressure(wettingPhaseIdx));
// set a free flow (i.e. Dirichlet) boundary
values.setFreeFlow(context, spaceIdx, timeIdx, fluidState);
}
else
// for the upper, lower and left boundaries, use a no-flow
// condition (i.e. a Neumann 0 condition)
values.setNoFlow();
}
// \}
/*!
* \name Volumetric terms
*/
// \{
/*!
* \copydoc FvBaseProblem::constraints
*/
template <class Context>
void constraints(Constraints& constraints, const Context& context,
unsigned spaceIdx, unsigned timeIdx) const
{
const GlobalPosition& pos = context.pos(spaceIdx, timeIdx);
if (!onLeftBoundary_(pos))
// only impose constraints adjacent to the left boundary
return;
unsigned globalIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
if (!fractureMapper().isFractureVertex(globalIdx)) {
// do not impose constraints if the finite volume does
// not contain fractures.
return;
}
// if the current finite volume is on the left boundary
// and features a fracture, specify the fracture fluid
// state.
FluidState fractureFluidState;
fractureFluidState.setTemperature(temperature_ + 10.0);
fractureFluidState.setSaturation(wettingPhaseIdx, 1.0);
fractureFluidState.setSaturation(nonWettingPhaseIdx,
1.0 - fractureFluidState.saturation(
wettingPhaseIdx));
Scalar pCFracture[numPhases];
MaterialLaw::capillaryPressures(pCFracture, fractureMaterialParams_,
fractureFluidState);
fractureFluidState.setPressure(wettingPhaseIdx, /*pressure=*/1.0e5);
fractureFluidState.setPressure(nonWettingPhaseIdx,
fractureFluidState.pressure(wettingPhaseIdx)
+ (pCFracture[nonWettingPhaseIdx]
- pCFracture[wettingPhaseIdx]));
constraints.setActive(true);
constraints.assignNaiveFromFracture(fractureFluidState,
matrixMaterialParams_);
}
/*!
* \copydoc FvBaseProblem::initial
*/
template <class Context>
void initial(PrimaryVariables& values,
const Context& context OPM_UNUSED,
unsigned spaceIdx OPM_UNUSED,
unsigned timeIdx OPM_UNUSED) const
{
FluidState fluidState;
fluidState.setTemperature(temperature_);
fluidState.setPressure(FluidSystem::wettingPhaseIdx, /*pressure=*/1e5);
fluidState.setPressure(nonWettingPhaseIdx, fluidState.pressure(wettingPhaseIdx));
fluidState.setSaturation(wettingPhaseIdx, 0.0);
fluidState.setSaturation(nonWettingPhaseIdx,
1.0 - fluidState.saturation(wettingPhaseIdx));
values.assignNaive(fluidState);
}
/*!
* \copydoc FvBaseProblem::source
*
* For this problem, the source term of all components is 0
* everywhere.
*/
template <class Context>
void source(RateVector& rate,
const Context& context OPM_UNUSED,
unsigned spaceIdx OPM_UNUSED,
unsigned timeIdx OPM_UNUSED) const
{ rate = Scalar(0.0); }
// \}
private:
bool onLeftBoundary_(const GlobalPosition& pos) const
{ return pos[0] < this->boundingBoxMin()[0] + eps_; }
bool onRightBoundary_(const GlobalPosition& pos) const
{ return pos[0] > this->boundingBoxMax()[0] - eps_; }
bool onLowerBoundary_(const GlobalPosition& pos) const
{ return pos[1] < this->boundingBoxMin()[1] + eps_; }
bool onUpperBoundary_(const GlobalPosition& pos) const
{ return pos[1] > this->boundingBoxMax()[1] - eps_; }
void initEnergyParams_(ThermalConductionLawParams& params, Scalar poro)
{
// assume the volumetric heat capacity of granite
solidEnergyParams_.setSolidHeatCapacity(790.0 // specific heat capacity of granite [J / (kg K)]
* 2700.0); // density of granite [kg/m^3]
solidEnergyParams_.finalize();
Scalar lambdaGranite = 2.8; // [W / (K m)]
// create a Fluid state which has all phases present
Opm::ImmiscibleFluidState<Scalar, FluidSystem> fs;
fs.setTemperature(293.15);
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
fs.setPressure(phaseIdx, 1.0135e5);
}
typename FluidSystem::template ParameterCache<Scalar> paramCache;
paramCache.updateAll(fs);
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
Scalar rho = FluidSystem::density(fs, paramCache, phaseIdx);
fs.setDensity(phaseIdx, rho);
}
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
Scalar lambdaSaturated;
if (FluidSystem::isLiquid(phaseIdx)) {
Scalar lambdaFluid = FluidSystem::thermalConductivity(fs, paramCache, phaseIdx);
lambdaSaturated =
std::pow(lambdaGranite, (1 - poro))
+ std::pow(lambdaFluid, poro);
}
else
lambdaSaturated = std::pow(lambdaGranite, (1 - poro));
params.setFullySaturatedLambda(phaseIdx, lambdaSaturated);
}
Scalar lambdaVac = std::pow(lambdaGranite, (1 - poro));
params.setVacuumLambda(lambdaVac);
}
DimMatrix matrixK_;
DimMatrix fractureK_;
Scalar matrixPorosity_;
Scalar fracturePorosity_;
Scalar fractureWidth_;
MaterialLawParams fractureMaterialParams_;
MaterialLawParams matrixMaterialParams_;
ThermalConductionLawParams thermalConductionParams_;
SolidEnergyLawParams solidEnergyParams_;
Scalar temperature_;
Scalar eps_;
};
} // namespace Ewoms
#endif // EWOMS_FRACTURE_PROBLEM_HH