opm-simulators/opm/simulators/wells/WellState.cpp

1292 lines
51 KiB
C++

/*
Copyright 2014 SINTEF ICT, Applied Mathematics.
Copyright 2017 IRIS AS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#include <opm/simulators/wells/WellState.hpp>
#include <opm/common/ErrorMacros.hpp>
#include <opm/parser/eclipse/EclipseState/Schedule/Schedule.hpp>
#include <opm/simulators/wells/ParallelWellInfo.hpp>
#include <algorithm>
#include <cassert>
#include <numeric>
namespace Opm
{
void WellState::base_init(const std::vector<double>& cellPressures,
const std::vector<Well>& wells_ecl,
const std::vector<ParallelWellInfo*>& parallel_well_info,
const std::vector<std::vector<PerforationData>>& well_perf_data,
const SummaryState& summary_state)
{
// clear old name mapping
this->wellMap_.clear();
this->perfpress_.clear();
this->perfrates_.clear();
this->status_.clear();
this->well_perf_data_.clear();
this->parallel_well_info_.clear();
this->wellrates_.clear();
this->bhp_.clear();
this->thp_.clear();
this->temperature_.clear();
{
// const int nw = wells->number_of_wells;
const int nw = wells_ecl.size();
// const int np = wells->number_of_phases;
int connpos = 0;
for (int w = 0; w < nw; ++w) {
const Well& well = wells_ecl[w];
// Initialize bhp(), thp(), wellRates(), temperature().
initSingleWell(cellPressures, w, well, well_perf_data[w], parallel_well_info[w], summary_state);
// Setup wellname -> well index mapping.
const int num_perf_this_well = well_perf_data[w].size();
std::string name = well.name();
assert( name.size() > 0 );
mapentry_t& wellMapEntry = wellMap_[name];
wellMapEntry[ 0 ] = w;
wellMapEntry[ 1 ] = connpos;
wellMapEntry[ 2 ] = num_perf_this_well;
connpos += num_perf_this_well;
}
}
}
void WellState::initSingleWell(const std::vector<double>& cellPressures,
const int w,
const Well& well,
const std::vector<PerforationData>& well_perf_data,
const ParallelWellInfo* well_info,
const SummaryState& summary_state)
{
assert(well.isInjector() || well.isProducer());
// Set default zero initial well rates.
// May be overwritten below.
const auto& pu = this->phase_usage_;
const int np = pu.num_phases;
this->status_.add(well.name(), Well::Status::OPEN);
this->well_perf_data_.add(well.name(), well_perf_data);
this->parallel_well_info_.add(well.name(), well_info);
this->wellrates_.add(well.name(), std::vector<double>(np, 0));
const int num_perf_this_well = well_info->communication().sum(well_perf_data_[w].size());
this->perfpress_.add(well.name(), std::vector<double>(num_perf_this_well, -1e100));
this->perfrates_.add(well.name(), std::vector<double>(num_perf_this_well, 0));
this->bhp_.add(well.name(), 0.0);
this->thp_.add(well.name(), 0.0);
if ( well.isInjector() )
this->temperature_.add(well.name(), well.injectionControls(summary_state).temperature);
else
this->temperature_.add(well.name(), 273.15 + 15.56); // standard condition temperature
if ( num_perf_this_well == 0 )
return;
const auto inj_controls = well.isInjector() ? well.injectionControls(summary_state) : Well::InjectionControls(0);
const auto prod_controls = well.isProducer() ? well.productionControls(summary_state) : Well::ProductionControls(0);
const bool is_bhp = well.isInjector() ? (inj_controls.cmode == Well::InjectorCMode::BHP)
: (prod_controls.cmode == Well::ProducerCMode::BHP);
const double bhp_limit = well.isInjector() ? inj_controls.bhp_limit : prod_controls.bhp_limit;
const bool is_grup = well.isInjector() ? (inj_controls.cmode == Well::InjectorCMode::GRUP)
: (prod_controls.cmode == Well::ProducerCMode::GRUP);
const double inj_surf_rate = well.isInjector() ? inj_controls.surface_rate : 0.0; // To avoid a "maybe-uninitialized" warning.
const double local_pressure = well_perf_data_[w].empty() ?
0 : cellPressures[well_perf_data_[w][0].cell_index];
const double global_pressure = well_info->broadcastFirstPerforationValue(local_pressure);
if (well.getStatus() == Well::Status::OPEN) {
this->status_[w] = Well::Status::OPEN;
}
if (well.getStatus() == Well::Status::STOP) {
// Stopped well:
// 1. Rates: zero well rates.
// 2. Bhp: assign bhp equal to bhp control, if
// applicable, otherwise assign equal to
// first perforation cell pressure.
if (is_bhp) {
bhp_[w] = bhp_limit;
} else {
bhp_[w] = global_pressure;
}
} else if (is_grup) {
// Well under group control.
// 1. Rates: zero well rates.
// 2. Bhp: initialize bhp to be a
// little above or below (depending on if
// the well is an injector or producer)
// pressure in first perforation cell.
const double safety_factor = well.isInjector() ? 1.01 : 0.99;
bhp_[w] = safety_factor * global_pressure;
} else {
// Open well, under own control:
// 1. Rates: initialize well rates to match
// controls if type is ORAT/GRAT/WRAT
// (producer) or RATE (injector).
// Otherwise, we cannot set the correct
// value here and initialize to zero rate.
auto& rates = this->wellrates_[w];
if (well.isInjector()) {
if (inj_controls.cmode == Well::InjectorCMode::RATE) {
switch (inj_controls.injector_type) {
case InjectorType::WATER:
assert(pu.phase_used[BlackoilPhases::Aqua]);
rates[pu.phase_pos[BlackoilPhases::Aqua]] = inj_surf_rate;
break;
case InjectorType::GAS:
assert(pu.phase_used[BlackoilPhases::Vapour]);
rates[pu.phase_pos[BlackoilPhases::Vapour]] = inj_surf_rate;
break;
case InjectorType::OIL:
assert(pu.phase_used[BlackoilPhases::Liquid]);
rates[pu.phase_pos[BlackoilPhases::Liquid]] = inj_surf_rate;
break;
case InjectorType::MULTI:
// Not currently handled, keep zero init.
break;
}
} else {
// Keep zero init.
}
} else {
assert(well.isProducer());
// Note negative rates for producing wells.
switch (prod_controls.cmode) {
case Well::ProducerCMode::ORAT:
assert(pu.phase_used[BlackoilPhases::Liquid]);
rates[pu.phase_pos[BlackoilPhases::Liquid]] = -prod_controls.oil_rate;
break;
case Well::ProducerCMode::WRAT:
assert(pu.phase_used[BlackoilPhases::Aqua]);
rates[pu.phase_pos[BlackoilPhases::Aqua]] = -prod_controls.water_rate;
break;
case Well::ProducerCMode::GRAT:
assert(pu.phase_used[BlackoilPhases::Vapour]);
rates[pu.phase_pos[BlackoilPhases::Vapour]] = -prod_controls.gas_rate;
break;
default:
// Keep zero init.
break;
}
}
// 2. Bhp: initialize bhp to be target pressure if
// bhp-controlled well, otherwise set to a
// little above or below (depending on if
// the well is an injector or producer)
// pressure in first perforation cell.
if (is_bhp) {
bhp_[w] = bhp_limit;
} else {
const double safety_factor = well.isInjector() ? 1.01 : 0.99;
bhp_[w] = safety_factor * global_pressure;
}
}
// 3. Thp: assign thp equal to thp target/limit, if such a limit exists,
// otherwise keep it zero.
const bool has_thp = well.isInjector() ? inj_controls.hasControl(Well::InjectorCMode::THP)
: prod_controls.hasControl(Well::ProducerCMode::THP);
const double thp_limit = well.isInjector() ? inj_controls.thp_limit : prod_controls.thp_limit;
if (has_thp) {
thp_[w] = thp_limit;
}
}
void WellState::init(const std::vector<double>& cellPressures,
const Schedule& schedule,
const std::vector<Well>& wells_ecl,
const std::vector<ParallelWellInfo*>& parallel_well_info,
const int report_step,
const WellState* prevState,
const std::vector<std::vector<PerforationData>>& well_perf_data,
const SummaryState& summary_state)
{
// call init on base class
this->base_init(cellPressures, wells_ecl, parallel_well_info, well_perf_data, summary_state);
this->global_well_info = std::make_optional<GlobalWellInfo>( schedule, report_step, wells_ecl );
for (const auto& wname : schedule.wellNames(report_step))
{
well_rates.insert({wname, std::make_pair(false, std::vector<double>(this->numPhases()))});
}
for (const auto& winfo: parallel_well_info)
{
well_rates[winfo->name()].first = winfo->isOwner();
}
const int nw = wells_ecl.size();
if( nw == 0 ) return ;
// Initialize perfphaserates_, which must be done here.
const auto& pu = this->phaseUsage();
const int np = pu.num_phases;
int nperf = 0;
for (const auto& wpd : well_perf_data) {
nperf += wpd.size();
}
well_reservoir_rates_.clear();
well_dissolved_gas_rates_.clear();
well_vaporized_oil_rates_.clear();
this->events_.clear();
{
const auto& wg_events = schedule[report_step].wellgroup_events();
for (const auto& ecl_well : wells_ecl) {
const auto& wname = ecl_well.name();
if (wg_events.has(wname))
this->events_.add( wname, wg_events.at(wname) );
else
this->events_.add( wname, Events() );
}
}
// Ensure that we start out with zero rates by default.
perfphaserates_.clear();
perfphaserates_.resize(nperf * this->numPhases(), 0.0);
// these are only used to monitor the injectivity
perf_water_throughput_.clear();
perf_water_throughput_.resize(nperf, 0.0);
perf_water_velocity_.clear();
perf_water_velocity_.resize(nperf, 0.0);
perf_skin_pressure_.clear();
perf_skin_pressure_.resize(nperf, 0.0);
num_perf_.resize(nw, 0);
first_perf_index_.resize(nw, 0);
first_perf_index_[0] = 0;
for (int w = 0; w < nw; ++w) {
// Initialize perfphaserates_ to well
// rates divided by the number of perforations.
const auto& wname = wells_ecl[w].name();
const auto& well_info = this->wellMap().at(wname);
const int connpos = well_info[1];
const int num_perf_this_well = well_info[2];
const int global_num_perf_this_well = parallel_well_info[w]->communication().sum(num_perf_this_well);
auto& perf_press = this->perfPress(w);
auto * phase_rates = &this->mutable_perfPhaseRates()[connpos * this->numPhases()];
for (int perf = 0; perf < num_perf_this_well; ++perf) {
if (wells_ecl[w].getStatus() == Well::Status::OPEN) {
for (int p = 0; p < this->numPhases(); ++p) {
phase_rates[this->numPhases()*perf + p] = wellRates(w)[p] / double(global_num_perf_this_well);
}
}
perf_press[perf] = cellPressures[well_perf_data[w][perf].cell_index];
}
num_perf_[w] = num_perf_this_well;
first_perf_index_[w] = connpos;
this->well_reservoir_rates_.add(wname, std::vector<double>(np, 0));
this->well_dissolved_gas_rates_.add(wname, 0);
this->well_vaporized_oil_rates_.add(wname, 0);
}
is_producer_.clear();
for (int w = 0; w < nw; ++w) {
const auto& ecl_well = wells_ecl[w];
this->is_producer_.add( ecl_well.name(), ecl_well.isProducer());
}
current_injection_controls_.clear();
current_production_controls_.clear();
for (int w = 0; w < nw; ++w) {
const auto& wname = wells_ecl[w].name();
current_production_controls_.add(wname, Well::ProducerCMode::CMODE_UNDEFINED);
current_injection_controls_.add(wname, Well::InjectorCMode::CMODE_UNDEFINED);
if (wells_ecl[w].isProducer()) {
const auto controls = wells_ecl[w].productionControls(summary_state);
currentProductionControl(w, controls.cmode);
}
else {
const auto controls = wells_ecl[w].injectionControls(summary_state);
currentInjectionControl(w, controls.cmode);
}
}
perfRateSolvent_.clear();
perfRateSolvent_.resize(nperf, 0.0);
productivity_index_.resize(nw * this->numPhases(), 0.0);
conn_productivity_index_.resize(nperf * this->numPhases(), 0.0);
well_potentials_.resize(nw * this->numPhases(), 0.0);
perfRatePolymer_.clear();
perfRatePolymer_.resize(nperf, 0.0);
perfRateBrine_.clear();
perfRateBrine_.resize(nperf, 0.0);
for (int w = 0; w < nw; ++w) {
switch (wells_ecl[w].getStatus()) {
case Well::Status::SHUT:
this->shutWell(w);
break;
case Well::Status::STOP:
this->stopWell(w);
break;
default:
this->openWell(w);
break;
}
}
// intialize wells that have been there before
// order may change so the mapping is based on the well name
if (prevState && !prevState->wellMap().empty()) {
auto end = prevState->wellMap().end();
for (int w = 0; w < nw; ++w) {
const Well& well = wells_ecl[w];
if (well.getStatus() == Well::Status::SHUT) {
continue;
}
auto it = prevState->wellMap().find(well.name());
if (it != end)
{
const int newIndex = w;
const int oldIndex = it->second[ 0 ];
if (prevState->status_[oldIndex] == Well::Status::SHUT) {
// Well was shut in previous state, do not use its values.
continue;
}
if (is_producer_[newIndex] != prevState->is_producer_[oldIndex]) {
// Well changed to/from injector from/to producer, do not use its privious values.
continue;
}
// bhp
this->update_bhp( newIndex, prevState->bhp( oldIndex ));
// thp
this->update_thp( newIndex, prevState->thp( oldIndex ));
// If new target is set using WCONPROD, WCONINJE etc. we use the new control
if (!this->events_[w].hasEvent(WellState::event_mask)) {
current_injection_controls_[ newIndex ] = prevState->currentInjectionControl(oldIndex);
current_production_controls_[ newIndex ] = prevState->currentProductionControl(oldIndex);
}
wellRates(w) = prevState->wellRates(oldIndex);
wellReservoirRates(w) = prevState->wellReservoirRates(oldIndex);
// Well potentials
for( int i=0, idx=newIndex*np, oldidx=oldIndex*np; i<np; ++i, ++idx, ++oldidx )
{
wellPotentials()[ idx ] = prevState->wellPotentials()[ oldidx ];
}
// perfPhaseRates
const int oldPerf_idx_beg = (*it).second[ 1 ];
const int num_perf_old_well = (*it).second[ 2 ];
const auto new_iter = this->wellMap().find(well.name());
if (new_iter == this->wellMap().end()) {
throw std::logic_error {
well.name() + " is not in internal well map - "
"Bug in WellState"
};
}
const int connpos = new_iter->second[1];
const int num_perf_this_well = new_iter->second[2];
const int num_perf_changed = parallel_well_info[w]->communication()
.sum(static_cast<int>(num_perf_old_well != num_perf_this_well));
const bool global_num_perf_same = num_perf_changed == 0;
// copy perforation rates when the number of
// perforations is equal, otherwise initialize
// perfphaserates to well rates divided by the
// number of perforations.
if (global_num_perf_same)
{
const auto * src_rates = &prevState->perfPhaseRates()[oldPerf_idx_beg* np];
auto * target_rates = &this->mutable_perfPhaseRates()[connpos*np];
for (int perf_index = 0; perf_index < num_perf_this_well; perf_index++) {
for (int p = 0; p < np; p++) {
target_rates[perf_index*np + p] = src_rates[perf_index*np + p];
}
}
} else {
const int global_num_perf_this_well = parallel_well_info[w]->communication().sum(num_perf_this_well);
auto * target_rates = &this->mutable_perfPhaseRates()[connpos*np];
for (int perf_index = 0; perf_index < num_perf_this_well; perf_index++) {
for (int p = 0; p < np; ++p) {
target_rates[perf_index*np + p] = wellRates(w)[p] / double(global_num_perf_this_well);
}
}
}
// perfPressures
if (global_num_perf_same)
{
auto& target_press = perfPress(w);
const auto& src_press = prevState->perfPress(well.name());
for (int perf = 0; perf < num_perf_this_well; ++perf)
{
target_press[perf] = src_press[perf];
}
}
// perfSolventRates
if (pu.has_solvent) {
if (global_num_perf_same)
{
int oldPerf_idx = oldPerf_idx_beg;
for (int perf = connpos; perf < connpos + num_perf_this_well; ++perf, ++oldPerf_idx )
{
perfRateSolvent()[ perf ] = prevState->perfRateSolvent()[ oldPerf_idx ];
}
}
}
// polymer injectivity related
//
// here we did not consider the case that we close
// some perforation during the running and also,
// wells can be shut and re-opened
if (pu.has_polymermw) {
if (global_num_perf_same)
{
auto * throughput_target = &perf_water_throughput_[connpos];
auto * pressure_target = &perf_skin_pressure_[connpos];
auto * velocity_target = &perf_water_velocity_[connpos];
const auto * throughput_src = &prevState->perfThroughput()[oldPerf_idx_beg];
const auto * pressure_src = &prevState->perfSkinPressure()[oldPerf_idx_beg];
const auto * velocity_src = &prevState->perfWaterVelocity()[oldPerf_idx_beg];
for (int perf = 0; perf < num_perf_this_well; ++perf)
{
throughput_target[ perf ] = throughput_src[perf];
pressure_target[ perf ] = pressure_src[perf];
velocity_target[ perf ] = velocity_src[perf];
}
}
}
// Productivity index.
{
auto* thisWellPI = &this ->productivityIndex()[newIndex*np + 0];
const auto* thatWellPI = &prevState->productivityIndex()[oldIndex*np + 0];
for (int p = 0; p < np; ++p) {
thisWellPI[p] = thatWellPI[p];
}
}
}
// If in the new step, there is no THP related
// target/limit anymore, its thp value should be set to
// zero.
const bool has_thp = well.isInjector()
? well.injectionControls (summary_state).hasControl(Well::InjectorCMode::THP)
: well.productionControls(summary_state).hasControl(Well::ProducerCMode::THP);
if (!has_thp) {
this->update_thp(w, 0.0);
}
}
}
{
// we need to create a trival segment related values to avoid there will be some
// multi-segment wells added later.
nseg_ = nw;
top_segment_index_.resize(nw);
seg_number_.resize(nw);
seg_press_.resize(nw);
for (int w = 0; w < nw; ++w) {
top_segment_index_[w] = w;
seg_number_[w] = 1; // Top segment is segment #1
this->seg_press_[w] = this->bhp(w);
}
//seg_rates_ = wellRates();
seg_rates_.assign(nw*np, 0);
seg_pressdrop_.assign(nw, 0.);
seg_pressdrop_hydorstatic_.assign(nw, 0.);
seg_pressdrop_friction_.assign(nw, 0.);
seg_pressdrop_acceleration_.assign(nw, 0.);
}
updateWellsDefaultALQ(wells_ecl);
do_glift_optimization_ = true;
}
void WellState::resize(const std::vector<Well>& wells_ecl,
const std::vector<ParallelWellInfo*>& parallel_well_info,
const Schedule& schedule,
const bool handle_ms_well,
const size_t numCells,
const std::vector<std::vector<PerforationData>>& well_perf_data,
const SummaryState& summary_state)
{
const std::vector<double> tmp(numCells, 0.0); // <- UGLY HACK to pass the size
init(tmp, schedule, wells_ecl, parallel_well_info, 0, nullptr, well_perf_data, summary_state);
if (handle_ms_well) {
initWellStateMSWell(wells_ecl, nullptr);
}
}
const std::vector<double>&
WellState::currentWellRates(const std::string& wellName) const
{
auto it = well_rates.find(wellName);
if (it == well_rates.end())
OPM_THROW(std::logic_error, "Could not find any rates for well " << wellName);
return it->second.second;
}
template<class Communication>
void WellState::gatherVectorsOnRoot(const std::vector<data::Connection>& from_connections,
std::vector<data::Connection>& to_connections,
const Communication& comm) const
{
int size = from_connections.size();
std::vector<int> sizes;
std::vector<int> displ;
if (comm.rank()==0){
sizes.resize(comm.size());
}
comm.gather(&size, sizes.data(), 1, 0);
if (comm.rank()==0){
displ.resize(comm.size()+1, 0);
std::partial_sum(sizes.begin(), sizes.end(), displ.begin()+1);
to_connections.resize(displ.back());
}
comm.gatherv(from_connections.data(), size, to_connections.data(),
sizes.data(), displ.data(), 0);
}
data::Wells
WellState::report(const int* globalCellIdxMap,
const std::function<bool(const int)>& wasDynamicallyClosed) const
{
if (this->numWells() == 0)
return {};
using rt = data::Rates::opt;
const auto& pu = this->phaseUsage();
const int np = pu.num_phases;
data::Wells res;
for( const auto& itr : this->wellMap() ) {
const auto well_index = itr.second[ 0 ];
if ((this->status_[well_index] == Well::Status::SHUT) &&
! wasDynamicallyClosed(well_index))
{
continue;
}
const auto& pwinfo = *this->parallel_well_info_[well_index];
using WellT = std::remove_reference_t<decltype(res[ itr.first ])>;
WellT dummyWell; // dummy if we are not owner
auto& well = pwinfo.isOwner() ? res[ itr.first ] : dummyWell;
well.bhp = this->bhp(well_index);
well.thp = this->thp( well_index );
well.temperature = this->temperature( well_index );
const auto& wv = this->wellRates(well_index);
if( pu.phase_used[BlackoilPhases::Aqua] ) {
well.rates.set( rt::wat, wv[ pu.phase_pos[BlackoilPhases::Aqua] ] );
}
if( pu.phase_used[BlackoilPhases::Liquid] ) {
well.rates.set( rt::oil, wv[ pu.phase_pos[BlackoilPhases::Liquid] ] );
}
if( pu.phase_used[BlackoilPhases::Vapour] ) {
well.rates.set( rt::gas, wv[ pu.phase_pos[BlackoilPhases::Vapour] ] );
}
if (pwinfo.communication().size()==1)
{
reportConnections(well, pu, itr, globalCellIdxMap);
}
else
{
assert(pwinfo.communication().rank() != 0 || &dummyWell != &well);
// report the local connections
reportConnections(dummyWell, pu, itr, globalCellIdxMap);
// gather them to well on root.
gatherVectorsOnRoot(dummyWell.connections, well.connections,
pwinfo.communication());
}
}
std::vector<rt> phs(np);
if (pu.phase_used[Water]) {
phs.at( pu.phase_pos[Water] ) = rt::wat;
}
if (pu.phase_used[Oil]) {
phs.at( pu.phase_pos[Oil] ) = rt::oil;
}
if (pu.phase_used[Gas]) {
phs.at( pu.phase_pos[Gas] ) = rt::gas;
}
// This is a reference or example on **how** to convert from
// WellState to something understood by opm-common's output
// layer. It is intended to be properly implemented and
// maintained as a part of simulators, as it relies on simulator
// internals, details and representations.
for (const auto& wt : this->wellMap()) {
const auto w = wt.second[ 0 ];
if (((this->status_[w] == Well::Status::SHUT) &&
! wasDynamicallyClosed(w)) ||
! this->parallel_well_info_[w]->isOwner())
{
continue;
}
auto& well = res.at(wt.first);
const int well_rate_index = w * pu.num_phases;
const auto& reservoir_rates = this->well_reservoir_rates_[w];
if (pu.phase_used[Water]) {
const auto i = well_rate_index + pu.phase_pos[Water];
well.rates.set(rt::reservoir_water, reservoir_rates[pu.phase_pos[Water]]);
well.rates.set(rt::productivity_index_water, this->productivity_index_[i]);
well.rates.set(rt::well_potential_water, this->well_potentials_[i]);
}
if (pu.phase_used[Oil]) {
const auto i = well_rate_index + pu.phase_pos[Oil];
well.rates.set(rt::reservoir_oil, reservoir_rates[pu.phase_pos[Oil]]);
well.rates.set(rt::productivity_index_oil, this->productivity_index_[i]);
well.rates.set(rt::well_potential_oil, this->well_potentials_[i]);
}
if (pu.phase_used[Gas]) {
const auto i = well_rate_index + pu.phase_pos[Gas];
well.rates.set(rt::reservoir_gas, reservoir_rates[pu.phase_pos[Gas]]);
well.rates.set(rt::productivity_index_gas, this->productivity_index_[i]);
well.rates.set(rt::well_potential_gas, this->well_potentials_[i]);
}
if (pu.has_solvent || pu.has_zFraction) {
well.rates.set(rt::solvent, solventWellRate(w));
}
if (pu.has_polymer) {
well.rates.set(rt::polymer, polymerWellRate(w));
}
if (pu.has_brine) {
well.rates.set(rt::brine, brineWellRate(w));
}
if (is_producer_[w]) {
well.rates.set(rt::alq, getALQ(/*wellName=*/wt.first));
}
else {
well.rates.set(rt::alq, 0.0);
}
well.rates.set(rt::dissolved_gas, this->well_dissolved_gas_rates_[w]);
well.rates.set(rt::vaporized_oil, this->well_vaporized_oil_rates_[w]);
{
auto& curr = well.current_control;
curr.isProducer = this->is_producer_[w];
curr.prod = this->currentProductionControl(w);
curr.inj = this->currentInjectionControl(w);
}
const auto nseg = this->numSegments(w);
for (auto seg_ix = 0*nseg; seg_ix < nseg; ++seg_ix) {
const auto seg_no = this->segmentNumber(w, seg_ix);
well.segments[seg_no] =
this->reportSegmentResults(pu, w, seg_ix, seg_no);
}
}
return res;
}
void WellState::reportConnections(data::Well& well,
const PhaseUsage &pu,
const WellMapType::value_type& wt,
const int* globalCellIdxMap) const
{
using rt = data::Rates::opt;
const auto well_index = wt.second[ 0 ];
const auto& pd = this->well_perf_data_[well_index];
const int num_perf_well = pd.size();
well.connections.resize(num_perf_well);
const auto& perf_rates = this->perfRates(well_index);
const auto& perf_pressure = this->perfPress(well_index);
for( int i = 0; i < num_perf_well; ++i ) {
const auto active_index = this->well_perf_data_[well_index][i].cell_index;
auto& connection = well.connections[ i ];
connection.index = globalCellIdxMap[active_index];
connection.pressure = perf_pressure[i];
connection.reservoir_rate = perf_rates[i];
connection.trans_factor = pd[i].connection_transmissibility_factor;
}
assert(num_perf_well == int(well.connections.size()));
const int np = pu.num_phases;
size_t local_comp_index = 0;
std::vector< rt > phs( np );
std::vector<rt> pi(np);
if( pu.phase_used[Water] ) {
phs.at( pu.phase_pos[Water] ) = rt::wat;
pi .at( pu.phase_pos[Water] ) = rt::productivity_index_water;
}
if( pu.phase_used[Oil] ) {
phs.at( pu.phase_pos[Oil] ) = rt::oil;
pi .at( pu.phase_pos[Oil] ) = rt::productivity_index_oil;
}
if( pu.phase_used[Gas] ) {
phs.at( pu.phase_pos[Gas] ) = rt::gas;
pi .at( pu.phase_pos[Gas] ) = rt::productivity_index_gas;
}
for( auto& comp : well.connections) {
const auto connPhaseOffset = np * (wt.second[1] + local_comp_index);
const auto * rates = &this->perfPhaseRates()[connPhaseOffset];
const auto connPI = this->connectionProductivityIndex().begin() + connPhaseOffset;
for( int i = 0; i < np; ++i ) {
comp.rates.set( phs[ i ], rates[i] );
comp.rates.set( pi [ i ], *(connPI + i) );
}
if ( pu.has_polymer ) {
const auto * perf_polymer_rate = &this->perfRatePolymer()[wt.second[1]];
comp.rates.set( rt::polymer, perf_polymer_rate[local_comp_index]);
}
if ( pu.has_brine ) {
const auto * perf_brine_rate = &this->perfRateBrine()[wt.second[1]];
comp.rates.set( rt::brine, perf_brine_rate[local_comp_index]);
}
if ( pu.has_solvent ) {
const auto * perf_solvent_rate = &this->perfRateSolvent()[wt.second[1]];
comp.rates.set( rt::solvent, perf_solvent_rate[local_comp_index] );
}
++local_comp_index;
}
assert(local_comp_index == this->well_perf_data_[wt.second[0]].size());
}
void WellState::initWellStateMSWell(const std::vector<Well>& wells_ecl,
const WellState* prev_well_state)
{
// still using the order in wells
const int nw = wells_ecl.size();
if (nw == 0) {
return;
}
const auto& pu = this->phaseUsage();
const int np = pu.num_phases;
top_segment_index_.clear();
seg_press_.clear();
seg_rates_.clear();
seg_number_.clear();
nseg_ = 0;
// in the init function, the well rates and perforation rates have been initialized or copied from prevState
// what we do here, is to set the segment rates and perforation rates
for (int w = 0; w < nw; ++w) {
const auto& well_ecl = wells_ecl[w];
const auto& wname = wells_ecl[w].name();
const auto& well_info = this->wellMap().at(wname);
const int connpos = well_info[1];
const int num_perf_this_well = well_info[2];
const auto& rates = this->wellRates(w);
top_segment_index_.push_back(nseg_);
if ( !well_ecl.isMultiSegment() ) { // not multi-segment well
nseg_ += 1;
seg_number_.push_back(1); // Assign single segment (top) as number 1.
seg_press_.push_back(bhp(w));
for (int p = 0; p < np; ++p) {
seg_rates_.push_back(rates[p]);
}
} else { // it is a multi-segment well
const WellSegments& segment_set = well_ecl.getSegments();
// assuming the order of the perforations in well_ecl is the same with Wells
const WellConnections& completion_set = well_ecl.getConnections();
// number of segment for this single well
const int well_nseg = segment_set.size();
int n_activeperf = 0;
nseg_ += well_nseg;
for (auto segID = 0*well_nseg; segID < well_nseg; ++segID) {
this->seg_number_.push_back(segment_set[segID].segmentNumber());
}
// we need to know for each segment, how many perforation it has and how many segments using it as outlet_segment
// that is why I think we should use a well model to initialize the WellState here
std::vector<std::vector<int>> segment_perforations(well_nseg);
for (size_t perf = 0; perf < completion_set.size(); ++perf) {
const Connection& connection = completion_set.get(perf);
if (connection.state() == Connection::State::OPEN) {
const int segment_index = segment_set.segmentNumberToIndex(connection.segment());
segment_perforations[segment_index].push_back(n_activeperf);
n_activeperf++;
}
}
std::vector<std::vector<int>> segment_inlets(well_nseg);
for (int seg = 0; seg < well_nseg; ++seg) {
const Segment& segment = segment_set[seg];
const int segment_number = segment.segmentNumber();
const int outlet_segment_number = segment.outletSegment();
if (outlet_segment_number > 0) {
const int segment_index = segment_set.segmentNumberToIndex(segment_number);
const int outlet_segment_index = segment_set.segmentNumberToIndex(outlet_segment_number);
segment_inlets[outlet_segment_index].push_back(segment_index);
}
}
// for the seg_rates_, now it becomes a recursive solution procedure.
{
const int start_perf = connpos;
// make sure the information from wells_ecl consistent with wells
assert((n_activeperf == num_perf_this_well) &&
"Inconsistent number of reservoir connections in well");
if (pu.phase_used[Gas]) {
auto * perf_rates = &this->mutable_perfPhaseRates()[np * start_perf];
const int gaspos = pu.phase_pos[Gas];
// scale the phase rates for Gas to avoid too bad initial guess for gas fraction
// it will probably benefit the standard well too, while it needs to be justified
// TODO: to see if this strategy can benefit StandardWell too
// TODO: it might cause big problem for gas rate control or if there is a gas rate limit
// maybe the best way is to initialize the fractions first then get the rates
for (int perf = 0; perf < n_activeperf; perf++)
perf_rates[perf*np + gaspos] *= 100;
}
const auto * perf_rates = &perfPhaseRates()[np*start_perf];
std::vector<double> perforation_rates(perf_rates, perf_rates + num_perf_this_well*np);
std::vector<double> segment_rates;
calculateSegmentRates(segment_inlets, segment_perforations, perforation_rates, np, 0 /* top segment */, segment_rates);
std::copy(segment_rates.begin(), segment_rates.end(), std::back_inserter(seg_rates_));
}
// for the segment pressure, the segment pressure is the same with the first perforation belongs to the segment
// if there is no perforation associated with this segment, it uses the pressure from the outlet segment
// which requres the ordering is successful
// Not sure what is the best way to handle the initialization, hopefully, the bad initialization can be
// improved during the solveWellEq process
{
// top segment is always the first one, and its pressure is the well bhp
seg_press_.push_back(bhp(w));
const int top_segment = top_segment_index_[w];
const auto& perf_press = this->perfPress(w);
for (int seg = 1; seg < well_nseg; ++seg) {
if ( !segment_perforations[seg].empty() ) {
const int first_perf = segment_perforations[seg][0];
seg_press_.push_back(perf_press[first_perf]);
} else {
// seg_press_.push_back(bhp); // may not be a good decision
// using the outlet segment pressure // it needs the ordering is correct
const int outlet_seg = segment_set[seg].outletSegment();
seg_press_.push_back(
seg_press_[top_segment + segment_set.segmentNumberToIndex(outlet_seg)]);
}
}
}
}
}
assert(int(seg_press_.size()) == nseg_);
assert(int(seg_rates_.size()) == nseg_ * numPhases() );
seg_pressdrop_.assign(nseg_, 0.);
seg_pressdrop_hydorstatic_.assign(nseg_, 0.);
seg_pressdrop_friction_.assign(nseg_, 0.);
seg_pressdrop_acceleration_.assign(nseg_, 0.);
if (prev_well_state && !prev_well_state->wellMap().empty()) {
const auto& end = prev_well_state->wellMap().end();
for (int w = 0; w < nw; ++w) {
const Well& well = wells_ecl[w];
if (well.getStatus() == Well::Status::SHUT)
continue;
const auto& it = prev_well_state->wellMap().find( wells_ecl[w].name() );
if (it != end) { // the well is found in the prev_well_state
// TODO: the well with same name can change a lot, like they might not have same number of segments
// we need to handle that later.
// for now, we just copy them.
const int old_index_well = (*it).second[0];
const int new_index_well = w;
if (prev_well_state->status_[old_index_well] == Well::Status::SHUT) {
continue;
}
const int old_top_segment_index = prev_well_state->topSegmentIndex(old_index_well);
const int new_top_segment_index = topSegmentIndex(new_index_well);
int number_of_segment = 0;
// if it is the last well in list
if (new_index_well == int(top_segment_index_.size()) - 1) {
number_of_segment = nseg_ - new_top_segment_index;
} else {
number_of_segment = topSegmentIndex(new_index_well + 1) - new_top_segment_index;
}
auto * segment_rates = &this->seg_rates_[new_top_segment_index*np];
auto * segment_pressure = &this->seg_press_[new_top_segment_index];
const auto * prev_segment_rates = &prev_well_state->segRates()[old_top_segment_index*np];
const auto * prev_segment_pressure = &prev_well_state->segPress()[new_top_segment_index];
for (int seg=0; seg < number_of_segment; ++seg) {
for (int p = 0; p < np; ++p)
segment_rates[seg*np + p] = prev_segment_rates[seg*np + p];
segment_pressure[seg] = prev_segment_pressure[seg];
}
}
}
}
}
void
WellState::calculateSegmentRates(const std::vector<std::vector<int>>& segment_inlets,
const std::vector<std::vector<int>>&segment_perforations,
const std::vector<double>& perforation_rates,
const int np, const int segment,
std::vector<double>& segment_rates)
{
// the rate of the segment equals to the sum of the contribution from the perforations and inlet segment rates.
// the first segment is always the top segment, its rates should be equal to the well rates.
assert(segment_inlets.size() == segment_perforations.size());
const int well_nseg = segment_inlets.size();
if (segment == 0) { // beginning the calculation
segment_rates.resize(np * well_nseg, 0.0);
}
// contributions from the perforations belong to this segment
for (const int& perf : segment_perforations[segment]) {
for (int p = 0; p < np; ++p) {
segment_rates[np * segment + p] += perforation_rates[np * perf + p];
}
}
for (const int& inlet_seg : segment_inlets[segment]) {
calculateSegmentRates(segment_inlets, segment_perforations, perforation_rates, np, inlet_seg, segment_rates);
for (int p = 0; p < np; ++p) {
segment_rates[np * segment + p] += segment_rates[np * inlet_seg + p];
}
}
}
double WellState::solventWellRate(const int w) const
{
const auto * perf_rates_solvent = &perfRateSolvent_[first_perf_index_[w]];
return parallel_well_info_[w]->sumPerfValues(perf_rates_solvent, perf_rates_solvent + this->num_perf_[w]);
}
double WellState::polymerWellRate(const int w) const
{
const auto * perf_rates_polymer = &perfRatePolymer_[first_perf_index_[w]];
return parallel_well_info_[w]->sumPerfValues(perf_rates_polymer, perf_rates_polymer + this->num_perf_[w]);
}
double WellState::brineWellRate(const int w) const
{
const auto * perf_rates_brine = &perfRateBrine_[first_perf_index_[w]];
return parallel_well_info_[w]->sumPerfValues(perf_rates_brine, perf_rates_brine + this->num_perf_[w]);
}
int WellState::topSegmentIndex(const int w) const
{
assert(w < int(top_segment_index_.size()) );
return top_segment_index_[w];
}
void WellState::stopWell(int well_index)
{
this->status_[well_index] = Well::Status::STOP;
this->thp_[well_index] = 0;
}
void WellState::shutWell(int well_index)
{
this->status_[well_index] = Well::Status::SHUT;
this->thp_[well_index] = 0;
this->bhp_[well_index] = 0;
const int np = numPhases();
this->wellrates_[well_index].assign(np, 0);
auto& resv = this->well_reservoir_rates_[well_index];
auto* wpi = &this->productivity_index_[np*well_index + 0];
for (int p = 0; p < np; ++p) {
resv[p] = 0.0;
wpi[p] = 0.0;
}
const auto first = this->first_perf_index_[well_index]*np;
const auto last = first + this->num_perf_[well_index]*np;
std::fill(this->conn_productivity_index_.begin() + first,
this->conn_productivity_index_.begin() + last, 0.0);
}
void WellState::updateStatus(int well_index, Well::Status status)
{
switch (status) {
case Well::Status::OPEN:
this->openWell(well_index);
break;
case Well::Status::SHUT:
this->shutWell(well_index);
break;
case Well::Status::STOP:
this->stopWell(well_index);
break;
default:
throw std::logic_error("Invalid well status");
}
}
template<class Comm>
void WellState::communicateGroupRates(const Comm& comm)
{
// Compute the size of the data.
std::size_t sz = 0;
for (const auto& [_, owner_rates] : this->well_rates) {
(void)_;
const auto& [__, rates] = owner_rates;
(void)__;
sz += rates.size();
}
sz += this->alq_state.pack_size();
// Make a vector and collect all data into it.
std::vector<double> data(sz);
std::size_t pos = 0;
for (const auto& [_, owner_rates] : this->well_rates) {
(void)_;
const auto& [owner, rates] = owner_rates;
for (const auto& value : rates) {
if (owner)
data[pos++] = value;
else
data[pos++] = 0;
}
}
pos += this->alq_state.pack_data(&data[pos]);
assert(pos == sz);
// Communicate it with a single sum() call.
comm.sum(data.data(), data.size());
pos = 0;
for (auto& [_, owner_rates] : this->well_rates) {
(void)_;
auto& [__, rates] = owner_rates;
(void)__;
for (auto& value : rates)
value = data[pos++];
}
pos += this->alq_state.unpack_data(&data[pos]);
assert(pos == sz);
}
template<class Comm>
void WellState::updateGlobalIsGrup(const Comm& comm)
{
this->global_well_info.value().update_group(this->status_.data(), this->current_injection_controls_.data(), this->current_production_controls_.data());
this->global_well_info.value().communicate(comm);
}
data::Segment
WellState::reportSegmentResults(const PhaseUsage& pu,
const int well_id,
const int seg_ix,
const int seg_no) const
{
auto seg_res = data::Segment{};
const auto seg_dof =
this->topSegmentIndex(well_id) + seg_ix;
const auto* rate =
&this->segRates()[seg_dof * this->numPhases()];
{
using Value = data::SegmentPressures::Value;
auto& segpress = seg_res.pressures;
segpress[Value::Pressure] = this->segPress()[seg_dof];
segpress[Value::PDrop] = this->segPressDrop()[seg_dof];
segpress[Value::PDropHydrostatic] = this->segPressDropHydroStatic()[seg_dof];
segpress[Value::PDropFriction] = this->segPressDropFriction()[seg_dof];
segpress[Value::PDropAccel] = this->segPressDropAcceleration()[seg_dof];
}
if (pu.phase_used[Water]) {
seg_res.rates.set(data::Rates::opt::wat,
rate[pu.phase_pos[Water]]);
}
if (pu.phase_used[Oil]) {
seg_res.rates.set(data::Rates::opt::oil,
rate[pu.phase_pos[Oil]]);
}
if (pu.phase_used[Gas]) {
seg_res.rates.set(data::Rates::opt::gas,
rate[pu.phase_pos[Gas]]);
}
seg_res.segNumber = seg_no;
return seg_res;
}
bool WellState::wellIsOwned(std::size_t well_index,
[[maybe_unused]] const std::string& wellName) const
{
const auto& well_info = parallelWellInfo(well_index);
assert(well_info.name() == wellName);
return well_info.isOwner();
}
bool WellState::wellIsOwned(const std::string& wellName) const
{
const auto& it = this->wellMap_.find( wellName );
if (it == this->wellMap_.end()) {
OPM_THROW(std::logic_error, "Could not find well " << wellName << " in well map");
}
const int well_index = it->second[0];
return wellIsOwned(well_index, wellName);
}
int WellState::numSegments(const int well_id) const
{
const auto topseg = this->topSegmentIndex(well_id);
return (well_id + 1 == this->numWells()) // Last well?
? (this->numSegment() - topseg)
: (this->topSegmentIndex(well_id + 1) - topseg);
}
int WellState::segmentNumber(const int well_id, const int seg_id) const
{
const auto top_offset = this->topSegmentIndex(well_id);
return this->seg_number_[top_offset + seg_id];
}
void WellState::updateWellsDefaultALQ( const std::vector<Well>& wells_ecl )
{
const int nw = wells_ecl.size();
for (int i = 0; i<nw; i++) {
const Well &well = wells_ecl[i];
if (well.isProducer()) {
// NOTE: This is the value set in item 12 of WCONPROD, or with WELTARG
auto alq = well.alq_value();
this->alq_state.update_default(well.name(), alq);
}
}
}
void WellState::resetConnectionTransFactors(const int well_index,
const std::vector<PerforationData>& well_perf_data)
{
if (this->well_perf_data_[well_index].size() != well_perf_data.size()) {
throw std::invalid_argument {
"Size mismatch for perforation data in well "
+ std::to_string(well_index)
};
}
auto connID = std::size_t{0};
auto dst = this->well_perf_data_[well_index].begin();
for (const auto& src : well_perf_data) {
if (dst->cell_index != src.cell_index) {
throw std::invalid_argument {
"Cell index mismatch in connection "
+ std::to_string(connID)
+ " of well "
+ std::to_string(well_index)
};
}
if (dst->satnum_id != src.satnum_id) {
throw std::invalid_argument {
"Saturation function table mismatch in connection "
+ std::to_string(connID)
+ " of well "
+ std::to_string(well_index)
};
}
dst->connection_transmissibility_factor =
src.connection_transmissibility_factor;
++dst;
++connID;
}
}
const ParallelWellInfo&
WellState::parallelWellInfo(std::size_t well_index) const
{
return *parallel_well_info_[well_index];
}
template void WellState::updateGlobalIsGrup<ParallelWellInfo::Communication>(const ParallelWellInfo::Communication& comm);
template void WellState::communicateGroupRates<ParallelWellInfo::Communication>(const ParallelWellInfo::Communication& comm);
} // namespace Opm