mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-15 16:31:58 -06:00
1723 lines
66 KiB
C++
1723 lines
66 KiB
C++
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
|
// vi: set et ts=4 sw=4 sts=4:
|
|
/*
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
Consult the COPYING file in the top-level source directory of this
|
|
module for the precise wording of the license and the list of
|
|
copyright holders.
|
|
*/
|
|
/**
|
|
* \file
|
|
*
|
|
* \copydoc Opm::EclPeacemanWell
|
|
*/
|
|
#ifndef EWOMS_ECL_PEACEMAN_WELL_HH
|
|
#define EWOMS_ECL_PEACEMAN_WELL_HH
|
|
|
|
#include <opm/models/blackoil/blackoilproperties.hh>
|
|
#include <opm/models/discretization/common/baseauxiliarymodule.hh>
|
|
#include <opm/models/utils/propertysystem.hh>
|
|
#include <opm/models/utils/alignedallocator.hh>
|
|
|
|
#include <opm/material/fluidstates/CompositionalFluidState.hpp>
|
|
#include <opm/material/densead/Evaluation.hpp>
|
|
#include <opm/material/densead/Math.hpp>
|
|
#include <opm/material/common/Valgrind.hpp>
|
|
#include <opm/material/common/Exceptions.hpp>
|
|
|
|
#include <dune/common/fmatrix.hh>
|
|
#include <dune/common/version.hh>
|
|
#include <dune/geometry/referenceelements.hh>
|
|
|
|
#include <map>
|
|
|
|
namespace Opm {
|
|
|
|
template <class TypeTag>
|
|
class EcfvDiscretization;
|
|
|
|
/*!
|
|
* \ingroup EclBlackOilSimulator
|
|
*
|
|
* \brief The well model of Peaceman.
|
|
*
|
|
* This class is tailored for the element centered finite volume
|
|
* discretization, assumes a vertical borehole and is intended to be
|
|
* used by the EclWellManager.
|
|
*
|
|
* See:
|
|
*
|
|
* Z. Chen, G. Huan, Y. Ma: Computational Methods for Multiphase
|
|
* Flows in Porous Media, 1st edition, SIAM, 2006, pp. 445-446
|
|
*
|
|
* and
|
|
*
|
|
* D. W. Peaceman: Interpretation of well-block pressures in numerical
|
|
* reservoir simulation, The 52nd Annual SPE Fall Technical Conference
|
|
* and Exhibition, Denver, CO., 1977
|
|
*/
|
|
template <class TypeTag>
|
|
class EclPeacemanWell : public BaseAuxiliaryModule<TypeTag>
|
|
{
|
|
using AuxModule = BaseAuxiliaryModule<TypeTag>;
|
|
|
|
using NeighborSet = typename AuxModule::NeighborSet;
|
|
using SparseMatrixAdapter = GetPropType<TypeTag, Properties::SparseMatrixAdapter>;
|
|
using SolutionVector = GetPropType<TypeTag, Properties::SolutionVector>;
|
|
using GlobalEqVector = GetPropType<TypeTag, Properties::GlobalEqVector>;
|
|
|
|
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
|
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
|
|
using Discretization = GetPropType<TypeTag, Properties::Discretization>;
|
|
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
|
|
using Simulator = GetPropType<TypeTag, Properties::Simulator>;
|
|
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
|
|
using IntensiveQuantities = GetPropType<TypeTag, Properties::IntensiveQuantities>;
|
|
using RateVector = GetPropType<TypeTag, Properties::RateVector>;
|
|
using GridView = GetPropType<TypeTag, Properties::GridView>;
|
|
|
|
typedef Opm::MathToolbox<Evaluation> Toolbox;
|
|
|
|
typedef typename GridView::template Codim<0>::Entity Element;
|
|
typedef Element ElementStorage;
|
|
|
|
// the dimension of the simulator's world
|
|
static const int dimWorld = GridView::dimensionworld;
|
|
|
|
// convenient access to the number of phases and the number of
|
|
// components
|
|
static const unsigned numComponents = getPropValue<TypeTag, Properties::NumComponents>();
|
|
static const unsigned numPhases = getPropValue<TypeTag, Properties::NumPhases>();
|
|
|
|
// convenient access to the phase and component indices. If the compiler bails out
|
|
// here, you're probably using an incompatible fluid system. This class has only been
|
|
// tested with Opm::FluidSystems::BlackOil...
|
|
static const unsigned gasPhaseIdx = FluidSystem::gasPhaseIdx;
|
|
static const unsigned oilPhaseIdx = FluidSystem::oilPhaseIdx;
|
|
static const unsigned waterPhaseIdx = FluidSystem::waterPhaseIdx;
|
|
|
|
static const unsigned oilCompIdx = FluidSystem::oilCompIdx;
|
|
static const unsigned waterCompIdx = FluidSystem::waterCompIdx;
|
|
static const unsigned gasCompIdx = FluidSystem::gasCompIdx;
|
|
|
|
static const unsigned numModelEq = getPropValue<TypeTag, Properties::NumEq>();
|
|
static const unsigned conti0EqIdx = GetPropType<TypeTag, Properties::Indices>::conti0EqIdx;
|
|
static const unsigned contiEnergyEqIdx = GetPropType<TypeTag, Properties::Indices>::contiEnergyEqIdx;
|
|
|
|
static constexpr unsigned historySize = getPropValue<TypeTag, Properties::TimeDiscHistorySize>();
|
|
|
|
static constexpr bool enableEnergy = getPropValue<TypeTag, Properties::EnableEnergy>();
|
|
|
|
typedef Opm::CompositionalFluidState<Scalar, FluidSystem, /*storeEnthalpy=*/true> FluidState;
|
|
typedef Dune::FieldMatrix<Scalar, dimWorld, dimWorld> DimMatrix;
|
|
|
|
// all quantities that need to be stored per degree of freedom that intersects the
|
|
// well.
|
|
struct DofVariables {
|
|
DofVariables() = default;
|
|
DofVariables(const DofVariables&) = default;
|
|
|
|
// retrieve the solution dependent quantities that are only updated at the
|
|
// beginning of a time step from the IntensiveQuantities of the model
|
|
void updateBeginTimestep(const IntensiveQuantities& intQuants OPM_UNUSED)
|
|
{}
|
|
|
|
// retrieve the solution dependent quantities from the IntensiveQuantities of the
|
|
// model
|
|
void update(const IntensiveQuantities& intQuants)
|
|
{
|
|
const auto& fs = intQuants.fluidState();
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
|
|
if (!FluidSystem::phaseIsActive(phaseIdx))
|
|
continue;
|
|
|
|
pressure[phaseIdx] = fs.pressure(phaseIdx);
|
|
density[phaseIdx] = fs.density(phaseIdx);
|
|
mobility[phaseIdx] = intQuants.mobility(phaseIdx);
|
|
}
|
|
|
|
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx) {
|
|
oilMassFraction[compIdx] = fs.massFraction(oilPhaseIdx, compIdx);
|
|
gasMassFraction[compIdx] = fs.massFraction(gasPhaseIdx, compIdx);
|
|
}
|
|
}
|
|
|
|
// the depth of the centroid of the DOF
|
|
Scalar depth;
|
|
|
|
// the volume in m^3 of the DOF
|
|
Scalar totalVolume;
|
|
|
|
// the effective size of an element in each direction. This is defined as the
|
|
// distance of the face centers along the respective axis.
|
|
std::array<Scalar, dimWorld> effectiveSize;
|
|
|
|
// the intrinsic permeability matrix for the degree of freedom
|
|
DimMatrix permeability;
|
|
|
|
// the effective permeability of the connection. usually that's the geometric
|
|
// mean of the X and Y permeabilities of the DOF times the DOF's height
|
|
Scalar effectivePermeability;
|
|
|
|
// The connection transmissibility factor to be used for a given DOF. this is
|
|
// usually computed from the values above but it can be explicitly specified by
|
|
// the user...
|
|
Scalar connectionTransmissibilityFactor;
|
|
|
|
// the radius of the well for the given degree of freedom
|
|
Scalar boreholeRadius;
|
|
|
|
// The skin factor of the well at the given degree of freedom
|
|
Scalar skinFactor;
|
|
|
|
//////////////
|
|
// the following quantities depend on the considered solution and are thus updated
|
|
// at the beginning of each Newton-Raphson iteration.
|
|
//////////////
|
|
|
|
// the phase pressures inside a DOF
|
|
std::array<Evaluation, numPhases> pressure;
|
|
|
|
// the phase densities at the DOF
|
|
std::array<Evaluation, numPhases> density;
|
|
|
|
// the phase mobilities of the DOF
|
|
std::array<Evaluation, numPhases> mobility;
|
|
|
|
// the composition of the oil phase at the DOF
|
|
std::array<Evaluation, numComponents> oilMassFraction;
|
|
|
|
// the composition of the gas phase at the DOF
|
|
std::array<Evaluation, numComponents> gasMassFraction;
|
|
|
|
ElementStorage element;
|
|
unsigned pvtRegionIdx;
|
|
unsigned localDofIdx;
|
|
};
|
|
|
|
// some safety checks/caveats
|
|
static_assert(std::is_same<Discretization, EcfvDiscretization<TypeTag> >::value,
|
|
"The Peaceman well model is only implemented for the "
|
|
"element-centered finite volume discretization!");
|
|
static_assert(dimWorld == 3,
|
|
"The Peaceman well model is only implemented for 3D grids!");
|
|
|
|
public:
|
|
enum ControlMode {
|
|
BottomHolePressure,
|
|
TubingHeadPressure,
|
|
VolumetricSurfaceRate,
|
|
VolumetricReservoirRate
|
|
};
|
|
|
|
enum WellType {
|
|
Undefined,
|
|
Injector,
|
|
Producer
|
|
};
|
|
|
|
enum WellStatus {
|
|
// production/injection is ongoing
|
|
Open,
|
|
|
|
// no production/injection, but well is only closed above the reservoir, so cross
|
|
// flow is possible
|
|
Closed,
|
|
|
|
// well is completely separated from the reservoir, e.g. by filling it with
|
|
// concrete.
|
|
Shut
|
|
};
|
|
|
|
EclPeacemanWell(const Simulator& simulator)
|
|
: simulator_(simulator)
|
|
{
|
|
// set the initial status of the well
|
|
wellType_ = Undefined;
|
|
wellStatus_ = Shut;
|
|
controlMode_ = BottomHolePressure;
|
|
|
|
wellTotalVolume_ = 0.0;
|
|
|
|
bhpLimit_ = 0.0;
|
|
thpLimit_ = 0.0;
|
|
|
|
targetBottomHolePressure_ = 0.0;
|
|
actualBottomHolePressure_ = 0.0;
|
|
maximumSurfaceRate_ = 0.0;
|
|
maximumReservoirRate_ = 0.0;
|
|
|
|
actualWeightedSurfaceRate_ = 0.0;
|
|
actualWeightedResvRate_ = 0.0;
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) {
|
|
actualSurfaceRates_[phaseIdx] = 0.0;
|
|
actualResvRates_[phaseIdx] = 0.0;
|
|
|
|
volumetricWeight_[phaseIdx] = 0.0;
|
|
}
|
|
|
|
refDepth_ = 0.0;
|
|
|
|
// set the composition of the injected fluids based. If
|
|
// somebody is stupid enough to inject oil, we assume he wants
|
|
// to loose his fortune on dry oil...
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx)
|
|
for (unsigned compIdx = 0; compIdx < numComponents; ++ compIdx)
|
|
injectionFluidState_.setMoleFraction(phaseIdx, compIdx, 0.0);
|
|
injectionFluidState_.setMoleFraction(gasPhaseIdx, gasCompIdx, 1.0);
|
|
injectionFluidState_.setMoleFraction(waterPhaseIdx, waterCompIdx, 1.0);
|
|
injectionFluidState_.setMoleFraction(oilPhaseIdx, oilCompIdx, 1.0);
|
|
|
|
// set the temperature to 25 deg C, just so that it is set
|
|
injectionFluidState_.setTemperature(273.15 + 25);
|
|
|
|
injectedPhaseIdx_ = oilPhaseIdx;
|
|
}
|
|
|
|
/*!
|
|
* \copydoc Opm::BaseAuxiliaryModule::numDofs()
|
|
*/
|
|
virtual unsigned numDofs() const
|
|
{ return 1; }
|
|
|
|
/*!
|
|
* \copydoc Opm::BaseAuxiliaryModule::addNeighbors()
|
|
*/
|
|
virtual void addNeighbors(std::vector<NeighborSet>& neighbors) const
|
|
{
|
|
int wellGlobalDof = AuxModule::localToGlobalDof(/*localDofIdx=*/0);
|
|
|
|
// the well's bottom hole pressure always affects itself...
|
|
neighbors[wellGlobalDof].insert(wellGlobalDof);
|
|
|
|
// add the grid DOFs which are influenced by the well, and add the well dof to
|
|
// the ones neighboring the grid ones
|
|
auto wellDofIt = dofVariables_.begin();
|
|
const auto& wellDofEndIt = dofVariables_.end();
|
|
for (; wellDofIt != wellDofEndIt; ++ wellDofIt) {
|
|
neighbors[wellGlobalDof].insert(wellDofIt->first);
|
|
neighbors[wellDofIt->first].insert(wellGlobalDof);
|
|
}
|
|
}
|
|
|
|
/*!
|
|
* \copydoc Opm::BaseAuxiliaryModule::addNeighbors()
|
|
*/
|
|
virtual void applyInitial()
|
|
{
|
|
auto& sol = const_cast<SolutionVector&>(simulator_.model().solution(/*timeIdx=*/0));
|
|
|
|
int wellGlobalDof = AuxModule::localToGlobalDof(/*localDofIdx=*/0);
|
|
sol[wellGlobalDof] = 0.0;
|
|
|
|
// make valgrind shut up about the DOFs for the well even if the PrimaryVariables
|
|
// class contains some "holes" due to alignment
|
|
Opm::Valgrind::SetDefined(sol[wellGlobalDof]);
|
|
|
|
// also apply the initial solution of the well to the "old" time steps
|
|
for (unsigned timeIdx = 1; timeIdx < historySize; ++timeIdx) {
|
|
auto& oldSol = const_cast<SolutionVector&>(simulator_.model().solution(timeIdx));
|
|
|
|
oldSol[wellGlobalDof] = sol[wellGlobalDof];
|
|
}
|
|
}
|
|
|
|
/*!
|
|
* \copydoc Opm::BaseAuxiliaryModule::linearize()
|
|
*/
|
|
virtual void linearize(SparseMatrixAdapter& matrix, GlobalEqVector& residual)
|
|
{
|
|
const SolutionVector& curSol = simulator_.model().solution(/*timeIdx=*/0);
|
|
|
|
typedef typename SparseMatrixAdapter::MatrixBlock MatrixBlock;
|
|
|
|
unsigned wellGlobalDofIdx = AuxModule::localToGlobalDof(/*localDofIdx=*/0);
|
|
residual[wellGlobalDofIdx] = 0.0;
|
|
|
|
MatrixBlock diagBlock(0.0);
|
|
for (unsigned i = 0; i < numModelEq; ++ i)
|
|
diagBlock[i][i] = 1.0;
|
|
|
|
MatrixBlock block(0.0);
|
|
|
|
if (wellStatus() == Shut) {
|
|
// if the well is shut, make the auxiliary DOFs a trivial equation in the
|
|
// matrix: the main diagonal is already set to the identity matrix, the
|
|
// off-diagonal matrix entries must be set to 0.
|
|
auto wellDofIt = dofVariables_.begin();
|
|
const auto& wellDofEndIt = dofVariables_.end();
|
|
for (; wellDofIt != wellDofEndIt; ++ wellDofIt) {
|
|
matrix.setBlock(wellGlobalDofIdx, wellDofIt->first, block);
|
|
matrix.setBlock(wellDofIt->first, wellGlobalDofIdx, block);
|
|
}
|
|
matrix.setBlock(wellGlobalDofIdx, wellGlobalDofIdx, diagBlock);
|
|
residual[wellGlobalDofIdx] = 0.0;
|
|
return;
|
|
}
|
|
else if (dofVariables_.empty()) {
|
|
// the well does not feature any perforations on the local process
|
|
matrix.setBlock(wellGlobalDofIdx, wellGlobalDofIdx, diagBlock);
|
|
residual[wellGlobalDofIdx] = 0.0;
|
|
return;
|
|
}
|
|
|
|
Scalar wellResid = wellResidual_(actualBottomHolePressure_);
|
|
residual[wellGlobalDofIdx][0] = wellResid;
|
|
|
|
// account for the effect of the grid DOFs which are influenced by the well on
|
|
// the well equation and the effect of the well on the grid DOFs
|
|
auto wellDofIt = dofVariables_.begin();
|
|
const auto& wellDofEndIt = dofVariables_.end();
|
|
|
|
ElementContext elemCtx(simulator_);
|
|
for (; wellDofIt != wellDofEndIt; ++ wellDofIt) {
|
|
unsigned gridDofIdx = wellDofIt->first;
|
|
const auto& dofVars = *dofVariables_[gridDofIdx];
|
|
DofVariables tmpDofVars(dofVars);
|
|
auto priVars(curSol[gridDofIdx]);
|
|
|
|
/////////////
|
|
// influence of grid on well
|
|
elemCtx.updateStencil( dofVars.element );
|
|
// reset block from previous values
|
|
block = 0.0;
|
|
for (unsigned priVarIdx = 0; priVarIdx < numModelEq; ++priVarIdx) {
|
|
// calculate the derivative of the well equation w.r.t. the current
|
|
// primary variable using forward differences
|
|
Scalar eps =
|
|
1e3
|
|
*std::numeric_limits<Scalar>::epsilon()
|
|
*std::max<Scalar>(1.0, priVars[priVarIdx]);
|
|
priVars[priVarIdx] += eps;
|
|
|
|
elemCtx.updateIntensiveQuantities(priVars, dofVars.localDofIdx, /*timeIdx=*/0);
|
|
tmpDofVars.update(elemCtx.intensiveQuantities(dofVars.localDofIdx, /*timeIdx=*/0));
|
|
|
|
Scalar dWellEq_dPV =
|
|
(wellResidual_(actualBottomHolePressure_, &tmpDofVars, gridDofIdx) - wellResid)
|
|
/ eps;
|
|
block[0][priVarIdx] = dWellEq_dPV;
|
|
|
|
// go back to the original primary variables
|
|
priVars[priVarIdx] -= eps;
|
|
}
|
|
matrix.setBlock(wellGlobalDofIdx, gridDofIdx, block);
|
|
|
|
//
|
|
/////////////
|
|
|
|
/////////////
|
|
// influence of well on grid:
|
|
RateVector q(0.0);
|
|
RateVector modelRate;
|
|
std::array<Scalar, numPhases> resvRates;
|
|
|
|
elemCtx.updateIntensiveQuantities(priVars, dofVars.localDofIdx, /*timeIdx=*/0);
|
|
|
|
const auto& fluidState = elemCtx.intensiveQuantities(dofVars.localDofIdx, /*timeIdx=*/0).fluidState();
|
|
|
|
// first, we need the source term of the grid for the slightly disturbed well.
|
|
Scalar eps =
|
|
1e3
|
|
*std::numeric_limits<Scalar>::epsilon()
|
|
*std::max<Scalar>(1e5, actualBottomHolePressure_);
|
|
computeVolumetricDofRates_(resvRates, actualBottomHolePressure_ + eps, *dofVariables_[gridDofIdx]);
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
|
|
if (!FluidSystem::phaseIsActive(phaseIdx))
|
|
continue;
|
|
|
|
modelRate.setVolumetricRate(fluidState, phaseIdx, resvRates[phaseIdx]);
|
|
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx)
|
|
q[compIdx] += modelRate[compIdx];
|
|
}
|
|
|
|
// then, we subtract the source rates for a undisturbed well.
|
|
computeVolumetricDofRates_(resvRates, actualBottomHolePressure_, *dofVariables_[gridDofIdx]);
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
|
|
if (!FluidSystem::phaseIsActive(phaseIdx))
|
|
continue;
|
|
|
|
modelRate.setVolumetricRate(fluidState, phaseIdx, resvRates[phaseIdx]);
|
|
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx)
|
|
q[compIdx] -= modelRate[compIdx];
|
|
}
|
|
|
|
// and finally, we divide by the epsilon to get the derivative
|
|
for (unsigned eqIdx = 0; eqIdx < numModelEq; ++eqIdx)
|
|
q[eqIdx] /= eps;
|
|
|
|
// now we put this derivative into the right place in the Jacobian
|
|
// matrix. This is a bit hacky because it assumes that the model uses a mass
|
|
// rate for each component as its first conservation equation, but we require
|
|
// the black-oil model for now anyway, so this should not be too much of a
|
|
// problem...
|
|
Opm::Valgrind::CheckDefined(q);
|
|
block = 0.0;
|
|
for (unsigned eqIdx = 0; eqIdx < numModelEq; ++ eqIdx)
|
|
block[eqIdx][0] = - Opm::getValue(q[eqIdx])/dofVars.totalVolume;
|
|
|
|
matrix.setBlock(gridDofIdx, wellGlobalDofIdx, block);
|
|
|
|
//
|
|
/////////////
|
|
}
|
|
|
|
// effect of changing the well's bottom hole pressure on the well equation
|
|
Scalar eps =
|
|
1e3
|
|
*std::numeric_limits<Scalar>::epsilon()
|
|
*std::max<Scalar>(1e7, targetBottomHolePressure_);
|
|
Scalar wellResidStar = wellResidual_(actualBottomHolePressure_ + eps);
|
|
diagBlock[0][0] = (wellResidStar - wellResid)/eps;
|
|
|
|
matrix.setBlock(wellGlobalDofIdx, wellGlobalDofIdx, diagBlock);
|
|
}
|
|
|
|
Scalar volumetricSurfaceRateForConnection(int globalDofIdx, int phaseIdx) const
|
|
{
|
|
const DofVariables& dofVars = *dofVariables_.at(globalDofIdx);
|
|
std::array<Scalar, numPhases> volumetricReservoirRates;
|
|
computeVolumetricDofRates_(volumetricReservoirRates, actualBottomHolePressure_, dofVars);
|
|
std::array<Scalar, numPhases> volumetricSurfaceRates;
|
|
computeSurfaceRates_(volumetricSurfaceRates, volumetricReservoirRates, dofVars);
|
|
return volumetricSurfaceRates[phaseIdx];
|
|
}
|
|
|
|
|
|
// reset the well to the initial state, i.e. remove all degrees of freedom...
|
|
void clear()
|
|
{
|
|
dofVarsStore_.clear();
|
|
dofVariables_.clear();
|
|
}
|
|
|
|
/*!
|
|
* \brief Begin the specification of the well.
|
|
*
|
|
* The specification process is the following:
|
|
*
|
|
* beginSpec()
|
|
* setName("FOO");
|
|
* // add degrees of freedom to the well
|
|
* for (dof in wellDofs)
|
|
* addDof(dof);
|
|
* endSpec()
|
|
*
|
|
* // set the radius of the well at the dof [m].
|
|
* // optional, if not specified, it is assumed to be 0.1524m
|
|
* setRadius(dof, someRadius);
|
|
*
|
|
* // set the skin factor of the well.
|
|
* // optional, if not specified, it is assumed to be 0
|
|
* setSkinFactor(dof, someSkinFactor);
|
|
*
|
|
* // specify the phase which is supposed to be injected. (Optional,
|
|
* // if unspecified, the well will throw an
|
|
* // exception if it would inject something.)
|
|
* setInjectedPhaseIndex(phaseIdx);
|
|
*
|
|
* // set maximum production rate at reservoir conditions
|
|
* // (kg/s, optional, if not specified, the well is assumed to be
|
|
* // shut for production)
|
|
* setMaximumReservoirRate(someMassRate);
|
|
*
|
|
* // set maximum injection rate at reservoir conditions
|
|
* // (kg/s, optional, if not specified, the well is assumed to be
|
|
* // shut for injection)
|
|
* setMinmumReservoirRate(someMassRate);
|
|
*
|
|
* // set the relative weight of the mass rate of a fluid phase.
|
|
* // (Optional, if unspecified each phase exhibits a weight of 1)
|
|
* setPhaseWeight(phaseIdx, someWeight);
|
|
*
|
|
* // set maximum production rate at surface conditions
|
|
* // (kg/s, optional, if not specified, the well is assumed to be
|
|
* // not limited by the surface rate)
|
|
* setMaximumSurfaceRate(someMassRate);
|
|
*
|
|
* // set maximum production rate at surface conditions
|
|
* // (kg/s, optional, if not specified, the well is assumed to be
|
|
* // not limited by the surface rate)
|
|
* setMinimumSurfaceRate(someMassRate);
|
|
*
|
|
* // set the minimum pressure at the bottom of the well (Pa,
|
|
* // optional, if not specified, the well is assumes it estimates
|
|
* // the bottom hole pressure based on the tubing head pressure
|
|
* // assuming hydrostatic conditions.)
|
|
* setMinimumBottomHolePressure(somePressure);
|
|
*
|
|
* // set the pressure at the top of the well (Pa,
|
|
* // optional, if not specified, the tubing head pressure is
|
|
* // assumed to be 1 bar)
|
|
* setTubingHeadPressure(somePressure);
|
|
*
|
|
* // set the control mode of the well [m].
|
|
* // optional, if not specified, it is assumed to be "BottomHolePressure"
|
|
* setControlMode(Well::TubingHeadPressure);
|
|
*
|
|
* // set the tubing head pressure of the well [Pa]
|
|
* // only require if the control mode is "TubingHeadPressure"
|
|
* setTubingHeadPressure(1e5);
|
|
*/
|
|
void beginSpec()
|
|
{
|
|
// this is going to be set to a real value by any realistic grid. Shall we bet?
|
|
refDepth_ = 1e100;
|
|
|
|
// By default, take the bottom hole pressure as a given
|
|
controlMode_ = ControlMode::BottomHolePressure;
|
|
|
|
// use one bar for the default bottom hole and tubing head
|
|
// pressures. For the bottom hole pressure, this is probably
|
|
// off by at least one magnitude...
|
|
bhpLimit_ = 1e5;
|
|
thpLimit_ = 1e5;
|
|
|
|
// reset the actually observed bottom hole pressure
|
|
actualBottomHolePressure_ = 0.0;
|
|
|
|
// By default, all fluids exhibit the weight 1.0
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx)
|
|
volumetricWeight_[phaseIdx] = 1.0;
|
|
|
|
wellType_ = Undefined;
|
|
|
|
wellTotalVolume_ = 0.0;
|
|
}
|
|
|
|
/*!
|
|
* \brief Set the relative weight of the volumetric phase rates.
|
|
*/
|
|
void setVolumetricPhaseWeights(Scalar oilWeight, Scalar gasWeight, Scalar waterWeight)
|
|
{
|
|
volumetricWeight_[oilPhaseIdx] = oilWeight;
|
|
volumetricWeight_[gasPhaseIdx] = gasWeight;
|
|
volumetricWeight_[waterPhaseIdx] = waterWeight;
|
|
}
|
|
|
|
/*!
|
|
* \brief Return the human-readable name of the well
|
|
*
|
|
* Well, let's say "readable by some humans".
|
|
*/
|
|
const std::string& name() const
|
|
{ return name_; }
|
|
|
|
/*!
|
|
* \brief Set the human-readable name of the well
|
|
*/
|
|
void setName(const std::string& newName)
|
|
{ name_ = newName; }
|
|
|
|
/*!
|
|
* \brief Add a degree of freedom to the well.
|
|
*/
|
|
template <class Context>
|
|
void addDof(const Context& context, unsigned dofIdx)
|
|
{
|
|
unsigned globalDofIdx = context.globalSpaceIndex(dofIdx, /*timeIdx=*/0);
|
|
if (applies(globalDofIdx))
|
|
// we already have this DOF in the well!
|
|
return;
|
|
|
|
const auto& dofPos = context.pos(dofIdx, /*timeIdx=*/0);
|
|
|
|
dofVarsStore_.push_back(DofVariables());
|
|
dofVariables_[globalDofIdx] = &dofVarsStore_.back();
|
|
DofVariables& dofVars = *dofVariables_[globalDofIdx];
|
|
wellTotalVolume_ += context.model().dofTotalVolume(globalDofIdx);
|
|
|
|
dofVars.element = context.element();
|
|
|
|
dofVars.localDofIdx = dofIdx;
|
|
dofVars.pvtRegionIdx = context.problem().pvtRegionIndex(context, dofIdx, /*timeIdx=*/0);
|
|
assert(dofVars.pvtRegionIdx == 0);
|
|
|
|
// determine the size of the element
|
|
dofVars.effectiveSize.fill(0.0);
|
|
|
|
// we assume all elements to be hexahedrons!
|
|
assert(context.element().subEntities(/*codim=*/dimWorld) == 8);
|
|
|
|
const auto& refElem = Dune::ReferenceElements<Scalar, /*dim=*/3>::cube();
|
|
|
|
// determine the current element's effective size
|
|
const auto& elem = context.element();
|
|
unsigned faceIdx = 0;
|
|
unsigned numFaces = refElem.size(/*codim=*/1);
|
|
for (; faceIdx < numFaces; ++faceIdx) {
|
|
const auto& faceCenterLocal = refElem.position(faceIdx, /*codim=*/1);
|
|
const auto& faceCenter = elem.geometry().global(faceCenterLocal);
|
|
|
|
switch (faceIdx) {
|
|
case 0:
|
|
dofVars.effectiveSize[0] -= faceCenter[0];
|
|
break;
|
|
case 1:
|
|
dofVars.effectiveSize[0] += faceCenter[0];
|
|
break;
|
|
case 2:
|
|
dofVars.effectiveSize[1] -= faceCenter[1];
|
|
break;
|
|
case 3:
|
|
dofVars.effectiveSize[1] += faceCenter[1];
|
|
break;
|
|
case 4:
|
|
dofVars.depth += faceCenter[2];
|
|
dofVars.effectiveSize[2] -= faceCenter[2];
|
|
break;
|
|
case 5:
|
|
dofVars.depth += faceCenter[2];
|
|
dofVars.effectiveSize[2] += faceCenter[2];
|
|
break;
|
|
}
|
|
}
|
|
|
|
// the volume associated with the DOF
|
|
dofVars.totalVolume = context.model().dofTotalVolume(globalDofIdx);
|
|
|
|
// the depth of the degree of freedom
|
|
dofVars.depth /= 2;
|
|
|
|
// default borehole radius: 1/2 foot
|
|
dofVars.boreholeRadius = 0.3048/2;
|
|
|
|
// default skin factor: 0
|
|
dofVars.skinFactor = 0;
|
|
|
|
// the intrinsic permeability tensor of the DOF
|
|
const auto& K = context.problem().intrinsicPermeability(context, dofIdx, /*timeIdx=*/0);
|
|
dofVars.permeability = K;
|
|
|
|
// default the effective permeability: Geometric mean of the x and y components
|
|
// of the intrinsic permeability of DOF times the DOF's height.
|
|
assert(K[0][0] > 0);
|
|
assert(K[1][1] > 0);
|
|
dofVars.effectivePermeability =
|
|
std::sqrt(K[0][0]*K[1][1])*dofVars.effectiveSize[2];
|
|
|
|
// from that, compute the default connection transmissibility factor
|
|
computeConnectionTransmissibilityFactor_(globalDofIdx);
|
|
|
|
// we assume that the z-coordinate represents depth (and not
|
|
// height) here...
|
|
if (dofPos[2] < refDepth_)
|
|
refDepth_ = dofPos[2];
|
|
}
|
|
|
|
int numConnections() const
|
|
{ return dofVariables_.size(); }
|
|
|
|
/*!
|
|
* \brief Finalize the specification of the borehole.
|
|
*/
|
|
void endSpec()
|
|
{
|
|
const auto& comm = simulator_.gridView().comm();
|
|
|
|
int nTotal = dofVariables_.size();
|
|
nTotal = comm.sum(nTotal);
|
|
if (nTotal == 0) {
|
|
// well does not penetrate any active cell on any process. notify the
|
|
// user about this.
|
|
std::cout << "Well " << name() << " does not penetrate any active cell."
|
|
<< " Assuming it to be shut!\n";
|
|
setWellStatus(WellStatus::Shut);
|
|
}
|
|
|
|
// determine the maximum depth of the well over all processes
|
|
refDepth_ = comm.min(refDepth_);
|
|
|
|
// the total volume of the well must also be summed over all processes
|
|
wellTotalVolume_ = comm.sum(wellTotalVolume_);
|
|
}
|
|
|
|
/*!
|
|
* \brief Set the control mode of the well.
|
|
*
|
|
* This specifies which quantities are assumed to be externally
|
|
* given and which must be calculated based on those.
|
|
*/
|
|
void setControlMode(ControlMode controlMode)
|
|
{ controlMode_ = controlMode; }
|
|
|
|
/*!
|
|
* \brief Set the temperature of the injected fluids [K]
|
|
*/
|
|
void setTemperature(Scalar value)
|
|
{ wellTemperature_ = value; }
|
|
|
|
/*!
|
|
* \brief Set the connection transmissibility factor for a given degree of freedom.
|
|
*/
|
|
template <class Context>
|
|
void setConnectionTransmissibilityFactor(const Context& context, unsigned dofIdx, Scalar value)
|
|
{
|
|
unsigned globalDofIdx = context.globalSpaceIndex(dofIdx, /*timeIdx=*/0);
|
|
dofVariables_[globalDofIdx]->connectionTransmissibilityFactor = value;
|
|
}
|
|
|
|
/*!
|
|
* \brief Set the effective permeability Kh to be used for a given degree of freedom.
|
|
*
|
|
* By default, Kh is sqrt(K_xx * K_yy) * h, where K_xx and K_yy is the permeability
|
|
* for the DOF in X and Y directions and h is the height associated with the degree
|
|
* of freedom.
|
|
*
|
|
* Note: The connection transmissibility factor is updated after calling this method,
|
|
* so if setConnectionTransmissibilityFactor() is to have any effect, it should
|
|
* be called after setEffectivePermeability()!
|
|
*/
|
|
template <class Context>
|
|
void setEffectivePermeability(const Context& context, unsigned dofIdx, Scalar value)
|
|
{
|
|
unsigned globalDofIdx = context.globalSpaceIndex(dofIdx, /*timeIdx=*/0);
|
|
dofVariables_[globalDofIdx].effectivePermeability = value;
|
|
|
|
computeConnectionTransmissibilityFactor_(globalDofIdx);
|
|
}
|
|
|
|
/*!
|
|
* \brief Set the type of the well (i.e., injector or producer).
|
|
*/
|
|
void setWellType(WellType wellType)
|
|
{ wellType_ = wellType; }
|
|
|
|
/*!
|
|
* \brief Returns the type of the well (i.e., injector or producer).
|
|
*/
|
|
WellType wellType() const
|
|
{ return wellType_; }
|
|
|
|
/*!
|
|
* \brief Set the index of fluid phase to be injected.
|
|
*
|
|
* This is only relevant if the well type is an injector.
|
|
*/
|
|
void setInjectedPhaseIndex(unsigned injPhaseIdx)
|
|
{ injectedPhaseIdx_ = injPhaseIdx; }
|
|
|
|
/*!
|
|
* \brief Sets the reference depth for the bottom hole pressure [m]
|
|
*/
|
|
void setReferenceDepth(Scalar value)
|
|
{ refDepth_ = value; }
|
|
|
|
/*!
|
|
* \brief The reference depth for the bottom hole pressure [m]
|
|
*/
|
|
Scalar referenceDepth() const
|
|
{ return refDepth_; }
|
|
|
|
/*!
|
|
* \brief Set whether the well is open,closed or shut
|
|
*/
|
|
void setWellStatus(WellStatus status)
|
|
{ wellStatus_ = status; }
|
|
|
|
/*!
|
|
* \brief Return whether the well is open,closed or shut
|
|
*/
|
|
WellStatus wellStatus() const
|
|
{ return wellStatus_; }
|
|
|
|
/*!
|
|
* \brief Return true iff a degree of freedom is directly affected
|
|
* by the well
|
|
*/
|
|
bool applies(unsigned globalDofIdx) const
|
|
{ return dofVariables_.count(globalDofIdx) > 0; }
|
|
|
|
/*!
|
|
* \brief Set the maximum/minimum bottom hole pressure [Pa] of the well.
|
|
*/
|
|
void setTargetBottomHolePressure(Scalar val)
|
|
{ bhpLimit_ = val; }
|
|
|
|
/*!
|
|
* \brief Return the maximum/minimum bottom hole pressure [Pa] of the well.
|
|
*
|
|
* For injectors, this is the maximum, for producers it's the minimum.
|
|
*/
|
|
Scalar targetBottomHolePressure() const
|
|
{ return bhpLimit_; }
|
|
|
|
/*!
|
|
* \brief Return the maximum/minimum bottom hole pressure [Pa] of the well.
|
|
*/
|
|
Scalar bottomHolePressure() const
|
|
{ return actualBottomHolePressure_; }
|
|
|
|
/*!
|
|
* \brief Set the tubing head pressure [Pa] of the well.
|
|
*/
|
|
void setTargetTubingHeadPressure(Scalar val)
|
|
{ thpLimit_ = val; }
|
|
|
|
/*!
|
|
* \brief Return the maximum/minimum tubing head pressure [Pa] of the well.
|
|
*
|
|
* For injectors, this is the maximum, for producers it's the minimum.
|
|
*/
|
|
Scalar targetTubingHeadPressure() const
|
|
{ return thpLimit_; }
|
|
|
|
/*!
|
|
* \brief Return the maximum/minimum tubing head pressure [Pa] of the well.
|
|
*/
|
|
Scalar tubingHeadPressure() const
|
|
{
|
|
// warning: this is a bit hacky...
|
|
Scalar rho = 650; // kg/m^3
|
|
Scalar g = 9.81; // m/s^2
|
|
return actualBottomHolePressure_ + rho*refDepth_*g;
|
|
}
|
|
|
|
/*!
|
|
* \brief Set the maximum combined rate of the fluids at the surface.
|
|
*/
|
|
void setMaximumSurfaceRate(Scalar value)
|
|
{ maximumSurfaceRate_ = value; }
|
|
|
|
/*!
|
|
* \brief Return the weighted maximum surface rate [m^3/s] of the well.
|
|
*/
|
|
Scalar maximumSurfaceRate() const
|
|
{ return maximumSurfaceRate_; }
|
|
|
|
/*!
|
|
* \brief Set the maximum combined rate of the fluids at the surface.
|
|
*/
|
|
void setMaximumReservoirRate(Scalar value)
|
|
{ maximumReservoirRate_ = value; }
|
|
|
|
/*!
|
|
* \brief Return the weighted maximum reservoir rate [m^3/s] of the well.
|
|
*/
|
|
Scalar maximumReservoirRate() const
|
|
{ return maximumReservoirRate_; }
|
|
|
|
/*!
|
|
* \brief Return the reservoir rate [m^3/s] actually seen by the well in the current time
|
|
* step.
|
|
*/
|
|
Scalar reservoirRate() const
|
|
{ return actualWeightedResvRate_; }
|
|
|
|
/*!
|
|
* \brief Return the weighted surface rate [m^3/s] actually seen by the well in the current time
|
|
* step.
|
|
*/
|
|
Scalar surfaceRate() const
|
|
{ return actualWeightedSurfaceRate_; }
|
|
|
|
/*!
|
|
* \brief Return the reservoir rate [m^3/s] of a given fluid which is actually seen
|
|
* by the well in the current time step.
|
|
*/
|
|
Scalar reservoirRate(unsigned phaseIdx) const
|
|
{ return actualResvRates_[phaseIdx]; }
|
|
|
|
/*!
|
|
* \brief Return the weighted surface rate [m^3/s] of a given fluid which is actually
|
|
* seen by the well in the current time step.
|
|
*/
|
|
Scalar surfaceRate(unsigned phaseIdx) const
|
|
{ return actualSurfaceRates_[phaseIdx]; }
|
|
|
|
/*!
|
|
* \brief Set the skin factor of the well
|
|
*
|
|
* Note: The connection transmissibility factor is updated after calling this method,
|
|
* so if setConnectionTransmissibilityFactor() is to have any effect, it should
|
|
* be called after setSkinFactor()!
|
|
*/
|
|
template <class Context>
|
|
void setSkinFactor(const Context& context, unsigned dofIdx, Scalar value)
|
|
{
|
|
unsigned globalDofIdx = context.globalSpaceIndex(dofIdx, /*timeIdx=*/0);
|
|
dofVariables_[globalDofIdx].skinFactor = value;
|
|
|
|
computeConnectionTransmissibilityFactor_(globalDofIdx);
|
|
}
|
|
|
|
/*!
|
|
* \brief Return the well's skin factor at a DOF [-].
|
|
*/
|
|
Scalar skinFactor(unsigned gridDofIdx) const
|
|
{ return dofVariables_.at(gridDofIdx).skinFactor_; }
|
|
|
|
/*!
|
|
* \brief Set the borehole radius of the well
|
|
*
|
|
* Note: The connection transmissibility factor is updated after calling this method,
|
|
* so if setConnectionTransmissibilityFactor() is to have any effect, it should
|
|
* be called after setRadius()!
|
|
*/
|
|
template <class Context>
|
|
void setRadius(const Context& context, unsigned dofIdx, Scalar value)
|
|
{
|
|
unsigned globalDofIdx = context.globalSpaceIndex(dofIdx, /*timeIdx=*/0);
|
|
dofVariables_[globalDofIdx]->boreholeRadius = value;
|
|
|
|
computeConnectionTransmissibilityFactor_(globalDofIdx);
|
|
}
|
|
|
|
/*!
|
|
* \brief Return the well's radius at a cell [m].
|
|
*/
|
|
Scalar radius(unsigned gridDofIdx) const
|
|
{ return dofVariables_.at(gridDofIdx)->radius_; }
|
|
|
|
/*!
|
|
* \brief Informs the well that a time step has just begun.
|
|
*/
|
|
void beginTimeStep()
|
|
{
|
|
if (wellStatus() == Shut)
|
|
return;
|
|
|
|
// calculate the bottom hole pressure to be actually used
|
|
if (controlMode_ == ControlMode::TubingHeadPressure) {
|
|
// assume a density of 650 kg/m^3 for the bottom hole pressure
|
|
// calculation
|
|
Scalar rho = 650.0;
|
|
targetBottomHolePressure_ = thpLimit_ + rho*refDepth_;
|
|
}
|
|
else if (controlMode_ == ControlMode::BottomHolePressure)
|
|
targetBottomHolePressure_ = bhpLimit_;
|
|
else
|
|
// TODO: also take the tubing head pressure limit into account...
|
|
targetBottomHolePressure_ = bhpLimit_;
|
|
|
|
// make it very likely that we screw up if we control for {surface,reservoir}
|
|
// rate, but depend on the {reservoir,surface} rate somewhere...
|
|
if (controlMode_ == ControlMode::VolumetricSurfaceRate)
|
|
maximumReservoirRate_ = 1e100;
|
|
else if (controlMode_ == ControlMode::VolumetricReservoirRate)
|
|
maximumSurfaceRate_ = 1e100;
|
|
|
|
// reset the iteration index
|
|
iterationIdx_ = 0;
|
|
}
|
|
|
|
/*!
|
|
* \brief Informs the well that an iteration has just begun.
|
|
*
|
|
* The beginIteration*() methods, the well calculates the bottom
|
|
* and tubing head pressures, the actual unconstraint production and
|
|
* injection rates, etc. The callback is split into three parts as
|
|
* this arrangement avoids iterating over the whole grid and to
|
|
* re-calculate the volume variables for each well.
|
|
*
|
|
* This is supposed to prepare the well object to do the
|
|
* computations which are required to do the DOF specific
|
|
* things.
|
|
*/
|
|
void beginIterationPreProcess()
|
|
{ }
|
|
|
|
/*!
|
|
* \brief Do the DOF specific part at the beginning of each iteration
|
|
*/
|
|
template <class Context>
|
|
void beginIterationAccumulate(Context& context, unsigned timeIdx)
|
|
{
|
|
if (wellStatus() == Shut)
|
|
return;
|
|
|
|
for (unsigned dofIdx = 0; dofIdx < context.numPrimaryDof(timeIdx); ++dofIdx) {
|
|
unsigned globalDofIdx = context.globalSpaceIndex(dofIdx, timeIdx);
|
|
if (!applies(globalDofIdx))
|
|
continue;
|
|
|
|
DofVariables& dofVars = *dofVariables_.at(globalDofIdx);
|
|
const auto& intQuants = context.intensiveQuantities(dofIdx, timeIdx);
|
|
|
|
if (iterationIdx_ == 0)
|
|
dofVars.updateBeginTimestep(intQuants);
|
|
|
|
dofVars.update(intQuants);
|
|
}
|
|
}
|
|
|
|
/*!
|
|
* \brief Informs the well that an iteration has just begun.
|
|
*
|
|
* This is the post-processing part which uses the results of the
|
|
* accumulation callback.
|
|
*/
|
|
void beginIterationPostProcess()
|
|
{
|
|
if (wellStatus() == Shut)
|
|
return;
|
|
|
|
auto& sol = const_cast<SolutionVector&>(simulator_.model().solution(/*timeIdx=*/0));
|
|
int wellGlobalDof = AuxModule::localToGlobalDof(/*localDofIdx=*/0);
|
|
|
|
if (!dofVariables_.empty()) {
|
|
// retrieve the bottom hole pressure from the global system of equations
|
|
actualBottomHolePressure_ = Toolbox::value(dofVariables_.begin()->second->pressure[0]);
|
|
actualBottomHolePressure_ = computeRateEquivalentBhp_();
|
|
}
|
|
else
|
|
// start with 300 bars if we don't have anything better
|
|
actualBottomHolePressure_ = 300 * 1e5;
|
|
|
|
sol[wellGlobalDof][0] = actualBottomHolePressure_;
|
|
|
|
computeOverallRates_(actualBottomHolePressure_,
|
|
actualResvRates_,
|
|
actualSurfaceRates_);
|
|
|
|
actualWeightedResvRate_ = computeWeightedRate_(actualResvRates_);
|
|
actualWeightedSurfaceRate_ = computeWeightedRate_(actualSurfaceRates_);
|
|
}
|
|
|
|
/*!
|
|
* \brief Called by the simulator after each Newton-Raphson iteration.
|
|
*/
|
|
void endIteration()
|
|
{ ++ iterationIdx_; }
|
|
|
|
/*!
|
|
* \brief Called by the simulator after each time step.
|
|
*/
|
|
void endTimeStep()
|
|
{
|
|
if (wellStatus() == Shut)
|
|
return;
|
|
|
|
// we use a condition that is always false here to prevent the code below from
|
|
// bitrotting. (i.e., at least it stays compileable)
|
|
if (false && simulator_.gridView().comm().rank() == 0) {
|
|
std::cout << "Well '" << name() << "':\n";
|
|
std::cout << " Control mode: " << controlMode_ << "\n";
|
|
std::cout << " BHP limit: " << bhpLimit_/1e5 << " bar\n";
|
|
std::cout << " Observed BHP: " << actualBottomHolePressure_/1e5 << " bar\n";
|
|
std::cout << " Weighted surface rate limit: " << maximumSurfaceRate_ << "\n";
|
|
std::cout << " Weighted surface rate: " << std::abs(actualWeightedSurfaceRate_) << " (="
|
|
<< 100*std::abs(actualWeightedSurfaceRate_)/maximumSurfaceRate_ << "%)\n";
|
|
|
|
std::cout << " Surface rates:\n";
|
|
std::cout << " oil: "
|
|
<< actualSurfaceRates_[oilPhaseIdx] << " m^3/s = "
|
|
<< actualSurfaceRates_[oilPhaseIdx]*(24*60*60) << " m^3/day = "
|
|
<< actualSurfaceRates_[oilPhaseIdx]*(24*60*60)/0.15898729 << " STB/day = "
|
|
<< actualSurfaceRates_[oilPhaseIdx]*(24*60*60)
|
|
*FluidSystem::referenceDensity(oilPhaseIdx, /*pvtRegionIdx=*/0) << " kg/day"
|
|
<< "\n";
|
|
std::cout << " gas: "
|
|
<< actualSurfaceRates_[gasPhaseIdx] << " m^3/s = "
|
|
<< actualSurfaceRates_[gasPhaseIdx]*(24*60*60) << " m^3/day = "
|
|
<< actualSurfaceRates_[gasPhaseIdx]*(24*60*60)/28.316847 << " MCF/day = "
|
|
<< actualSurfaceRates_[gasPhaseIdx]*(24*60*60)
|
|
*FluidSystem::referenceDensity(gasPhaseIdx, /*pvtRegionIdx=*/0) << " kg/day"
|
|
<< "\n";
|
|
std::cout << " water: "
|
|
<< actualSurfaceRates_[waterPhaseIdx] << " m^3/s = "
|
|
<< actualSurfaceRates_[waterPhaseIdx]*(24*60*60) << " m^3/day = "
|
|
<< actualSurfaceRates_[waterPhaseIdx]*(24*60*60)/0.15898729 << " STB/day = "
|
|
<< actualSurfaceRates_[waterPhaseIdx]*(24*60*60)
|
|
*FluidSystem::referenceDensity(waterPhaseIdx, /*pvtRegionIdx=*/0) << " kg/day"
|
|
<< "\n";
|
|
}
|
|
}
|
|
|
|
/*!
|
|
* \brief Computes the source term for a degree of freedom.
|
|
*/
|
|
template <class Context>
|
|
void computeTotalRatesForDof(RateVector& q,
|
|
const Context& context,
|
|
unsigned dofIdx,
|
|
unsigned timeIdx) const
|
|
{
|
|
q = 0.0;
|
|
|
|
unsigned globalDofIdx = context.globalSpaceIndex(dofIdx, timeIdx);
|
|
if (wellStatus() == Shut || !applies(globalDofIdx))
|
|
return;
|
|
|
|
// create a DofVariables object for the current evaluation point
|
|
DofVariables tmp(*dofVariables_.at(globalDofIdx));
|
|
|
|
tmp.update(context.intensiveQuantities(dofIdx, timeIdx));
|
|
|
|
std::array<Evaluation, numPhases> volumetricRates;
|
|
computeVolumetricDofRates_(volumetricRates, actualBottomHolePressure_, tmp);
|
|
|
|
// convert to mass rates
|
|
RateVector modelRate(0.0);
|
|
const auto& intQuants = context.intensiveQuantities(dofIdx, timeIdx);
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
|
|
if (!FluidSystem::phaseIsActive(phaseIdx))
|
|
continue;
|
|
|
|
// energy is disabled or we have production for the given phase, i.e., we
|
|
// can use the intensive quantities' fluid state
|
|
modelRate.setVolumetricRate(intQuants.fluidState(), phaseIdx, volumetricRates[phaseIdx]);
|
|
|
|
if (enableEnergy) {
|
|
if (volumetricRates[phaseIdx] < 0.0) {
|
|
// producer
|
|
const auto& fs = intQuants.fluidState();
|
|
modelRate[contiEnergyEqIdx] += volumetricRates[phaseIdx]*fs.density(phaseIdx)*fs.enthalpy(phaseIdx);
|
|
}
|
|
else if (volumetricRates[phaseIdx] > 0.0
|
|
&& injectedPhaseIdx_ == phaseIdx)
|
|
{
|
|
// injector for the right phase. we need to use the thermodynamic
|
|
// quantities from the borehole as upstream
|
|
//
|
|
// TODO: This is not implemented in a very efficient way, the
|
|
// required quantities could be precomputed at initialization!
|
|
auto fs = injectionFluidState_;
|
|
|
|
// TODO: maybe we need to use a depth dependent pressure here. the
|
|
// difference is probably not very large, and for wells that span
|
|
// multiple perforations it is unclear what "well temperature" means
|
|
// anyway.
|
|
fs.setPressure(phaseIdx, actualBottomHolePressure_);
|
|
|
|
fs.setTemperature(wellTemperature_);
|
|
|
|
typename FluidSystem::template ParameterCache<Evaluation> paramCache;
|
|
unsigned globalSpaceIdx = context.globalSpaceIndex(dofIdx, timeIdx);
|
|
unsigned pvtRegionIdx = context.primaryVars(dofIdx, timeIdx).pvtRegionIndex();
|
|
paramCache.setRegionIndex(pvtRegionIdx);
|
|
paramCache.setMaxOilSat(context.problem().maxOilSaturation(globalSpaceIdx));
|
|
paramCache.updatePhase(fs, phaseIdx);
|
|
|
|
const auto& rho = FluidSystem::density(fs, paramCache, phaseIdx);
|
|
fs.setDensity(phaseIdx, rho);
|
|
|
|
const auto& h = FluidSystem::enthalpy(fs, paramCache, phaseIdx);
|
|
fs.setEnthalpy(phaseIdx, h);
|
|
|
|
modelRate[contiEnergyEqIdx] += volumetricRates[phaseIdx]*fs.density(phaseIdx)*fs.enthalpy(phaseIdx);
|
|
}
|
|
}
|
|
|
|
for (unsigned eqIdx = 0; eqIdx < modelRate.size(); ++eqIdx)
|
|
q[conti0EqIdx + eqIdx] += modelRate[conti0EqIdx + eqIdx];
|
|
}
|
|
|
|
Opm::Valgrind::CheckDefined(q);
|
|
}
|
|
|
|
protected:
|
|
// compute the connection transmissibility factor based on the effective permeability
|
|
// of a connection, the radius of the borehole and the skin factor.
|
|
void computeConnectionTransmissibilityFactor_(unsigned globalDofIdx)
|
|
{
|
|
auto& dofVars = *dofVariables_[globalDofIdx];
|
|
|
|
const auto& D = dofVars.effectiveSize;
|
|
const auto& K = dofVars.permeability;
|
|
Scalar Kh = dofVars.effectivePermeability;
|
|
Scalar S = dofVars.skinFactor;
|
|
Scalar rWell = dofVars.boreholeRadius;
|
|
|
|
// compute the "equivalence radius" r_0 of the connection
|
|
assert(K[0][0] > 0.0);
|
|
assert(K[1][1] > 0.0);
|
|
Scalar tmp1 = std::sqrt(K[1][1]/K[0][0]);
|
|
Scalar tmp2 = 1.0 / tmp1;
|
|
Scalar r0 = std::sqrt(D[0]*D[0]*tmp1 + D[1]*D[1]*tmp2);
|
|
r0 /= std::sqrt(tmp1) + std::sqrt(tmp2);
|
|
r0 *= 0.28;
|
|
|
|
// we assume the well borehole in the center of the dof and that it is vertical,
|
|
// i.e., the area which is exposed to the flow is 2*pi*r0*h. (for non-vertical
|
|
// wells this would need to be multiplied with the cosine of the angle and the
|
|
// height must be adapted...)
|
|
const Scalar exposureFactor = 2*M_PI;
|
|
|
|
dofVars.connectionTransmissibilityFactor = exposureFactor*Kh/(std::log(r0 / rWell) + S);
|
|
}
|
|
|
|
template <class ResultEval, class BhpEval>
|
|
void computeVolumetricDofRates_(std::array<ResultEval, numPhases>& volRates,
|
|
const BhpEval& bottomHolePressure,
|
|
const DofVariables& dofVars) const
|
|
{
|
|
typedef Opm::MathToolbox<Evaluation> DofVarsToolbox;
|
|
typedef typename std::conditional<std::is_same<BhpEval, Scalar>::value,
|
|
ResultEval,
|
|
Scalar>::type DofEval;
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx)
|
|
volRates[phaseIdx] = 0.0;
|
|
|
|
// connection transmissibility factor for the current DOF.
|
|
Scalar Twj = dofVars.connectionTransmissibilityFactor;
|
|
|
|
// bottom hole pressure and depth of the degree of freedom
|
|
ResultEval pbh = bottomHolePressure;
|
|
Scalar depth = dofVars.depth;
|
|
|
|
// gravity constant
|
|
Scalar g = simulator_.problem().gravity()[dimWorld - 1];
|
|
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
|
|
if (!FluidSystem::phaseIsActive(phaseIdx))
|
|
continue;
|
|
|
|
// well model due to Peaceman; see Chen et al., p. 449
|
|
|
|
// phase pressure in grid cell
|
|
const DofEval& p = DofVarsToolbox::template decay<DofEval>(dofVars.pressure[phaseIdx]);
|
|
|
|
// density and mobility of fluid phase
|
|
const DofEval& rho = DofVarsToolbox::template decay<DofEval>(dofVars.density[phaseIdx]);
|
|
DofEval lambda;
|
|
if (wellType_ == Producer) {
|
|
//assert(p < pbh);
|
|
lambda = DofVarsToolbox::template decay<DofEval>(dofVars.mobility[phaseIdx]);
|
|
}
|
|
else if (wellType_ == Injector) {
|
|
//assert(p > pbh);
|
|
if (phaseIdx != injectedPhaseIdx_)
|
|
continue;
|
|
|
|
// use the total mobility, i.e. the sum of all phase mobilities at the
|
|
// injector cell. this seems a bit weird: at the wall of the borehole,
|
|
// there should only be injected phase present, so its mobility should be
|
|
// 1/viscosity...
|
|
lambda = 0.0;
|
|
for (unsigned phase2Idx = 0; phase2Idx < numPhases; ++phase2Idx) {
|
|
if (!FluidSystem::phaseIsActive(phase2Idx))
|
|
continue;
|
|
|
|
lambda += DofVarsToolbox::template decay<DofEval>(dofVars.mobility[phase2Idx]);
|
|
}
|
|
}
|
|
else
|
|
throw std::logic_error("Type of well \""+name()+"\" is undefined");
|
|
|
|
Opm::Valgrind::CheckDefined(pbh);
|
|
Opm::Valgrind::CheckDefined(p);
|
|
Opm::Valgrind::CheckDefined(g);
|
|
Opm::Valgrind::CheckDefined(rho);
|
|
Opm::Valgrind::CheckDefined(lambda);
|
|
Opm::Valgrind::CheckDefined(depth);
|
|
Opm::Valgrind::CheckDefined(refDepth_);
|
|
|
|
// pressure in the borehole ("hole pressure") at the given location
|
|
ResultEval ph = pbh + rho*g*(depth - refDepth_);
|
|
|
|
// volumetric reservoir rate for the phase
|
|
volRates[phaseIdx] = Twj*lambda*(ph - p);
|
|
|
|
Opm::Valgrind::CheckDefined(g);
|
|
Opm::Valgrind::CheckDefined(ph);
|
|
Opm::Valgrind::CheckDefined(volRates[phaseIdx]);
|
|
}
|
|
}
|
|
|
|
/*!
|
|
* \brief Given the volumetric rates for all phases, return the
|
|
* corresponding weighted rate
|
|
*
|
|
* The weights are user-specified and can be set using
|
|
* setVolumetricPhaseWeights()
|
|
*/
|
|
template <class Eval>
|
|
Eval computeWeightedRate_(const std::array<Eval, numPhases>& volRates) const
|
|
{
|
|
Eval result = 0;
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
|
|
if (!FluidSystem::phaseIsActive(phaseIdx))
|
|
continue;
|
|
|
|
result += volRates[phaseIdx]*volumetricWeight_[phaseIdx];
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/*!
|
|
* \brief Convert volumetric reservoir rates into volumetric volume rates.
|
|
*
|
|
* This requires the density and composition of the phases and
|
|
* thus the applicable fluid state.
|
|
*/
|
|
template <class Eval>
|
|
void computeSurfaceRates_(std::array<Eval, numPhases>& surfaceRates,
|
|
const std::array<Eval, numPhases>& reservoirRate,
|
|
const DofVariables& dofVars) const
|
|
{
|
|
// the array for the surface rates and the one for the reservoir rates must not
|
|
// be the same!
|
|
assert(&surfaceRates != &reservoirRate);
|
|
|
|
int regionIdx = dofVars.pvtRegionIdx;
|
|
|
|
// If your compiler bails out here, you have not chosen the correct fluid
|
|
// system. Currently, only Opm::FluidSystems::BlackOil is supported, sorry...
|
|
Scalar rhoOilSurface = FluidSystem::referenceDensity(oilPhaseIdx, regionIdx);
|
|
Scalar rhoGasSurface = FluidSystem::referenceDensity(gasPhaseIdx, regionIdx);
|
|
Scalar rhoWaterSurface = FluidSystem::referenceDensity(waterPhaseIdx, regionIdx);
|
|
|
|
// oil
|
|
if (FluidSystem::phaseIsActive(oilPhaseIdx))
|
|
surfaceRates[oilPhaseIdx] =
|
|
// oil in gas phase
|
|
reservoirRate[gasPhaseIdx]
|
|
* Toolbox::value(dofVars.density[gasPhaseIdx])
|
|
* Toolbox::value(dofVars.gasMassFraction[oilCompIdx])
|
|
/ rhoOilSurface
|
|
+
|
|
// oil in oil phase
|
|
reservoirRate[oilPhaseIdx]
|
|
* Toolbox::value(dofVars.density[oilPhaseIdx])
|
|
* Toolbox::value(dofVars.oilMassFraction[oilCompIdx])
|
|
/ rhoOilSurface;
|
|
|
|
// gas
|
|
if (FluidSystem::phaseIsActive(gasPhaseIdx))
|
|
surfaceRates[gasPhaseIdx] =
|
|
// gas in gas phase
|
|
reservoirRate[gasPhaseIdx]
|
|
* Toolbox::value(dofVars.density[gasPhaseIdx])
|
|
* Toolbox::value(dofVars.gasMassFraction[gasCompIdx])
|
|
/ rhoGasSurface
|
|
+
|
|
// gas in oil phase
|
|
reservoirRate[oilPhaseIdx]
|
|
* Toolbox::value(dofVars.density[oilPhaseIdx])
|
|
* Toolbox::value(dofVars.oilMassFraction[gasCompIdx])
|
|
/ rhoGasSurface;
|
|
|
|
// water
|
|
if (FluidSystem::phaseIsActive(waterPhaseIdx))
|
|
surfaceRates[waterPhaseIdx] =
|
|
reservoirRate[waterPhaseIdx]
|
|
* Toolbox::value(dofVars.density[waterPhaseIdx])
|
|
/ rhoWaterSurface;
|
|
}
|
|
|
|
/*!
|
|
* \brief Compute the volumetric phase rate of the complete well given a bottom hole
|
|
* pressure.
|
|
*
|
|
* A single degree of freedom may be different from the evaluation point.
|
|
*/
|
|
void computeOverallRates_(Scalar bottomHolePressure,
|
|
std::array<Scalar, numPhases>& overallResvRates,
|
|
std::array<Scalar, numPhases>& overallSurfaceRates,
|
|
const DofVariables *evalDofVars = 0,
|
|
int globalEvalDofIdx = -1) const
|
|
|
|
{
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
|
|
overallResvRates[phaseIdx] = 0.0;
|
|
overallSurfaceRates[phaseIdx] = 0.0;
|
|
}
|
|
|
|
auto dofVarsIt = dofVariables_.begin();
|
|
const auto& dofVarsEndIt = dofVariables_.end();
|
|
for (; dofVarsIt != dofVarsEndIt; ++ dofVarsIt) {
|
|
std::array<Scalar, numPhases> volumetricReservoirRates;
|
|
const DofVariables *tmp;
|
|
if (dofVarsIt->first == globalEvalDofIdx)
|
|
tmp = evalDofVars;
|
|
else
|
|
tmp = dofVarsIt->second;
|
|
|
|
computeVolumetricDofRates_<Scalar, Scalar>(volumetricReservoirRates, bottomHolePressure, *tmp);
|
|
|
|
std::array<Scalar, numPhases> volumetricSurfaceRates;
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
|
|
volumetricSurfaceRates[ phaseIdx ] = 0;
|
|
}
|
|
computeSurfaceRates_(volumetricSurfaceRates, volumetricReservoirRates, *tmp);
|
|
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
|
|
if (!FluidSystem::phaseIsActive(phaseIdx))
|
|
continue;
|
|
|
|
overallResvRates[phaseIdx] += volumetricReservoirRates[phaseIdx];
|
|
overallSurfaceRates[phaseIdx] += volumetricSurfaceRates[phaseIdx];
|
|
}
|
|
}
|
|
}
|
|
|
|
/*!
|
|
* \brief Compute the weighted volumetric rate of the complete well given a bottom
|
|
* hole pressure.
|
|
*
|
|
* A single degree of freedom may be different from the evaluation point.
|
|
*/
|
|
Scalar computeOverallWeightedSurfaceRate_(Scalar bottomHolePressure,
|
|
std::array<Scalar, numPhases>& overallSurfaceRates,
|
|
const DofVariables& evalDofVars,
|
|
int globalEvalDofIdx) const
|
|
|
|
{
|
|
static std::array<Scalar, numPhases> resvRatesDummy;
|
|
computeOverallRates_(bottomHolePressure,
|
|
overallSurfaceRates,
|
|
resvRatesDummy,
|
|
evalDofVars,
|
|
globalEvalDofIdx);
|
|
return computeWeightedRate_(overallSurfaceRates);
|
|
}
|
|
|
|
// this is a more convenient version of the method above if all degrees of freedom
|
|
// are supposed to be at their evaluation points.
|
|
Scalar computeOverallWeightedSurfaceRate_(Scalar bottomHolePressure,
|
|
std::array<Scalar, numPhases>& overallSurfaceRates) const
|
|
{
|
|
// create a dummy DofVariables object and call the method above using an index
|
|
// that is guaranteed to never be part of a well...
|
|
static DofVariables dummyDofVars;
|
|
return computeOverallWeightedSurfaceRate_(bottomHolePressure,
|
|
overallSurfaceRates,
|
|
dummyDofVars,
|
|
/*globalEvalDofIdx=*/-1);
|
|
}
|
|
|
|
/*!
|
|
* \brief Compute the "rate-equivalent bottom hole pressure"
|
|
*
|
|
* I.e. The bottom hole pressure where the well rate is exactly the one which is
|
|
* targeted. This is zero of the "rate-equivalent bottom hole pressure" would be
|
|
* smaller than 1 bar.
|
|
*/
|
|
Scalar computeRateEquivalentBhp_() const
|
|
{
|
|
if (wellStatus() == Shut)
|
|
// there is no flow happening in the well, so we return 0...
|
|
return 0.0;
|
|
|
|
// initialize the bottom hole pressure which we would like to calculate
|
|
Scalar bhpScalar = actualBottomHolePressure_;
|
|
if (bhpScalar > 1e8)
|
|
bhpScalar = 1e8;
|
|
if (bhpScalar < 1e5)
|
|
bhpScalar = 1e5;
|
|
|
|
// if the BHP goes below 1 bar for the first time, we reset it to 10 bars and
|
|
// are "on bail", i.e. if it goes below 1 bar again, we give up because the
|
|
// final pressure would be below 1 bar...
|
|
bool onBail = false;
|
|
|
|
// Newton-Raphson method
|
|
typedef Opm::DenseAd::Evaluation<Scalar, 1> BhpEval;
|
|
|
|
BhpEval bhpEval(bhpScalar);
|
|
bhpEval.setDerivative(0, 1.0);
|
|
const Scalar tolerance = 1e3*std::numeric_limits<Scalar>::epsilon();
|
|
const int maxIter = 20;
|
|
for (int iterNum = 0; iterNum < maxIter; ++iterNum) {
|
|
const auto& f = wellResidual_<BhpEval>(bhpEval);
|
|
|
|
if (std::abs(f.derivative(0)) < 1e-20)
|
|
throw Opm::NumericalIssue("Cannot determine the bottom hole pressure for well "+name()
|
|
+": Derivative of the well residual is too small");
|
|
Scalar delta = f.value()/f.derivative(0);
|
|
|
|
bhpEval.setValue(bhpEval.value() - delta);
|
|
if (bhpEval < 1e5) {
|
|
bhpEval.setValue(1e5);
|
|
if (onBail)
|
|
return bhpEval.value();
|
|
else
|
|
onBail = true;
|
|
}
|
|
else
|
|
onBail = false;
|
|
|
|
if (std::abs(delta/bhpEval.value()) < tolerance)
|
|
return bhpEval.value();
|
|
}
|
|
|
|
throw Opm::NumericalIssue("Could not determine the bottom hole pressure of well '"+name()
|
|
+"' within " + std::to_string(maxIter) + " iterations.");
|
|
}
|
|
|
|
template <class BhpEval>
|
|
BhpEval wellResidual_(const BhpEval& bhp,
|
|
const DofVariables *replacementDofVars = 0,
|
|
int replacedGridIdx = -1) const
|
|
{
|
|
typedef Opm::MathToolbox<BhpEval> BhpEvalToolbox;
|
|
|
|
// compute the volumetric reservoir and surface rates for the complete well
|
|
BhpEval resvRate = 0.0;
|
|
|
|
std::array<BhpEval, numPhases> totalSurfaceRates;
|
|
std::fill(totalSurfaceRates.begin(), totalSurfaceRates.end(), 0.0);
|
|
|
|
auto dofVarsIt = dofVariables_.begin();
|
|
const auto& dofVarsEndIt = dofVariables_.end();
|
|
for (; dofVarsIt != dofVarsEndIt; ++ dofVarsIt) {
|
|
std::array<BhpEval, numPhases> resvRates;
|
|
const DofVariables *dofVars = dofVarsIt->second;
|
|
if (replacedGridIdx == dofVarsIt->first)
|
|
dofVars = replacementDofVars;
|
|
computeVolumetricDofRates_(resvRates, bhp, *dofVars);
|
|
|
|
std::array<BhpEval, numPhases> surfaceRates;
|
|
computeSurfaceRates_(surfaceRates, resvRates, *dofVars);
|
|
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
|
|
if (!FluidSystem::phaseIsActive(phaseIdx))
|
|
continue;
|
|
|
|
totalSurfaceRates[phaseIdx] += surfaceRates[phaseIdx];
|
|
}
|
|
|
|
resvRate += computeWeightedRate_(resvRates);
|
|
}
|
|
|
|
BhpEval surfaceRate = computeWeightedRate_(totalSurfaceRates);
|
|
|
|
// compute the residual of well equation. we currently use max(rateMax - rate,
|
|
// bhp - targetBhp) for producers and max(rateMax - rate, bhp - targetBhp) for
|
|
// injectors. (i.e., the target bottom hole pressure is an upper limit for
|
|
// injectors and a lower limit for producers.) Note that with this approach, one
|
|
// of the limits must always be reached to get the well equation to zero...
|
|
Opm::Valgrind::CheckDefined(maximumSurfaceRate_);
|
|
Opm::Valgrind::CheckDefined(maximumReservoirRate_);
|
|
Opm::Valgrind::CheckDefined(surfaceRate);
|
|
Opm::Valgrind::CheckDefined(resvRate);
|
|
|
|
BhpEval result = 1e30;
|
|
|
|
BhpEval maxSurfaceRate = maximumSurfaceRate_;
|
|
BhpEval maxResvRate = maximumReservoirRate_;
|
|
if (wellStatus() == Closed) {
|
|
// make the weight of the fluids on the surface equal and require that no
|
|
// fluids are produced on the surface...
|
|
maxSurfaceRate = 0.0;
|
|
surfaceRate = 0.0;
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
|
|
if (!FluidSystem::phaseIsActive(phaseIdx))
|
|
continue;
|
|
|
|
surfaceRate += totalSurfaceRates[phaseIdx];
|
|
}
|
|
|
|
// don't care about the reservoir rate...
|
|
maxResvRate = 1e30;
|
|
}
|
|
|
|
if (wellType_ == Injector) {
|
|
// for injectors the computed rates are positive and the target BHP is the
|
|
// maximum allowed pressure ...
|
|
result = BhpEvalToolbox::min(maxSurfaceRate - surfaceRate, result);
|
|
result = BhpEvalToolbox::min(maxResvRate - resvRate, result);
|
|
result = BhpEvalToolbox::min(1e-7*(targetBottomHolePressure_ - bhp), result);
|
|
}
|
|
else {
|
|
assert(wellType_ == Producer);
|
|
// ... for producers the rates are negative and the bottom hole pressure is
|
|
// is the minimum
|
|
result = BhpEvalToolbox::min(maxSurfaceRate + surfaceRate, result);
|
|
result = BhpEvalToolbox::min(maxResvRate + resvRate, result);
|
|
result = BhpEvalToolbox::min(1e-7*(bhp - targetBottomHolePressure_), result);
|
|
}
|
|
|
|
const Scalar scalingFactor = 1e-3;
|
|
return scalingFactor*result;
|
|
}
|
|
|
|
const Simulator& simulator_;
|
|
|
|
std::string name_;
|
|
|
|
std::vector<DofVariables, Opm::aligned_allocator<DofVariables, alignof(DofVariables)> > dofVarsStore_;
|
|
std::map<int, DofVariables*> dofVariables_;
|
|
|
|
// the number of times beginIteration*() was called for the current time step
|
|
unsigned iterationIdx_;
|
|
|
|
// the type of the well (injector, producer or undefined)
|
|
WellType wellType_;
|
|
|
|
// Specifies whether the well is currently open, closed or shut. The difference
|
|
// between "closed" and "shut" is that for the former, the well is assumed to be
|
|
// closed above the reservoir so that cross-flow within the well is possible while
|
|
// the well is completely separated from the reservoir if it is shut. (i.e., no
|
|
// crossflow is possible in this case.)
|
|
WellStatus wellStatus_;
|
|
|
|
// specifies the quantities which are controlled for (i.e., which
|
|
// should be assumed to be externally specified and which should
|
|
// be computed based on those)
|
|
ControlMode controlMode_;
|
|
|
|
// the sum of the total volumes of all the degrees of freedoms that interact with the well
|
|
Scalar wellTotalVolume_;
|
|
|
|
// the temperature assumed for the fluid (in the case of an injector well)
|
|
Scalar wellTemperature_;
|
|
|
|
// The assumed bottom hole and tubing head pressures as specified by the user
|
|
Scalar bhpLimit_;
|
|
Scalar thpLimit_;
|
|
|
|
// The bottom hole pressure to be targeted by the well model. This may be computed
|
|
// from the tubing head pressure (if the control mode is TubingHeadPressure), or it may be
|
|
// just the user-specified bottom hole pressure if the control mode is
|
|
// BottomHolePressure.
|
|
Scalar targetBottomHolePressure_;
|
|
|
|
// The bottom hole pressure which is actually observed in the well
|
|
Scalar actualBottomHolePressure_;
|
|
|
|
// The maximum weighted volumetric surface rates specified by the
|
|
// user. This is used to apply rate limits and it is to be read as
|
|
// the maximum absolute value of the rate, i.e., the well can
|
|
// produce or inject the given amount.
|
|
Scalar maximumSurfaceRate_;
|
|
|
|
// The maximum weighted volumetric reservoir rates specified by
|
|
// the user. This is used to apply rate limits and it is to be
|
|
// read as the maximum absolute value of the rate, i.e., the well
|
|
// can produce or inject the given amount.
|
|
Scalar maximumReservoirRate_;
|
|
|
|
// The volumetric surface rate which is actually observed in the well
|
|
Scalar actualWeightedSurfaceRate_;
|
|
std::array<Scalar, numPhases> actualSurfaceRates_;
|
|
|
|
// The volumetric reservoir rate which is actually observed in the well
|
|
Scalar actualWeightedResvRate_;
|
|
std::array<Scalar, numPhases> actualResvRates_;
|
|
|
|
// The relative weight of the volumetric rate of each fluid
|
|
Scalar volumetricWeight_[numPhases];
|
|
|
|
// the reference depth for the bottom hole pressure. if not specified otherwise, this
|
|
// is the position of the _highest_ DOF in the well.
|
|
Scalar refDepth_;
|
|
|
|
// The thermodynamic state of the fluid which gets injected
|
|
//
|
|
// The fact that this attribute is mutable is kind of an hack
|
|
// which can be avoided using a PressureOverlayFluidState, but
|
|
// then performance would be slightly worse...
|
|
mutable FluidState injectionFluidState_;
|
|
|
|
unsigned injectedPhaseIdx_;
|
|
};
|
|
} // namespace Opm
|
|
|
|
#endif
|