mirror of
https://github.com/OPM/opm-simulators.git
synced 2024-12-18 21:43:27 -06:00
41887508ea
When this boolean parameter is true (the default), tracer solutions will be normalized so that the tracer averages will sum to one in each cell. This behaviour is the same as before, the change is that it can now be turned off.
806 lines
34 KiB
C++
806 lines
34 KiB
C++
/*
|
|
Copyright 2012 SINTEF ICT, Applied Mathematics.
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "config.h"
|
|
#include <opm/core/grid/CellQuadrature.hpp>
|
|
#include <opm/core/grid/FaceQuadrature.hpp>
|
|
#include <opm/core/tof/TofDiscGalReorder.hpp>
|
|
#include <opm/core/tof/DGBasis.hpp>
|
|
#include <opm/core/grid.h>
|
|
#include <opm/core/utility/ErrorMacros.hpp>
|
|
#include <opm/core/utility/SparseTable.hpp>
|
|
#include <opm/core/utility/VelocityInterpolation.hpp>
|
|
#include <opm/core/utility/parameters/ParameterGroup.hpp>
|
|
#include <opm/core/linalg/blas_lapack.h>
|
|
|
|
#include <algorithm>
|
|
#include <cmath>
|
|
#include <numeric>
|
|
#include <iostream>
|
|
|
|
namespace Opm
|
|
{
|
|
|
|
|
|
/// Construct solver.
|
|
TofDiscGalReorder::TofDiscGalReorder(const UnstructuredGrid& grid,
|
|
const parameter::ParameterGroup& param)
|
|
: grid_(grid),
|
|
use_cvi_(false),
|
|
use_limiter_(false),
|
|
limiter_relative_flux_threshold_(1e-3),
|
|
limiter_method_(MinUpwindAverage),
|
|
limiter_usage_(DuringComputations),
|
|
coord_(grid.dimensions),
|
|
velocity_(grid.dimensions),
|
|
gauss_seidel_tol_(1e-3)
|
|
{
|
|
const int dg_degree = param.getDefault("dg_degree", 0);
|
|
const bool use_tensorial_basis = param.getDefault("use_tensorial_basis", false);
|
|
if (use_tensorial_basis) {
|
|
basis_func_.reset(new DGBasisMultilin(grid_, dg_degree));
|
|
} else {
|
|
basis_func_.reset(new DGBasisBoundedTotalDegree(grid_, dg_degree));
|
|
}
|
|
|
|
tracers_ensure_unity_ = param.getDefault("tracers_ensure_unity", true);
|
|
|
|
use_cvi_ = param.getDefault("use_cvi", use_cvi_);
|
|
use_limiter_ = param.getDefault("use_limiter", use_limiter_);
|
|
if (use_limiter_) {
|
|
limiter_relative_flux_threshold_ = param.getDefault("limiter_relative_flux_threshold",
|
|
limiter_relative_flux_threshold_);
|
|
const std::string limiter_method_str = param.getDefault<std::string>("limiter_method", "MinUpwindAverage");
|
|
if (limiter_method_str == "MinUpwindFace") {
|
|
limiter_method_ = MinUpwindFace;
|
|
} else if (limiter_method_str == "MinUpwindAverage") {
|
|
limiter_method_ = MinUpwindAverage;
|
|
} else {
|
|
OPM_THROW(std::runtime_error, "Unknown limiter method: " << limiter_method_str);
|
|
}
|
|
const std::string limiter_usage_str = param.getDefault<std::string>("limiter_usage", "DuringComputations");
|
|
if (limiter_usage_str == "DuringComputations") {
|
|
limiter_usage_ = DuringComputations;
|
|
} else if (limiter_usage_str == "AsPostProcess") {
|
|
limiter_usage_ = AsPostProcess;
|
|
} else if (limiter_usage_str == "AsSimultaneousPostProcess") {
|
|
limiter_usage_ = AsSimultaneousPostProcess;
|
|
} else {
|
|
OPM_THROW(std::runtime_error, "Unknown limiter usage spec: " << limiter_usage_str);
|
|
}
|
|
}
|
|
// A note about the use_cvi_ member variable:
|
|
// In principle, we should not need it, since the choice of velocity
|
|
// interpolation is made below, but we may need to use higher order
|
|
// quadrature to exploit CVI, so we store the choice.
|
|
// An alternative would be to add a virtual method isConstant() to
|
|
// the VelocityInterpolationInterface.
|
|
if (use_cvi_) {
|
|
velocity_interpolation_.reset(new VelocityInterpolationECVI(grid_));
|
|
} else {
|
|
velocity_interpolation_.reset(new VelocityInterpolationConstant(grid_));
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
/// Solve for time-of-flight.
|
|
void TofDiscGalReorder::solveTof(const double* darcyflux,
|
|
const double* porevolume,
|
|
const double* source,
|
|
std::vector<double>& tof_coeff)
|
|
{
|
|
darcyflux_ = darcyflux;
|
|
porevolume_ = porevolume;
|
|
source_ = source;
|
|
#ifndef NDEBUG
|
|
// Sanity check for sources.
|
|
const double cum_src = std::accumulate(source, source + grid_.number_of_cells, 0.0);
|
|
if (std::fabs(cum_src) > *std::max_element(source, source + grid_.number_of_cells)*1e-2) {
|
|
// OPM_THROW(std::runtime_error, "Sources do not sum to zero: " << cum_src);
|
|
OPM_MESSAGE("Warning: sources do not sum to zero: " << cum_src);
|
|
}
|
|
#endif
|
|
const int num_basis = basis_func_->numBasisFunc();
|
|
tof_coeff.resize(num_basis*grid_.number_of_cells);
|
|
std::fill(tof_coeff.begin(), tof_coeff.end(), 0.0);
|
|
tof_coeff_ = &tof_coeff[0];
|
|
rhs_.resize(num_basis);
|
|
jac_.resize(num_basis*num_basis);
|
|
orig_jac_.resize(num_basis*num_basis);
|
|
basis_.resize(num_basis);
|
|
basis_nb_.resize(num_basis);
|
|
grad_basis_.resize(num_basis*grid_.dimensions);
|
|
velocity_interpolation_->setupFluxes(darcyflux);
|
|
num_tracers_ = 0;
|
|
num_multicell_ = 0;
|
|
max_size_multicell_ = 0;
|
|
max_iter_multicell_ = 0;
|
|
num_singlesolves_ = 0;
|
|
reorderAndTransport(grid_, darcyflux);
|
|
switch (limiter_usage_) {
|
|
case AsPostProcess:
|
|
applyLimiterAsPostProcess();
|
|
break;
|
|
case AsSimultaneousPostProcess:
|
|
applyLimiterAsSimultaneousPostProcess();
|
|
break;
|
|
case DuringComputations:
|
|
// Do nothing.
|
|
break;
|
|
default:
|
|
OPM_THROW(std::runtime_error, "Unknown limiter usage choice: " << limiter_usage_);
|
|
}
|
|
if (num_multicell_ > 0) {
|
|
std::cout << num_multicell_ << " multicell blocks with max size "
|
|
<< max_size_multicell_ << " cells in upto "
|
|
<< max_iter_multicell_ << " iterations." << std::endl;
|
|
std::cout << "Average solves per cell (for all cells) was "
|
|
<< double(num_singlesolves_)/double(grid_.number_of_cells) << std::endl;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
/// Solve for time-of-flight and a number of tracers.
|
|
/// \param[in] darcyflux Array of signed face fluxes.
|
|
/// \param[in] porevolume Array of pore volumes.
|
|
/// \param[in] source Source term. Sign convention is:
|
|
/// (+) inflow flux,
|
|
/// (-) outflow flux.
|
|
/// \param[in] tracerheads Table containing one row per tracer, and each
|
|
/// row contains the source cells for that tracer.
|
|
/// \param[out] tof_coeff Array of time-of-flight solution coefficients.
|
|
/// The values are ordered by cell, meaning that
|
|
/// the K coefficients corresponding to the first
|
|
/// cell comes before the K coefficients corresponding
|
|
/// to the second cell etc.
|
|
/// K depends on degree and grid dimension.
|
|
/// \param[out] tracer_coeff Array of tracer solution coefficients. N*K per cell,
|
|
/// where N is equal to tracerheads.size(). All K coefs
|
|
/// for a tracer are consecutive, and all tracers' coefs
|
|
/// for a cell come before those for the next cell.
|
|
void TofDiscGalReorder::solveTofTracer(const double* darcyflux,
|
|
const double* porevolume,
|
|
const double* source,
|
|
const SparseTable<int>& tracerheads,
|
|
std::vector<double>& tof_coeff,
|
|
std::vector<double>& tracer_coeff)
|
|
{
|
|
darcyflux_ = darcyflux;
|
|
porevolume_ = porevolume;
|
|
source_ = source;
|
|
#ifndef NDEBUG
|
|
// Sanity check for sources.
|
|
const double cum_src = std::accumulate(source, source + grid_.number_of_cells, 0.0);
|
|
if (std::fabs(cum_src) > *std::max_element(source, source + grid_.number_of_cells)*1e-2) {
|
|
// OPM_THROW(std::runtime_error, "Sources do not sum to zero: " << cum_src);
|
|
OPM_MESSAGE("Warning: sources do not sum to zero: " << cum_src);
|
|
}
|
|
#endif
|
|
const int num_basis = basis_func_->numBasisFunc();
|
|
num_tracers_ = tracerheads.size();
|
|
tof_coeff.resize(num_basis*grid_.number_of_cells);
|
|
std::fill(tof_coeff.begin(), tof_coeff.end(), 0.0);
|
|
tof_coeff_ = &tof_coeff[0];
|
|
rhs_.resize(num_basis*(num_tracers_ + 1));
|
|
jac_.resize(num_basis*num_basis);
|
|
orig_jac_.resize(num_basis*num_basis);
|
|
basis_.resize(num_basis);
|
|
basis_nb_.resize(num_basis);
|
|
grad_basis_.resize(num_basis*grid_.dimensions);
|
|
velocity_interpolation_->setupFluxes(darcyflux);
|
|
|
|
// Set up tracer
|
|
tracer_coeff.resize(grid_.number_of_cells*num_tracers_*num_basis);
|
|
std::fill(tracer_coeff.begin(), tracer_coeff.end(), 0.0);
|
|
if (num_tracers_ > 0) {
|
|
tracerhead_by_cell_.clear();
|
|
tracerhead_by_cell_.resize(grid_.number_of_cells, NoTracerHead);
|
|
}
|
|
for (int tr = 0; tr < num_tracers_; ++tr) {
|
|
for (int i = 0; i < tracerheads[tr].size(); ++i) {
|
|
const int cell = tracerheads[tr][i];
|
|
basis_func_->addConstant(1.0, &tracer_coeff[cell*num_tracers_*num_basis + tr*num_basis]);
|
|
tracer_coeff[cell*num_tracers_ + tr] = 1.0;
|
|
tracerhead_by_cell_[cell] = tr;
|
|
}
|
|
}
|
|
|
|
tracer_coeff_ = &tracer_coeff[0];
|
|
num_multicell_ = 0;
|
|
max_size_multicell_ = 0;
|
|
max_iter_multicell_ = 0;
|
|
num_singlesolves_ = 0;
|
|
reorderAndTransport(grid_, darcyflux);
|
|
switch (limiter_usage_) {
|
|
case AsPostProcess:
|
|
applyLimiterAsPostProcess();
|
|
break;
|
|
case AsSimultaneousPostProcess:
|
|
applyLimiterAsSimultaneousPostProcess();
|
|
break;
|
|
case DuringComputations:
|
|
// Do nothing.
|
|
break;
|
|
default:
|
|
OPM_THROW(std::runtime_error, "Unknown limiter usage choice: " << limiter_usage_);
|
|
}
|
|
if (num_multicell_ > 0) {
|
|
std::cout << num_multicell_ << " multicell blocks with max size "
|
|
<< max_size_multicell_ << " cells in upto "
|
|
<< max_iter_multicell_ << " iterations." << std::endl;
|
|
std::cout << "Average solves per cell (for all cells) was "
|
|
<< double(num_singlesolves_)/double(grid_.number_of_cells) << std::endl;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
void TofDiscGalReorder::solveSingleCell(const int cell)
|
|
{
|
|
// Residual:
|
|
// For each cell K, basis function b_j (spanning V_h),
|
|
// writing the solution u_h|K = \sum_i c_i b_i
|
|
// Res = - \int_K \sum_i c_i b_i v(x) \cdot \grad b_j dx
|
|
// + \int_{\partial K} F(u_h, u_h^{ext}, v(x) \cdot n) b_j ds
|
|
// - \int_K \phi b_j
|
|
// This is linear in c_i, so we do not need any nonlinear iterations.
|
|
// We assemble the jacobian and the right-hand side. The residual is
|
|
// equal to Res = Jac*c - rhs, and we compute rhs directly.
|
|
//
|
|
// For tracers, the equation is the same, except for the last
|
|
// term being zero (the one with \phi).
|
|
//
|
|
// The rhs_ vector contains a (Fortran ordering) matrix of all
|
|
// right-hand-sides, first for tof and then (optionally) for
|
|
// all tracers.
|
|
|
|
const int num_basis = basis_func_->numBasisFunc();
|
|
++num_singlesolves_;
|
|
|
|
std::fill(rhs_.begin(), rhs_.end(), 0.0);
|
|
std::fill(jac_.begin(), jac_.end(), 0.0);
|
|
|
|
// Add cell contributions to res_ and jac_.
|
|
cellContribs(cell);
|
|
|
|
// Add face contributions to res_ and jac_.
|
|
faceContribs(cell);
|
|
|
|
// Solve linear equation.
|
|
solveLinearSystem(cell);
|
|
|
|
// The solution ends up in rhs_, so we must copy it.
|
|
std::copy(rhs_.begin(), rhs_.begin() + num_basis, tof_coeff_ + num_basis*cell);
|
|
if (num_tracers_ && tracerhead_by_cell_[cell] == NoTracerHead) {
|
|
std::copy(rhs_.begin() + num_basis, rhs_.end(), tracer_coeff_ + num_tracers_*num_basis*cell);
|
|
}
|
|
|
|
// Apply limiter.
|
|
if (basis_func_->degree() > 0 && use_limiter_ && limiter_usage_ == DuringComputations) {
|
|
applyLimiter(cell, tof_coeff_);
|
|
if (num_tracers_ && tracerhead_by_cell_[cell] == NoTracerHead) {
|
|
for (int tr = 0; tr < num_tracers_; ++tr) {
|
|
applyTracerLimiter(cell, tracer_coeff_ + cell*num_tracers_*num_basis + tr*num_basis);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Ensure that tracer averages sum to 1.
|
|
if (num_tracers_ && tracers_ensure_unity_ && tracerhead_by_cell_[cell] == NoTracerHead) {
|
|
std::vector<double> tr_aver(num_tracers_);
|
|
double tr_sum = 0.0;
|
|
for (int tr = 0; tr < num_tracers_; ++tr) {
|
|
const double* local_basis = tracer_coeff_ + cell*num_tracers_*num_basis + tr*num_basis;
|
|
tr_aver[tr] = basis_func_->functionAverage(local_basis);
|
|
tr_sum += tr_aver[tr];
|
|
}
|
|
if (tr_sum == 0.0) {
|
|
std::cout << "Tracer sum is zero in cell " << cell << std::endl;
|
|
} else {
|
|
for (int tr = 0; tr < num_tracers_; ++tr) {
|
|
const double increment = tr_aver[tr]/tr_sum - tr_aver[tr];
|
|
double* local_basis = tracer_coeff_ + cell*num_tracers_*num_basis + tr*num_basis;
|
|
basis_func_->addConstant(increment, local_basis);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
void TofDiscGalReorder::cellContribs(const int cell)
|
|
{
|
|
const int num_basis = basis_func_->numBasisFunc();
|
|
const int dim = grid_.dimensions;
|
|
|
|
// Compute cell residual contribution.
|
|
{
|
|
const int deg_needed = basis_func_->degree();
|
|
CellQuadrature quad(grid_, cell, deg_needed);
|
|
for (int quad_pt = 0; quad_pt < quad.numQuadPts(); ++quad_pt) {
|
|
// Integral of: b_i \phi
|
|
quad.quadPtCoord(quad_pt, &coord_[0]);
|
|
basis_func_->eval(cell, &coord_[0], &basis_[0]);
|
|
const double w = quad.quadPtWeight(quad_pt);
|
|
for (int j = 0; j < num_basis; ++j) {
|
|
// Only adding to the tof rhs.
|
|
rhs_[j] += w * basis_[j] * porevolume_[cell] / grid_.cell_volumes[cell];
|
|
}
|
|
}
|
|
}
|
|
|
|
// Compute cell jacobian contribution. We use Fortran ordering
|
|
// for jac_, i.e. rows cycling fastest.
|
|
{
|
|
// Even with ECVI velocity interpolation, degree of precision 1
|
|
// is sufficient for optimal convergence order for DG1 when we
|
|
// use linear (total degree 1) basis functions.
|
|
// With bi(tri)-linear basis functions, it still seems sufficient
|
|
// for convergence order 2, but the solution looks much better and
|
|
// has significantly lower error with degree of precision 2.
|
|
// For now, we err on the side of caution, and use 2*degree, even
|
|
// though this is wasteful for the pure linear basis functions.
|
|
// const int deg_needed = 2*basis_func_->degree() - 1;
|
|
const int deg_needed = 2*basis_func_->degree();
|
|
CellQuadrature quad(grid_, cell, deg_needed);
|
|
for (int quad_pt = 0; quad_pt < quad.numQuadPts(); ++quad_pt) {
|
|
// b_i (v \cdot \grad b_j)
|
|
quad.quadPtCoord(quad_pt, &coord_[0]);
|
|
basis_func_->eval(cell, &coord_[0], &basis_[0]);
|
|
basis_func_->evalGrad(cell, &coord_[0], &grad_basis_[0]);
|
|
velocity_interpolation_->interpolate(cell, &coord_[0], &velocity_[0]);
|
|
const double w = quad.quadPtWeight(quad_pt);
|
|
for (int j = 0; j < num_basis; ++j) {
|
|
for (int i = 0; i < num_basis; ++i) {
|
|
for (int dd = 0; dd < dim; ++dd) {
|
|
jac_[j*num_basis + i] -= w * basis_[j] * grad_basis_[dim*i + dd] * velocity_[dd];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Compute downstream jacobian contribution from sink terms.
|
|
// Contribution from inflow sources would be
|
|
// similar to the contribution from upstream faces, but
|
|
// it is zero since we let all external inflow be associated
|
|
// with a zero tof.
|
|
if (source_[cell] < 0.0) {
|
|
// A sink.
|
|
const double flux = -source_[cell]; // Sign convention for flux: outflux > 0.
|
|
const double flux_density = flux / grid_.cell_volumes[cell];
|
|
// Do quadrature over the cell to compute
|
|
// \int_{K} b_i flux b_j dx
|
|
CellQuadrature quad(grid_, cell, 2*basis_func_->degree());
|
|
for (int quad_pt = 0; quad_pt < quad.numQuadPts(); ++quad_pt) {
|
|
quad.quadPtCoord(quad_pt, &coord_[0]);
|
|
basis_func_->eval(cell, &coord_[0], &basis_[0]);
|
|
const double w = quad.quadPtWeight(quad_pt);
|
|
for (int j = 0; j < num_basis; ++j) {
|
|
for (int i = 0; i < num_basis; ++i) {
|
|
jac_[j*num_basis + i] += w * basis_[i] * flux_density * basis_[j];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
void TofDiscGalReorder::faceContribs(const int cell)
|
|
{
|
|
const int num_basis = basis_func_->numBasisFunc();
|
|
|
|
// Compute upstream residual contribution from faces.
|
|
for (int hface = grid_.cell_facepos[cell]; hface < grid_.cell_facepos[cell+1]; ++hface) {
|
|
const int face = grid_.cell_faces[hface];
|
|
double flux = 0.0;
|
|
int upstream_cell = -1;
|
|
if (cell == grid_.face_cells[2*face]) {
|
|
flux = darcyflux_[face];
|
|
upstream_cell = grid_.face_cells[2*face+1];
|
|
} else {
|
|
flux = -darcyflux_[face];
|
|
upstream_cell = grid_.face_cells[2*face];
|
|
}
|
|
if (flux >= 0.0) {
|
|
// This is an outflow boundary.
|
|
continue;
|
|
}
|
|
if (upstream_cell < 0) {
|
|
// This is an outer boundary. Assumed tof = 0 on inflow, so no contribution.
|
|
// For tracers, a cell with inflow should be marked as a tracer head cell,
|
|
// and not be modified.
|
|
continue;
|
|
}
|
|
// Do quadrature over the face to compute
|
|
// \int_{\partial K} u_h^{ext} (v(x) \cdot n) b_j ds
|
|
// (where u_h^{ext} is the upstream unknown (tof)).
|
|
// Quadrature degree set to 2*D, since u_h^{ext} varies
|
|
// with degree D, and b_j too. We assume that the normal
|
|
// velocity is constant (this assumption may have to go
|
|
// for higher order than DG1).
|
|
const double normal_velocity = flux / grid_.face_areas[face];
|
|
const int deg_needed = 2*basis_func_->degree();
|
|
FaceQuadrature quad(grid_, face, deg_needed);
|
|
for (int quad_pt = 0; quad_pt < quad.numQuadPts(); ++quad_pt) {
|
|
quad.quadPtCoord(quad_pt, &coord_[0]);
|
|
basis_func_->eval(cell, &coord_[0], &basis_[0]);
|
|
basis_func_->eval(upstream_cell, &coord_[0], &basis_nb_[0]);
|
|
const double w = quad.quadPtWeight(quad_pt);
|
|
// Modify tof rhs
|
|
const double tof_upstream = std::inner_product(basis_nb_.begin(), basis_nb_.end(),
|
|
tof_coeff_ + num_basis*upstream_cell, 0.0);
|
|
for (int j = 0; j < num_basis; ++j) {
|
|
rhs_[j] -= w * tof_upstream * normal_velocity * basis_[j];
|
|
}
|
|
// Modify tracer rhs
|
|
if (num_tracers_ && tracerhead_by_cell_[cell] == NoTracerHead) {
|
|
for (int tr = 0; tr < num_tracers_; ++tr) {
|
|
const double* up_tr_co = tracer_coeff_ + num_tracers_*num_basis*upstream_cell + num_basis*tr;
|
|
const double tracer_up = std::inner_product(basis_nb_.begin(), basis_nb_.end(), up_tr_co, 0.0);
|
|
for (int j = 0; j < num_basis; ++j) {
|
|
rhs_[num_basis*(tr + 1) + j] -= w * tracer_up * normal_velocity * basis_[j];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Compute downstream jacobian contribution from faces.
|
|
for (int hface = grid_.cell_facepos[cell]; hface < grid_.cell_facepos[cell+1]; ++hface) {
|
|
const int face = grid_.cell_faces[hface];
|
|
double flux = 0.0;
|
|
if (cell == grid_.face_cells[2*face]) {
|
|
flux = darcyflux_[face];
|
|
} else {
|
|
flux = -darcyflux_[face];
|
|
}
|
|
if (flux <= 0.0) {
|
|
// This is an inflow boundary.
|
|
continue;
|
|
}
|
|
// Do quadrature over the face to compute
|
|
// \int_{\partial K} b_i (v(x) \cdot n) b_j ds
|
|
const double normal_velocity = flux / grid_.face_areas[face];
|
|
FaceQuadrature quad(grid_, face, 2*basis_func_->degree());
|
|
for (int quad_pt = 0; quad_pt < quad.numQuadPts(); ++quad_pt) {
|
|
// u^ext flux B (B = {b_j})
|
|
quad.quadPtCoord(quad_pt, &coord_[0]);
|
|
basis_func_->eval(cell, &coord_[0], &basis_[0]);
|
|
const double w = quad.quadPtWeight(quad_pt);
|
|
for (int j = 0; j < num_basis; ++j) {
|
|
for (int i = 0; i < num_basis; ++i) {
|
|
jac_[j*num_basis + i] += w * basis_[i] * normal_velocity * basis_[j];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
// This function assumes that jac_ and rhs_ contain the
|
|
// linear system to be solved. They are stored in orig_jac_
|
|
// and orig_rhs_, then the system is solved via LAPACK,
|
|
// overwriting the input data (jac_ and rhs_).
|
|
void TofDiscGalReorder::solveLinearSystem(const int cell)
|
|
{
|
|
MAT_SIZE_T n = basis_func_->numBasisFunc();
|
|
int num_tracer_to_compute = num_tracers_;
|
|
if (num_tracers_) {
|
|
if (tracerhead_by_cell_[cell] != NoTracerHead) {
|
|
num_tracer_to_compute = 0;
|
|
}
|
|
}
|
|
MAT_SIZE_T nrhs = 1 + num_tracer_to_compute;
|
|
MAT_SIZE_T lda = n;
|
|
std::vector<MAT_SIZE_T> piv(n);
|
|
MAT_SIZE_T ldb = n;
|
|
MAT_SIZE_T info = 0;
|
|
orig_jac_ = jac_;
|
|
orig_rhs_ = rhs_;
|
|
dgesv_(&n, &nrhs, &jac_[0], &lda, &piv[0], &rhs_[0], &ldb, &info);
|
|
if (info != 0) {
|
|
// Print the local matrix and rhs.
|
|
std::cerr << "Failed solving single-cell system Ax = b in cell " << cell
|
|
<< " with A = \n";
|
|
for (int row = 0; row < n; ++row) {
|
|
for (int col = 0; col < n; ++col) {
|
|
std::cerr << " " << orig_jac_[row + n*col];
|
|
}
|
|
std::cerr << '\n';
|
|
}
|
|
std::cerr << "and b = \n";
|
|
for (int row = 0; row < n; ++row) {
|
|
std::cerr << " " << orig_rhs_[row] << '\n';
|
|
}
|
|
OPM_THROW(std::runtime_error, "Lapack error: " << info << " encountered in cell " << cell);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
void TofDiscGalReorder::solveMultiCell(const int num_cells, const int* cells)
|
|
{
|
|
++num_multicell_;
|
|
max_size_multicell_ = std::max(max_size_multicell_, num_cells);
|
|
// std::cout << "Multiblock solve with " << num_cells << " cells." << std::endl;
|
|
|
|
// Using a Gauss-Seidel approach.
|
|
const int nb = basis_func_->numBasisFunc();
|
|
double max_delta = 1e100;
|
|
int num_iter = 0;
|
|
while (max_delta > gauss_seidel_tol_) {
|
|
max_delta = 0.0;
|
|
++num_iter;
|
|
for (int ci = 0; ci < num_cells; ++ci) {
|
|
const int cell = cells[ci];
|
|
const double tof_before = basis_func_->functionAverage(&tof_coeff_[nb*cell]);
|
|
solveSingleCell(cell);
|
|
const double tof_after = basis_func_->functionAverage(&tof_coeff_[nb*cell]);
|
|
max_delta = std::max(max_delta, std::fabs(tof_after - tof_before));
|
|
}
|
|
// std::cout << "Max delta = " << max_delta << std::endl;
|
|
}
|
|
max_iter_multicell_ = std::max(max_iter_multicell_, num_iter);
|
|
}
|
|
|
|
|
|
|
|
|
|
void TofDiscGalReorder::applyLimiter(const int cell, double* tof)
|
|
{
|
|
switch (limiter_method_) {
|
|
case MinUpwindFace:
|
|
applyMinUpwindLimiter(cell, true, tof);
|
|
break;
|
|
case MinUpwindAverage:
|
|
applyMinUpwindLimiter(cell, false, tof);
|
|
break;
|
|
default:
|
|
OPM_THROW(std::runtime_error, "Limiter type not implemented: " << limiter_method_);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
void TofDiscGalReorder::applyMinUpwindLimiter(const int cell, const bool face_min, double* tof)
|
|
{
|
|
if (basis_func_->degree() != 1) {
|
|
OPM_THROW(std::runtime_error, "This limiter only makes sense for our DG1 implementation.");
|
|
}
|
|
|
|
// Limiter principles:
|
|
// 1. Let M be either:
|
|
// - the minimum TOF value of all upstream faces,
|
|
// evaluated in the upstream cells
|
|
// (chosen if face_min is true).
|
|
// or:
|
|
// - the minimum average TOF value of all upstream cells
|
|
// (chosen if face_min is false).
|
|
// Then the value at all points in this cell shall be at
|
|
// least M. Upstream faces whose flux does not exceed the
|
|
// relative flux threshold are not considered for this
|
|
// minimum.
|
|
// 2. The TOF shall not be below zero in any point.
|
|
|
|
// Find minimum tof on upstream faces/cells and for this cell.
|
|
const int num_basis = basis_func_->numBasisFunc();
|
|
double min_upstream_tof = 1e100;
|
|
double min_here_tof = 1e100;
|
|
int num_upstream_faces = 0;
|
|
const double total_flux = totalFlux(cell);
|
|
for (int hface = grid_.cell_facepos[cell]; hface < grid_.cell_facepos[cell+1]; ++hface) {
|
|
const int face = grid_.cell_faces[hface];
|
|
double flux = 0.0;
|
|
int upstream_cell = -1;
|
|
if (cell == grid_.face_cells[2*face]) {
|
|
flux = darcyflux_[face];
|
|
upstream_cell = grid_.face_cells[2*face+1];
|
|
} else {
|
|
flux = -darcyflux_[face];
|
|
upstream_cell = grid_.face_cells[2*face];
|
|
}
|
|
const bool upstream = (flux < -total_flux*limiter_relative_flux_threshold_);
|
|
const bool interior = (upstream_cell >= 0);
|
|
|
|
// Find minimum tof in this cell and upstream.
|
|
// The meaning of minimum upstream tof depends on method.
|
|
min_here_tof = std::min(min_here_tof, minCornerVal(cell, face));
|
|
if (upstream) {
|
|
++num_upstream_faces;
|
|
double upstream_tof = 0.0;
|
|
if (interior) {
|
|
if (face_min) {
|
|
upstream_tof = minCornerVal(upstream_cell, face);
|
|
} else {
|
|
upstream_tof = basis_func_->functionAverage(tof_coeff_ + num_basis*upstream_cell);
|
|
}
|
|
}
|
|
min_upstream_tof = std::min(min_upstream_tof, upstream_tof);
|
|
}
|
|
}
|
|
|
|
// Compute slope multiplier (limiter).
|
|
if (num_upstream_faces == 0) {
|
|
min_upstream_tof = 0.0;
|
|
min_here_tof = 0.0;
|
|
}
|
|
if (min_upstream_tof < 0.0) {
|
|
min_upstream_tof = 0.0;
|
|
}
|
|
const double tof_c = basis_func_->functionAverage(tof_coeff_ + num_basis*cell);
|
|
double limiter = (tof_c - min_upstream_tof)/(tof_c - min_here_tof);
|
|
if (tof_c < min_upstream_tof) {
|
|
// Handle by setting a flat solution.
|
|
// std::cout << "Trouble in cell " << cell << std::endl;
|
|
limiter = 0.0;
|
|
basis_func_->addConstant(min_upstream_tof - tof_c, tof + num_basis*cell);
|
|
}
|
|
assert(limiter >= 0.0);
|
|
|
|
// Actually do the limiting (if applicable).
|
|
if (limiter < 1.0) {
|
|
// std::cout << "Applying limiter in cell " << cell << ", limiter = " << limiter << std::endl;
|
|
basis_func_->multiplyGradient(limiter, tof + num_basis*cell);
|
|
} else {
|
|
// std::cout << "Not applying limiter in cell " << cell << "!" << std::endl;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void TofDiscGalReorder::applyLimiterAsPostProcess()
|
|
{
|
|
// Apply the limiter sequentially to all cells.
|
|
// This means that a cell's limiting behaviour may be affected by
|
|
// any limiting applied to its upstream cells.
|
|
const std::vector<int>& seq = ReorderSolverInterface::sequence();
|
|
const int nc = seq.size();
|
|
assert(nc == grid_.number_of_cells);
|
|
for (int i = 0; i < nc; ++i) {
|
|
const int cell = seq[i];
|
|
applyLimiter(cell, tof_coeff_);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
void TofDiscGalReorder::applyLimiterAsSimultaneousPostProcess()
|
|
{
|
|
// Apply the limiter simultaneously to all cells.
|
|
// This means that each cell is limited independently from all other cells,
|
|
// we write the resulting dofs to a new array instead of writing to tof_coeff_.
|
|
// Afterwards we copy the results back to tof_coeff_.
|
|
const int num_basis = basis_func_->numBasisFunc();
|
|
std::vector<double> tof_coeffs_new(tof_coeff_, tof_coeff_ + num_basis*grid_.number_of_cells);
|
|
for (int c = 0; c < grid_.number_of_cells; ++c) {
|
|
applyLimiter(c, &tof_coeffs_new[0]);
|
|
}
|
|
std::copy(tof_coeffs_new.begin(), tof_coeffs_new.end(), tof_coeff_);
|
|
}
|
|
|
|
|
|
|
|
|
|
double TofDiscGalReorder::totalFlux(const int cell) const
|
|
{
|
|
// Find total upstream/downstream fluxes.
|
|
double upstream_flux = 0.0;
|
|
double downstream_flux = 0.0;
|
|
for (int hface = grid_.cell_facepos[cell]; hface < grid_.cell_facepos[cell+1]; ++hface) {
|
|
const int face = grid_.cell_faces[hface];
|
|
double flux = 0.0;
|
|
if (cell == grid_.face_cells[2*face]) {
|
|
flux = darcyflux_[face];
|
|
} else {
|
|
flux = -darcyflux_[face];
|
|
}
|
|
if (flux < 0.0) {
|
|
upstream_flux += flux;
|
|
} else {
|
|
downstream_flux += flux;
|
|
}
|
|
}
|
|
// In the presence of sources, significant fluxes may be missing from the computed fluxes,
|
|
// setting the total flux to the (positive) maximum avoids this: since source is either
|
|
// inflow or outflow, not both, either upstream_flux or downstream_flux must be correct.
|
|
return std::max(-upstream_flux, downstream_flux);
|
|
}
|
|
|
|
|
|
|
|
|
|
double TofDiscGalReorder::minCornerVal(const int cell, const int face) const
|
|
{
|
|
// Evaluate the solution in all corners.
|
|
const int dim = grid_.dimensions;
|
|
const int num_basis = basis_func_->numBasisFunc();
|
|
double min_cornerval = 1e100;
|
|
for (int fnode = grid_.face_nodepos[face]; fnode < grid_.face_nodepos[face+1]; ++fnode) {
|
|
const double* nc = grid_.node_coordinates + dim*grid_.face_nodes[fnode];
|
|
basis_func_->eval(cell, nc, &basis_[0]);
|
|
const double tof_corner = std::inner_product(basis_.begin(), basis_.end(),
|
|
tof_coeff_ + num_basis*cell, 0.0);
|
|
min_cornerval = std::min(min_cornerval, tof_corner);
|
|
}
|
|
return min_cornerval;
|
|
}
|
|
|
|
|
|
|
|
void TofDiscGalReorder::applyTracerLimiter(const int cell, double* local_coeff)
|
|
{
|
|
// Evaluate the solution in all corners of all faces. Extract max and min.
|
|
const int dim = grid_.dimensions;
|
|
const int num_basis = basis_func_->numBasisFunc();
|
|
double min_cornerval = 1e100;
|
|
double max_cornerval = -1e100;
|
|
for (int hface = grid_.cell_facepos[cell]; hface < grid_.cell_facepos[cell+1]; ++hface) {
|
|
const int face = grid_.cell_faces[hface];
|
|
for (int fnode = grid_.face_nodepos[face]; fnode < grid_.face_nodepos[face+1]; ++fnode) {
|
|
const double* nc = grid_.node_coordinates + dim*grid_.face_nodes[fnode];
|
|
basis_func_->eval(cell, nc, &basis_[0]);
|
|
const double tracer_corner = std::inner_product(basis_.begin(), basis_.end(),
|
|
local_coeff, 0.0);
|
|
min_cornerval = std::min(min_cornerval, tracer_corner);
|
|
max_cornerval = std::max(min_cornerval, tracer_corner);
|
|
}
|
|
}
|
|
const double average = basis_func_->functionAverage(local_coeff);
|
|
if (average < 0.0 || average > 1.0) {
|
|
// Adjust average. Flatten gradient.
|
|
std::fill(local_coeff, local_coeff + num_basis, 0.0);
|
|
if (average > 1.0) {
|
|
basis_func_->addConstant(1.0, local_coeff);
|
|
}
|
|
} else {
|
|
// Possibly adjust gradient.
|
|
double factor = 1.0;
|
|
if (min_cornerval < 0.0) {
|
|
factor = average/(average - min_cornerval);
|
|
}
|
|
if (max_cornerval > 1.0) {
|
|
factor = std::min(factor, (1.0 - average)/(max_cornerval - average));
|
|
}
|
|
if (factor != 1.0) {
|
|
basis_func_->multiplyGradient(factor, local_coeff);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
} // namespace Opm
|