opm-simulators/opm/core/fluid/SaturationPropsBasic.cpp
2012-07-02 17:44:16 +02:00

221 lines
5.5 KiB
C++

/*
Copyright 2012 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <opm/core/fluid/SaturationPropsBasic.hpp>
#include <opm/core/utility/ErrorMacros.hpp>
#include <iostream>
namespace Opm
{
// ---------- Helper functions ----------
namespace {
struct KrFunConstant
{
double kr(double)
{
return 1.0;
}
double dkrds(double)
{
return 0.0;
}
};
struct KrFunLinear
{
double kr(double s)
{
return s;
}
double dkrds(double)
{
return 1.0;
}
};
struct KrFunQuadratic
{
double kr(double s)
{
return s*s;
}
double dkrds(double s)
{
return 2.0*s;
}
};
template <class Fun>
static inline void evalAllKrDeriv(const int n, const int np,
const double* s, double* kr, double* dkrds, Fun fun)
{
if (dkrds == 0) {
// #pragma omp parallel for
for (int i = 0; i < n*np; ++i) {
kr[i] = fun.kr(s[i]);
}
return;
}
// #pragma omp parallel for
for (int i = 0; i < n; ++i) {
std::fill(dkrds + i*np*np, dkrds + (i+1)*np*np, 0.0);
for (int phase = 0; phase < np; ++phase) {
kr[i*np + phase] = fun.kr(s[i*np + phase]);
// Only diagonal elements in derivative.
dkrds[i*np*np + phase*np + phase] = fun.dkrds(s[i*np + phase]);
}
}
}
} // anon namespace
// ---------- Class methods ----------
/// Default constructor.
SaturationPropsBasic::SaturationPropsBasic()
: num_phases_(0), relperm_func_(Constant)
{
}
/// Initialize from parameters.
void SaturationPropsBasic::init(const parameter::ParameterGroup& param)
{
int num_phases = param.getDefault("num_phases", 2);
if (num_phases > 2 || num_phases < 1) {
THROW("SaturationPropsBasic::init() illegal num_phases: " << num_phases);
}
num_phases_ = num_phases;
std::string rpf = param.getDefault("relperm_func", std::string("Unset"));
if (rpf == "Constant") {
relperm_func_ = Constant;
if(num_phases!=1){
THROW("Constant relperm with more than one phase???");
}
} else if (rpf == "Linear") {
relperm_func_ = Linear;
} else if (rpf == "Quadratic") {
relperm_func_ = Quadratic;
} else {
THROW("SaturationPropsBasic::init() illegal relperm_func: " << rpf);
}
}
/// \return P, the number of phases.
int SaturationPropsBasic::numPhases() const
{
return num_phases_;
}
/// Relative permeability.
/// \param[in] n Number of data points.
/// \param[in] s Array of nP saturation values.
/// \param[out] kr Array of nP relperm values, array must be valid before calling.
/// \param[out] dkrds If non-null: array of nP^2 relperm derivative values,
/// array must be valid before calling.
/// The P^2 derivative matrix is
/// m_{ij} = \frac{dkr_i}{ds^j},
/// and is output in Fortran order (m_00 m_10 m_20 m01 ...)
void SaturationPropsBasic::relperm(const int n,
const double* s,
double* kr,
double* dkrds) const
{
switch (relperm_func_) {
case Constant:
{
evalAllKrDeriv(n, num_phases_, s, kr, dkrds, KrFunConstant());
break;
}
case Linear:
{
evalAllKrDeriv(n, num_phases_, s, kr, dkrds, KrFunLinear());
break;
}
case Quadratic:
{
evalAllKrDeriv(n, num_phases_, s, kr, dkrds, KrFunQuadratic());
break;
}
default:
THROW("SaturationPropsBasic::relperm() unhandled relperm func type: " << relperm_func_);
}
}
/// Capillary pressure.
/// \param[in] n Number of data points.
/// \param[in] s Array of nP saturation values.
/// \param[out] pc Array of nP capillary pressure values, array must be valid before calling.
/// \param[out] dpcds If non-null: array of nP^2 derivative values,
/// array must be valid before calling.
/// The P^2 derivative matrix is
/// m_{ij} = \frac{dpc_i}{ds^j},
/// and is output in Fortran order (m_00 m_10 m_20 m01 ...)
void SaturationPropsBasic::capPress(const int n,
const double* /*s*/,
double* pc,
double* dpcds) const
{
std::fill(pc, pc + num_phases_*n, 0.0);
if (dpcds) {
std::fill(dpcds, dpcds + num_phases_*num_phases_*n, 0.0);
}
}
/// Obtain the range of allowable saturation values.
/// \param[in] n Number of data points.
/// \param[out] smin Array of nP minimum s values, array must be valid before calling.
/// \param[out] smax Array of nP maximum s values, array must be valid before calling.
void SaturationPropsBasic::satRange(const int n,
double* smin,
double* smax) const
{
std::fill(smin, smin + num_phases_*n, 0.0);
std::fill(smax, smax + num_phases_*n, 1.0);
}
} // namespace Opm