mirror of
https://github.com/OPM/opm-simulators.git
synced 2024-12-21 06:53:27 -06:00
221 lines
5.5 KiB
C++
221 lines
5.5 KiB
C++
/*
|
|
Copyright 2012 SINTEF ICT, Applied Mathematics.
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <opm/core/fluid/SaturationPropsBasic.hpp>
|
|
#include <opm/core/utility/ErrorMacros.hpp>
|
|
#include <iostream>
|
|
|
|
namespace Opm
|
|
{
|
|
|
|
|
|
// ---------- Helper functions ----------
|
|
|
|
namespace {
|
|
|
|
struct KrFunConstant
|
|
{
|
|
double kr(double)
|
|
{
|
|
return 1.0;
|
|
}
|
|
double dkrds(double)
|
|
{
|
|
return 0.0;
|
|
}
|
|
};
|
|
|
|
struct KrFunLinear
|
|
{
|
|
double kr(double s)
|
|
{
|
|
return s;
|
|
}
|
|
double dkrds(double)
|
|
{
|
|
return 1.0;
|
|
}
|
|
};
|
|
|
|
struct KrFunQuadratic
|
|
{
|
|
double kr(double s)
|
|
{
|
|
return s*s;
|
|
}
|
|
double dkrds(double s)
|
|
{
|
|
return 2.0*s;
|
|
}
|
|
};
|
|
|
|
|
|
template <class Fun>
|
|
static inline void evalAllKrDeriv(const int n, const int np,
|
|
const double* s, double* kr, double* dkrds, Fun fun)
|
|
{
|
|
if (dkrds == 0) {
|
|
// #pragma omp parallel for
|
|
for (int i = 0; i < n*np; ++i) {
|
|
kr[i] = fun.kr(s[i]);
|
|
}
|
|
return;
|
|
}
|
|
// #pragma omp parallel for
|
|
for (int i = 0; i < n; ++i) {
|
|
std::fill(dkrds + i*np*np, dkrds + (i+1)*np*np, 0.0);
|
|
for (int phase = 0; phase < np; ++phase) {
|
|
kr[i*np + phase] = fun.kr(s[i*np + phase]);
|
|
// Only diagonal elements in derivative.
|
|
dkrds[i*np*np + phase*np + phase] = fun.dkrds(s[i*np + phase]);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
} // anon namespace
|
|
|
|
|
|
|
|
// ---------- Class methods ----------
|
|
|
|
|
|
|
|
/// Default constructor.
|
|
SaturationPropsBasic::SaturationPropsBasic()
|
|
: num_phases_(0), relperm_func_(Constant)
|
|
{
|
|
}
|
|
|
|
|
|
|
|
|
|
/// Initialize from parameters.
|
|
void SaturationPropsBasic::init(const parameter::ParameterGroup& param)
|
|
{
|
|
int num_phases = param.getDefault("num_phases", 2);
|
|
if (num_phases > 2 || num_phases < 1) {
|
|
THROW("SaturationPropsBasic::init() illegal num_phases: " << num_phases);
|
|
}
|
|
num_phases_ = num_phases;
|
|
std::string rpf = param.getDefault("relperm_func", std::string("Unset"));
|
|
if (rpf == "Constant") {
|
|
relperm_func_ = Constant;
|
|
if(num_phases!=1){
|
|
THROW("Constant relperm with more than one phase???");
|
|
}
|
|
} else if (rpf == "Linear") {
|
|
relperm_func_ = Linear;
|
|
} else if (rpf == "Quadratic") {
|
|
relperm_func_ = Quadratic;
|
|
} else {
|
|
THROW("SaturationPropsBasic::init() illegal relperm_func: " << rpf);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
/// \return P, the number of phases.
|
|
int SaturationPropsBasic::numPhases() const
|
|
{
|
|
return num_phases_;
|
|
}
|
|
|
|
|
|
|
|
|
|
/// Relative permeability.
|
|
/// \param[in] n Number of data points.
|
|
/// \param[in] s Array of nP saturation values.
|
|
/// \param[out] kr Array of nP relperm values, array must be valid before calling.
|
|
/// \param[out] dkrds If non-null: array of nP^2 relperm derivative values,
|
|
/// array must be valid before calling.
|
|
/// The P^2 derivative matrix is
|
|
/// m_{ij} = \frac{dkr_i}{ds^j},
|
|
/// and is output in Fortran order (m_00 m_10 m_20 m01 ...)
|
|
void SaturationPropsBasic::relperm(const int n,
|
|
const double* s,
|
|
double* kr,
|
|
double* dkrds) const
|
|
{
|
|
switch (relperm_func_) {
|
|
case Constant:
|
|
{
|
|
evalAllKrDeriv(n, num_phases_, s, kr, dkrds, KrFunConstant());
|
|
break;
|
|
}
|
|
case Linear:
|
|
{
|
|
evalAllKrDeriv(n, num_phases_, s, kr, dkrds, KrFunLinear());
|
|
break;
|
|
}
|
|
case Quadratic:
|
|
{
|
|
evalAllKrDeriv(n, num_phases_, s, kr, dkrds, KrFunQuadratic());
|
|
break;
|
|
}
|
|
default:
|
|
THROW("SaturationPropsBasic::relperm() unhandled relperm func type: " << relperm_func_);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
/// Capillary pressure.
|
|
/// \param[in] n Number of data points.
|
|
/// \param[in] s Array of nP saturation values.
|
|
/// \param[out] pc Array of nP capillary pressure values, array must be valid before calling.
|
|
/// \param[out] dpcds If non-null: array of nP^2 derivative values,
|
|
/// array must be valid before calling.
|
|
/// The P^2 derivative matrix is
|
|
/// m_{ij} = \frac{dpc_i}{ds^j},
|
|
/// and is output in Fortran order (m_00 m_10 m_20 m01 ...)
|
|
void SaturationPropsBasic::capPress(const int n,
|
|
const double* /*s*/,
|
|
double* pc,
|
|
double* dpcds) const
|
|
{
|
|
std::fill(pc, pc + num_phases_*n, 0.0);
|
|
if (dpcds) {
|
|
std::fill(dpcds, dpcds + num_phases_*num_phases_*n, 0.0);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
/// Obtain the range of allowable saturation values.
|
|
/// \param[in] n Number of data points.
|
|
/// \param[out] smin Array of nP minimum s values, array must be valid before calling.
|
|
/// \param[out] smax Array of nP maximum s values, array must be valid before calling.
|
|
void SaturationPropsBasic::satRange(const int n,
|
|
double* smin,
|
|
double* smax) const
|
|
{
|
|
std::fill(smin, smin + num_phases_*n, 0.0);
|
|
std::fill(smax, smax + num_phases_*n, 1.0);
|
|
}
|
|
|
|
|
|
|
|
} // namespace Opm
|
|
|
|
|