mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-16 18:01:56 -06:00
a347e35304
Also a few minor fixes to docs and indentation while in the area.
659 lines
22 KiB
C++
659 lines
22 KiB
C++
/*
|
|
Copyright 2014 SINTEF ICT, Applied Mathematics.
|
|
Copyright 2014 Statoil ASA.
|
|
|
|
This file is part of the Open Porous Media Project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#ifndef OPM_RATECONVERTER_HPP_HEADER_INCLUDED
|
|
#define OPM_RATECONVERTER_HPP_HEADER_INCLUDED
|
|
|
|
#include <opm/autodiff/BlackoilPropsAdInterface.hpp>
|
|
|
|
#include <opm/core/props/BlackoilPhases.hpp>
|
|
#include <opm/core/simulator/BlackoilState.hpp>
|
|
#include <opm/core/utility/RegionMapping.hpp>
|
|
|
|
#include <Eigen/Core>
|
|
|
|
#include <algorithm>
|
|
#include <cmath>
|
|
#include <vector>
|
|
|
|
/**
|
|
* \file
|
|
* Facility for converting component rates at surface conditions to
|
|
* phase (voidage) rates at reservoir conditions.
|
|
*
|
|
* This uses the average hydrocarbon pressure to define fluid
|
|
* properties. The facility is intended to support Reservoir Voidage
|
|
* rates only ('RESV').
|
|
*/
|
|
|
|
namespace Opm {
|
|
namespace RateConverter {
|
|
/**
|
|
* Convenience tools for implementing the rate conversion
|
|
* facility.
|
|
*/
|
|
namespace Details {
|
|
/**
|
|
* Count number of cells in all regions.
|
|
*
|
|
* This value is needed to compute the average (arithmetic
|
|
* mean) hydrocarbon pressure in each region.
|
|
*
|
|
* \tparam RMap Region mapping. Typically an instance of
|
|
* class Opm::RegionMapping<> from module opm-core.
|
|
*
|
|
* \param[in] m Specific region mapping.
|
|
*
|
|
* \return Array containing number of cells in each region
|
|
* defined by the region mapping.
|
|
*/
|
|
template <class RMap>
|
|
Eigen::ArrayXd
|
|
countCells(const RMap& m)
|
|
{
|
|
// Note: Floating point type (double) to represent
|
|
// cell counts is intentional. The count will be
|
|
// subsequently used to compute average (pressure)
|
|
// values only, and that operation is safer if we
|
|
// guarantee a floating point type here.
|
|
Eigen::ArrayXd n(m.numRegions());
|
|
|
|
for (typename RMap::RegionId
|
|
r = 0, nr = m.numRegions(); r < nr; ++r)
|
|
{
|
|
n(r) = double(m.cells(r).size());
|
|
}
|
|
|
|
return n;
|
|
}
|
|
|
|
/**
|
|
* Extract representative cell in each region.
|
|
*
|
|
* These are the cells for which fluid properties will be
|
|
* computed.
|
|
*
|
|
* \tparam Cells Type of cell container. Must be
|
|
* commensurable with the properties object's input
|
|
* requirements and support a single (integer) argument
|
|
* constructor that specifies the number of regions.
|
|
* Typically \code std::vector<int> \endcode.
|
|
*
|
|
* \tparam RMap Region mapping. Typically an instance of
|
|
* class Opm::RegionMapping<> from module opm-core.
|
|
*
|
|
* \param[in] m Specific region mapping.
|
|
*
|
|
* \return Array of representative cells, one cell in each
|
|
* region defined by @c m.
|
|
*/
|
|
template <class Cells, class RMap>
|
|
Cells
|
|
representative(const RMap& m)
|
|
{
|
|
Cells c(m.numRegions());
|
|
|
|
for (typename RMap::RegionId
|
|
r = 0, nr = m.numRegions(); r < nr; ++r)
|
|
{
|
|
c[r] = *m.cells(r).begin();
|
|
}
|
|
|
|
return c;
|
|
}
|
|
|
|
/**
|
|
* Convenience functions for querying presence/absence of
|
|
* active phases.
|
|
*/
|
|
namespace PhaseUsed {
|
|
/**
|
|
* Active water predicate.
|
|
*
|
|
* \param[in] pu Active phase object.
|
|
*
|
|
* \return Whether or not water is an active phase.
|
|
*/
|
|
inline bool
|
|
water(const PhaseUsage& pu)
|
|
{
|
|
return pu.phase_used[ BlackoilPhases::Aqua ] != 0;
|
|
}
|
|
|
|
/**
|
|
* Active oil predicate.
|
|
*
|
|
* \param[in] pu Active phase object.
|
|
*
|
|
* \return Whether or not oil is an active phase.
|
|
*/
|
|
inline bool
|
|
oil(const PhaseUsage& pu)
|
|
{
|
|
return pu.phase_used[ BlackoilPhases::Liquid ] != 0;
|
|
}
|
|
|
|
/**
|
|
* Active gas predicate.
|
|
*
|
|
* \param[in] pu Active phase object.
|
|
*
|
|
* \return Whether or not gas is an active phase.
|
|
*/
|
|
inline bool
|
|
gas(const PhaseUsage& pu)
|
|
{
|
|
return pu.phase_used[ BlackoilPhases::Vapour ] != 0;
|
|
}
|
|
} // namespace PhaseUsed
|
|
|
|
/**
|
|
* Convenience functions for querying numerical IDs
|
|
* ("positions") of active phases.
|
|
*/
|
|
namespace PhasePos {
|
|
/**
|
|
* Numerical ID of active water phase.
|
|
*
|
|
* \param[in] pu Active phase object.
|
|
*
|
|
* \return Non-negative index/position of water if
|
|
* active, -1 if not.
|
|
*/
|
|
inline int
|
|
water(const PhaseUsage& pu)
|
|
{
|
|
int p = -1;
|
|
|
|
if (PhaseUsed::water(pu)) {
|
|
p = pu.phase_pos[ BlackoilPhases::Aqua ];
|
|
}
|
|
|
|
return p;
|
|
}
|
|
|
|
/**
|
|
* Numerical ID of active oil phase.
|
|
*
|
|
* \param[in] pu Active phase object.
|
|
*
|
|
* \return Non-negative index/position of oil if
|
|
* active, -1 if not.
|
|
*/
|
|
inline int
|
|
oil(const PhaseUsage& pu)
|
|
{
|
|
int p = -1;
|
|
|
|
if (PhaseUsed::oil(pu)) {
|
|
p = pu.phase_pos[ BlackoilPhases::Liquid ];
|
|
}
|
|
|
|
return p;
|
|
}
|
|
|
|
/**
|
|
* Numerical ID of active gas phase.
|
|
*
|
|
* \param[in] pu Active phase object.
|
|
*
|
|
* \return Non-negative index/position of gas if
|
|
* active, -1 if not.
|
|
*/
|
|
inline int
|
|
gas(const PhaseUsage& pu)
|
|
{
|
|
int p = -1;
|
|
|
|
if (PhaseUsed::gas(pu)) {
|
|
p = pu.phase_pos[ BlackoilPhases::Vapour ];
|
|
}
|
|
|
|
return p;
|
|
}
|
|
} // namespace PhasePos
|
|
} // namespace Details
|
|
|
|
/**
|
|
* Convert component rates at surface conditions to phase
|
|
* (voidage) rates at reservoir conditions.
|
|
*
|
|
* The conversion uses fluid properties evaluated at average
|
|
* hydrocarbon pressure in regions or field.
|
|
*
|
|
* \tparam Property Fluid property object. Expected to
|
|
* feature the formation volume factor functions of the
|
|
* BlackoilPropsAdInterface.
|
|
*
|
|
* \tparam Region Type of a forward region mapping. Expected
|
|
* to provide indexed access through \code operator[]()
|
|
* \endcode as well as inner types \c value_type, \c
|
|
* size_type, and \c const_iterator. Typically \code
|
|
* std::vector<int> \endcode.
|
|
*/
|
|
template <class Property, class Region>
|
|
class SurfaceToReservoirVoidage {
|
|
public:
|
|
/**
|
|
* Constructor.
|
|
*
|
|
* \param[in] props Fluid property object.
|
|
*
|
|
* \param[in] region Forward region mapping. Often
|
|
* corresponds to the "FIPNUM" mapping of an ECLIPSE input
|
|
* deck.
|
|
*/
|
|
SurfaceToReservoirVoidage(const Property& props,
|
|
const Region& region)
|
|
: props_ (props)
|
|
, rmap_ (region)
|
|
, repcells_(Details::representative<typename Property::Cells>(rmap_))
|
|
, ncells_ (Details::countCells(rmap_))
|
|
, p_avg_ (rmap_.numRegions())
|
|
, T_avg_ (rmap_.numRegions())
|
|
, Rmax_ (rmap_.numRegions(), props.numPhases())
|
|
{}
|
|
|
|
/**
|
|
* Compute average hydrocarbon pressure and maximum
|
|
* dissolution and evaporation at average hydrocarbon
|
|
* pressure in all regions in field.
|
|
*
|
|
* Fluid properties are evaluated at average hydrocarbon
|
|
* pressure for purpose of conversion from surface rate to
|
|
* reservoir voidage rate.
|
|
*
|
|
* \param[in] state Dynamic reservoir state.
|
|
*/
|
|
void
|
|
defineState(const BlackoilState& state)
|
|
{
|
|
averagePressure(state);
|
|
averageTemperature(state);
|
|
calcRmax();
|
|
}
|
|
|
|
/**
|
|
* Region identifier.
|
|
*
|
|
* Integral type.
|
|
*/
|
|
typedef typename RegionMapping<Region>::RegionId RegionId;
|
|
|
|
/**
|
|
* Compute coefficients for surface-to-reservoir voidage
|
|
* conversion.
|
|
*
|
|
* \tparam Input Type representing contiguous collection
|
|
* of component rates at surface conditions. Must support
|
|
* direct indexing through \code operator[]()\endcode.
|
|
*
|
|
* \tparam Coeff Type representing contiguous collection
|
|
* of surface-to-reservoir conversion coefficients. Must
|
|
* support direct indexing through \code operator[]()
|
|
* \endcode.
|
|
*
|
|
* \param[in] in Single tuple of active component rates at
|
|
* surface conditions.
|
|
*
|
|
* \param[in] r Fluid-in-place region to which the
|
|
* component rates correspond.
|
|
*
|
|
* \param[out] coeff Surface-to-reservoir conversion
|
|
* coefficients for all active phases, corresponding to
|
|
* input rates \c in in region \c r.
|
|
*/
|
|
template <class Input,
|
|
class Coeff>
|
|
void
|
|
calcCoeff(const Input& in, const RegionId r, Coeff& coeff)
|
|
{
|
|
typedef typename Property::V V;
|
|
typedef typename Property::ADB ADB;
|
|
|
|
const PhaseUsage& pu = props_.phaseUsage();
|
|
const V& p = getRegPress(r);
|
|
const V& T = getRegTemp(r);
|
|
const typename Property::Cells& c = getRegCell (r);
|
|
|
|
const int iw = Details::PhasePos::water(pu);
|
|
const int io = Details::PhasePos::oil (pu);
|
|
const int ig = Details::PhasePos::gas (pu);
|
|
|
|
std::fill(& coeff[0], & coeff[0] + props_.numPhases(), 0.0);
|
|
|
|
if (Details::PhaseUsed::water(pu)) {
|
|
// q[w]_r = q[w]_s / bw
|
|
|
|
const V bw = props_.bWat(ADB::constant(p), ADB::constant(T), c).value();
|
|
|
|
coeff[iw] = 1.0 / bw(0);
|
|
}
|
|
|
|
const Miscibility& m = calcMiscibility(in, r);
|
|
|
|
// Determinant of 'R' matrix
|
|
const double detR = 1.0 - (m.rs(0) * m.rv(0));
|
|
|
|
if (Details::PhaseUsed::oil(pu)) {
|
|
// q[o]_r = 1/(bo * (1 - rs*rv)) * (q[o]_s - rv*q[g]_s)
|
|
|
|
const V bo = props_.bOil(ADB::constant(p), ADB::constant(T), ADB::constant(m.rs), m.cond, c).value();
|
|
const double den = bo(0) * detR;
|
|
|
|
coeff[io] += 1.0 / den;
|
|
|
|
if (Details::PhaseUsed::gas(pu)) {
|
|
coeff[ig] -= m.rv(0) / den;
|
|
}
|
|
}
|
|
|
|
if (Details::PhaseUsed::gas(pu)) {
|
|
// q[g]_r = 1/(bg * (1 - rs*rv)) * (q[g]_s - rs*q[o]_s)
|
|
|
|
const V bg = props_.bGas(ADB::constant(p), ADB::constant(T), ADB::constant(m.rv), m.cond, c).value();
|
|
const double den = bg(0) * detR;
|
|
|
|
coeff[ig] += 1.0 / den;
|
|
|
|
if (Details::PhaseUsed::oil(pu)) {
|
|
coeff[io] -= m.rs(0) / den;
|
|
}
|
|
}
|
|
}
|
|
|
|
private:
|
|
/**
|
|
* Fluid property object.
|
|
*/
|
|
const Property& props_;
|
|
|
|
/**
|
|
* "Fluid-in-place" region mapping (forward and reverse).
|
|
*/
|
|
const RegionMapping<Region> rmap_;
|
|
|
|
/**
|
|
* Representative cells in each FIP region.
|
|
*/
|
|
const typename Property::Cells repcells_;
|
|
|
|
/**
|
|
* Number of cells in each region.
|
|
*
|
|
* Floating-point type (double) for purpose of average
|
|
* pressure calculation.
|
|
*/
|
|
const Eigen::ArrayXd ncells_;
|
|
|
|
/**
|
|
* Average hydrocarbon pressure in each FIP region.
|
|
*/
|
|
Eigen::ArrayXd p_avg_;
|
|
|
|
/**
|
|
* Average temperature in each FIP region.
|
|
*/
|
|
Eigen::ArrayXd T_avg_;
|
|
|
|
/**
|
|
* Maximum dissolution and evaporation ratios at average
|
|
* hydrocarbon pressure.
|
|
*
|
|
* Size (number of regions)-by-(number of fluid phases).
|
|
* Water value is, strictly speaking, wasted if present.
|
|
*/
|
|
Eigen::ArrayXXd Rmax_;
|
|
|
|
/**
|
|
* Aggregate structure defining fluid miscibility
|
|
* conditions in single region with particular input
|
|
* surface rates.
|
|
*/
|
|
struct Miscibility {
|
|
Miscibility()
|
|
: rs (1)
|
|
, rv (1)
|
|
, cond(1)
|
|
{
|
|
rs << 0.0;
|
|
rv << 0.0;
|
|
}
|
|
|
|
/**
|
|
* Dissolved gas-oil ratio at particular component oil
|
|
* and gas rates at surface conditions.
|
|
*
|
|
* Limited by "RSmax" at average hydrocarbon pressure
|
|
* in region.
|
|
*/
|
|
typename Property::V rs;
|
|
|
|
/**
|
|
* Evaporated oil-gas ratio at particular component oil
|
|
* and gas rates at surface conditions.
|
|
*
|
|
* Limited by "RVmax" at average hydrocarbon pressure
|
|
* in region.
|
|
*/
|
|
typename Property::V rv;
|
|
|
|
/**
|
|
* Fluid condition in representative region cell.
|
|
*
|
|
* Needed for purpose of FVF evaluation.
|
|
*/
|
|
std::vector<PhasePresence> cond;
|
|
};
|
|
|
|
/**
|
|
* Compute average hydrocarbon pressure in all regions.
|
|
*
|
|
* \param[in] state Dynamic reservoir state.
|
|
*/
|
|
void
|
|
averagePressure(const BlackoilState& state)
|
|
{
|
|
p_avg_.setZero();
|
|
|
|
const std::vector<double>& p = state.pressure();
|
|
for (std::vector<double>::size_type
|
|
i = 0, n = p.size(); i < n; ++i)
|
|
{
|
|
p_avg_(rmap_.region(i)) += p[i];
|
|
}
|
|
|
|
p_avg_ /= ncells_;
|
|
}
|
|
|
|
/**
|
|
* Compute average temperature in all regions.
|
|
*
|
|
* \param[in] state Dynamic reservoir state.
|
|
*/
|
|
void
|
|
averageTemperature(const BlackoilState& state)
|
|
{
|
|
T_avg_.setZero();
|
|
|
|
const std::vector<double>& T = state.temperature();
|
|
for (std::vector<double>::size_type
|
|
i = 0, n = T.size(); i < n; ++i)
|
|
{
|
|
T_avg_(rmap_.region(i)) += T[i];
|
|
}
|
|
|
|
T_avg_ /= ncells_;
|
|
}
|
|
|
|
/**
|
|
* Compute maximum dissolution and evaporation ratios at
|
|
* average hydrocarbon pressure.
|
|
*
|
|
* Uses the pressure value computed by averagePressure()
|
|
* and must therefore be called *after* that method.
|
|
*/
|
|
void
|
|
calcRmax()
|
|
{
|
|
Rmax_.setZero();
|
|
|
|
const PhaseUsage& pu = props_.phaseUsage();
|
|
|
|
if (Details::PhaseUsed::oil(pu) &&
|
|
Details::PhaseUsed::gas(pu))
|
|
{
|
|
const Eigen::ArrayXXd::Index
|
|
io = Details::PhasePos::oil(pu),
|
|
ig = Details::PhasePos::gas(pu);
|
|
|
|
// Note: Intentionally does not take capillary
|
|
// pressure into account. This facility uses the
|
|
// average *hydrocarbon* pressure rather than
|
|
// average phase pressure.
|
|
typedef BlackoilPropsAdInterface::ADB ADB;
|
|
Rmax_.col(io) = props_.rsSat(ADB::constant(p_avg_), ADB::constant(T_avg_), repcells_).value();
|
|
Rmax_.col(ig) = props_.rvSat(ADB::constant(p_avg_), ADB::constant(T_avg_), repcells_).value();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Compute fluid conditions in particular region for a
|
|
* given set of component rates at surface conditions.
|
|
*
|
|
* \tparam Input Type representing collection of (active)
|
|
* component rates at surface conditions. Must support
|
|
* direct indexing through \code operator[]()\endcode.
|
|
*
|
|
* \param[in] in Single tuple of active component rates at
|
|
* surface conditions.
|
|
*
|
|
* \param[in] r Fluid-in-place region to which the
|
|
* component rates correspond.
|
|
*
|
|
* \return Fluid conditions in region \c r corresponding
|
|
* to surface component rates \c in.
|
|
*/
|
|
template <class Input>
|
|
Miscibility
|
|
calcMiscibility(const Input& in, const RegionId r) const
|
|
{
|
|
const PhaseUsage& pu = props_.phaseUsage();
|
|
|
|
const int io = Details::PhasePos::oil(pu);
|
|
const int ig = Details::PhasePos::gas(pu);
|
|
|
|
Miscibility m;
|
|
PhasePresence& cond = m.cond[0];
|
|
|
|
if (Details::PhaseUsed::water(pu)) {
|
|
cond.setFreeWater();
|
|
}
|
|
|
|
if (Details::PhaseUsed::oil(pu)) {
|
|
cond.setFreeOil();
|
|
|
|
if (Details::PhaseUsed::gas(pu)) {
|
|
const double rsmax = Rmax_(r, io);
|
|
const double rs =
|
|
(0.0 < std::abs(in[io]))
|
|
? in[ig] / in[io]
|
|
: (0.0 < std::abs(in[ig])) ? rsmax : 0.0;
|
|
|
|
if (rsmax < rs) {
|
|
cond.setFreeGas();
|
|
}
|
|
|
|
m.rs(0) = std::min(rs, rsmax);
|
|
}
|
|
}
|
|
|
|
if (Details::PhaseUsed::gas(pu)) {
|
|
if (! Details::PhaseUsed::oil(pu)) {
|
|
// Oil *NOT* active -- not really supported.
|
|
cond.setFreeGas();
|
|
}
|
|
|
|
if (Details::PhaseUsed::oil(pu)) {
|
|
const double rvmax = Rmax_(r, ig);
|
|
const double rv =
|
|
(0.0 < std::abs(in[ig]))
|
|
? (in[io] / in[ig])
|
|
: (0.0 < std::abs(in[io])) ? rvmax : 0.0;
|
|
|
|
m.rv(0) = std::min(rv, rvmax);
|
|
}
|
|
}
|
|
|
|
return m;
|
|
}
|
|
|
|
/**
|
|
* Retrieve average hydrocarbon pressure in region.
|
|
*
|
|
* \param[in] r Particular region.
|
|
*
|
|
* \return Average hydrocarbon pressure in region \c r.
|
|
*/
|
|
typename Property::V
|
|
getRegPress(const RegionId r) const
|
|
{
|
|
typename Property::V p(1);
|
|
p << p_avg_(r);
|
|
|
|
return p;
|
|
}
|
|
|
|
/**
|
|
* Retrieve average temperature in region.
|
|
*
|
|
* \param[in] r Particular region.
|
|
*
|
|
* \return Average temperature in region \c r.
|
|
*/
|
|
typename Property::V
|
|
getRegTemp(const RegionId r) const
|
|
{
|
|
typename Property::V T(1);
|
|
T << T_avg_(r);
|
|
|
|
return T;
|
|
}
|
|
|
|
/**
|
|
* Retrieve representative cell of region
|
|
*
|
|
* \param[in] r Particular region.
|
|
*
|
|
* \return Representative cell of region \c r.
|
|
*/
|
|
typename Property::Cells
|
|
getRegCell(const RegionId r) const
|
|
{
|
|
typename Property::Cells c(1, repcells_[r]);
|
|
|
|
return c;
|
|
}
|
|
};
|
|
} // namespace RateConverter
|
|
} // namespace Opm
|
|
|
|
#endif /* OPM_RATECONVERTER_HPP_HEADER_INCLUDED */
|