mirror of
https://github.com/OPM/opm-simulators.git
synced 2024-12-25 08:41:00 -06:00
586 lines
19 KiB
C++
586 lines
19 KiB
C++
/*
|
|
Copyright 2015, 2022 Dr. Blatt - HPC-Simulation-Software & Services
|
|
Copyright 2015 Statoil AS
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <opm/simulators/linalg/ParallelOverlappingILU0.hpp>
|
|
|
|
#include <dune/istl/ilu.hh>
|
|
#include <dune/istl/owneroverlapcopy.hh>
|
|
|
|
#include <opm/common/ErrorMacros.hpp>
|
|
#include <opm/common/TimingMacros.hpp>
|
|
|
|
#include <opm/simulators/linalg/GraphColoring.hpp>
|
|
#include <opm/simulators/linalg/matrixblock.hh>
|
|
|
|
namespace Opm
|
|
{
|
|
namespace detail
|
|
{
|
|
|
|
//! Compute Blocked ILU0 decomposition, when we know junk ghost rows are located at the end of A
|
|
template<class M>
|
|
void ghost_last_bilu0_decomposition (M& A, size_t interiorSize)
|
|
{
|
|
// iterator types
|
|
using rowiterator = typename M::RowIterator;
|
|
using coliterator = typename M::ColIterator;
|
|
using block = typename M::block_type;
|
|
|
|
// implement left looking variant with stored inverse
|
|
for (rowiterator i = A.begin(); i.index() < interiorSize; ++i)
|
|
{
|
|
// coliterator is diagonal after the following loop
|
|
coliterator endij=(*i).end(); // end of row i
|
|
coliterator ij;
|
|
|
|
// eliminate entries left of diagonal; store L factor
|
|
for (ij=(*i).begin(); ij.index()<i.index(); ++ij)
|
|
{
|
|
// find A_jj which eliminates A_ij
|
|
coliterator jj = A[ij.index()].find(ij.index());
|
|
|
|
// compute L_ij = A_jj^-1 * A_ij
|
|
(*ij).rightmultiply(*jj);
|
|
|
|
// modify row
|
|
coliterator endjk=A[ij.index()].end(); // end of row j
|
|
coliterator jk=jj; ++jk;
|
|
coliterator ik=ij; ++ik;
|
|
while (ik!=endij && jk!=endjk)
|
|
if (ik.index()==jk.index())
|
|
{
|
|
block B(*jk);
|
|
B.leftmultiply(*ij);
|
|
*ik -= B;
|
|
++ik; ++jk;
|
|
}
|
|
else
|
|
{
|
|
if (ik.index()<jk.index())
|
|
++ik;
|
|
else
|
|
++jk;
|
|
}
|
|
}
|
|
|
|
// invert pivot and store it in A
|
|
if (ij.index()!=i.index())
|
|
DUNE_THROW(Dune::ISTLError,"diagonal entry missing");
|
|
try {
|
|
(*ij).invert(); // compute inverse of diagonal block
|
|
}
|
|
catch (Dune::FMatrixError & e) {
|
|
DUNE_THROW(Dune::ISTLError,"ILU failed to invert matrix block");
|
|
}
|
|
}
|
|
}
|
|
|
|
//! compute ILU decomposition of A. A is overwritten by its decomposition
|
|
template<class M, class CRS, class InvVector>
|
|
void convertToCRS(const M& A, CRS& lower, CRS& upper, InvVector& inv)
|
|
{
|
|
OPM_TIMEBLOCK(convertToCRS);
|
|
// No need to do anything for 0 rows. Return to prevent indexing a
|
|
// a zero sized array.
|
|
if ( A.N() == 0 )
|
|
{
|
|
return;
|
|
}
|
|
|
|
using size_type = typename M :: size_type;
|
|
|
|
lower.clear();
|
|
upper.clear();
|
|
inv.clear();
|
|
lower.resize( A.N() );
|
|
upper.resize( A.N() );
|
|
inv.resize( A.N() );
|
|
|
|
// Count the lower and upper matrix entries.
|
|
size_type numLower = 0;
|
|
size_type numUpper = 0;
|
|
const auto endi = A.end();
|
|
for (auto i = A.begin(); i != endi; ++i) {
|
|
const size_type iIndex = i.index();
|
|
size_type numLowerRow = 0;
|
|
for (auto j = (*i).begin(); j.index() < iIndex; ++j) {
|
|
++numLowerRow;
|
|
}
|
|
numLower += numLowerRow;
|
|
numUpper += (*i).size() - numLowerRow - 1;
|
|
}
|
|
assert(numLower + numUpper + A.N() == A.nonzeroes());
|
|
|
|
lower.reserveAdditional( numLower );
|
|
|
|
// implement left looking variant with stored inverse
|
|
size_type row = 0;
|
|
size_type colcount = 0;
|
|
lower.rows_[ 0 ] = colcount;
|
|
for (auto i=A.begin(); i!=endi; ++i, ++row)
|
|
{
|
|
const size_type iIndex = i.index();
|
|
|
|
// eliminate entries left of diagonal; store L factor
|
|
for (auto j=(*i).begin(); j.index() < iIndex; ++j )
|
|
{
|
|
lower.push_back( (*j), j.index() );
|
|
++colcount;
|
|
}
|
|
lower.rows_[ iIndex+1 ] = colcount;
|
|
}
|
|
|
|
assert(colcount == numLower);
|
|
|
|
const auto rendi = A.beforeBegin();
|
|
row = 0;
|
|
colcount = 0;
|
|
upper.rows_[ 0 ] = colcount ;
|
|
|
|
upper.reserveAdditional( numUpper );
|
|
|
|
// NOTE: upper and inv store entries in reverse order, reverse here
|
|
// relative to ILU
|
|
for (auto i=A.beforeEnd(); i!=rendi; --i, ++ row )
|
|
{
|
|
const size_type iIndex = i.index();
|
|
|
|
// store in reverse row order
|
|
// eliminate entries left of diagonal; store L factor
|
|
for (auto j=(*i).beforeEnd(); j.index()>=iIndex; --j )
|
|
{
|
|
const size_type jIndex = j.index();
|
|
if( j.index() == iIndex )
|
|
{
|
|
inv[ row ] = (*j);
|
|
break;
|
|
}
|
|
else if ( j.index() >= i.index() )
|
|
{
|
|
upper.push_back( (*j), jIndex );
|
|
++colcount ;
|
|
}
|
|
}
|
|
upper.rows_[ row+1 ] = colcount;
|
|
}
|
|
assert(colcount == numUpper);
|
|
}
|
|
|
|
} // end namespace detail
|
|
|
|
|
|
template<class Matrix, class Domain, class Range, class ParallelInfoT>
|
|
Dune::SolverCategory::Category
|
|
ParallelOverlappingILU0<Matrix,Domain,Range,ParallelInfoT>::category() const
|
|
{
|
|
return std::is_same_v<ParallelInfoT, Dune::Amg::SequentialInformation> ?
|
|
Dune::SolverCategory::sequential : Dune::SolverCategory::overlapping;
|
|
}
|
|
|
|
template<class Matrix, class Domain, class Range, class ParallelInfoT>
|
|
ParallelOverlappingILU0<Matrix,Domain,Range,ParallelInfoT>::
|
|
ParallelOverlappingILU0(const Matrix& A,
|
|
const int n, const field_type w,
|
|
MILU_VARIANT milu, bool redblack,
|
|
bool reorder_sphere)
|
|
: lower_(),
|
|
upper_(),
|
|
inv_(),
|
|
comm_(nullptr), w_(w),
|
|
relaxation_( std::abs( w - 1.0 ) > 1e-15 ),
|
|
A_(&reinterpret_cast<const Matrix&>(A)), iluIteration_(n),
|
|
milu_(milu), redBlack_(redblack), reorderSphere_(reorder_sphere)
|
|
{
|
|
interiorSize_ = A.N();
|
|
// BlockMatrix is a Subclass of FieldMatrix that just adds
|
|
// methods. Therefore this cast should be safe.
|
|
update();
|
|
}
|
|
|
|
template<class Matrix, class Domain, class Range, class ParallelInfoT>
|
|
ParallelOverlappingILU0<Matrix,Domain,Range,ParallelInfoT>::
|
|
ParallelOverlappingILU0(const Matrix& A,
|
|
const ParallelInfo& comm, const int n, const field_type w,
|
|
MILU_VARIANT milu, bool redblack,
|
|
bool reorder_sphere)
|
|
: lower_(),
|
|
upper_(),
|
|
inv_(),
|
|
comm_(&comm), w_(w),
|
|
relaxation_( std::abs( w - 1.0 ) > 1e-15 ),
|
|
A_(&reinterpret_cast<const Matrix&>(A)), iluIteration_(n),
|
|
milu_(milu), redBlack_(redblack), reorderSphere_(reorder_sphere)
|
|
{
|
|
interiorSize_ = A.N();
|
|
// BlockMatrix is a Subclass of FieldMatrix that just adds
|
|
// methods. Therefore this cast should be safe.
|
|
update();
|
|
}
|
|
|
|
template<class Matrix, class Domain, class Range, class ParallelInfoT>
|
|
ParallelOverlappingILU0<Matrix,Domain,Range,ParallelInfoT>::
|
|
ParallelOverlappingILU0(const Matrix& A,
|
|
const field_type w, MILU_VARIANT milu, bool redblack,
|
|
bool reorder_sphere)
|
|
: ParallelOverlappingILU0( A, 0, w, milu, redblack, reorder_sphere )
|
|
{}
|
|
|
|
template<class Matrix, class Domain, class Range, class ParallelInfoT>
|
|
ParallelOverlappingILU0<Matrix,Domain,Range,ParallelInfoT>::
|
|
ParallelOverlappingILU0(const Matrix& A,
|
|
const ParallelInfo& comm, const field_type w,
|
|
MILU_VARIANT milu, bool redblack,
|
|
bool reorder_sphere)
|
|
: lower_(),
|
|
upper_(),
|
|
inv_(),
|
|
comm_(&comm), w_(w),
|
|
relaxation_( std::abs( w - 1.0 ) > 1e-15 ),
|
|
A_(&reinterpret_cast<const Matrix&>(A)), iluIteration_(0),
|
|
milu_(milu), redBlack_(redblack), reorderSphere_(reorder_sphere)
|
|
{
|
|
interiorSize_ = A.N();
|
|
// BlockMatrix is a Subclass of FieldMatrix that just adds
|
|
// methods. Therefore this cast should be safe.
|
|
update();
|
|
}
|
|
|
|
template<class Matrix, class Domain, class Range, class ParallelInfoT>
|
|
ParallelOverlappingILU0<Matrix,Domain,Range,ParallelInfoT>::
|
|
ParallelOverlappingILU0(const Matrix& A,
|
|
const ParallelInfo& comm,
|
|
const field_type w, MILU_VARIANT milu,
|
|
size_type interiorSize, bool redblack,
|
|
bool reorder_sphere)
|
|
: lower_(),
|
|
upper_(),
|
|
inv_(),
|
|
comm_(&comm), w_(w),
|
|
relaxation_( std::abs( w - 1.0 ) > 1e-15 ),
|
|
interiorSize_(interiorSize),
|
|
A_(&reinterpret_cast<const Matrix&>(A)), iluIteration_(0),
|
|
milu_(milu), redBlack_(redblack), reorderSphere_(reorder_sphere)
|
|
{
|
|
// BlockMatrix is a Subclass of FieldMatrix that just adds
|
|
// methods. Therefore this cast should be safe.
|
|
update( );
|
|
}
|
|
|
|
template<class Matrix, class Domain, class Range, class ParallelInfoT>
|
|
void ParallelOverlappingILU0<Matrix,Domain,Range,ParallelInfoT>::
|
|
apply (Domain& v, const Range& d)
|
|
{
|
|
OPM_TIMEBLOCK(apply);
|
|
Range& md = reorderD(d);
|
|
Domain& mv = reorderV(v);
|
|
|
|
// iterator types
|
|
using dblock = typename Range ::block_type;
|
|
using vblock = typename Domain::block_type;
|
|
|
|
const size_type iEnd = lower_.rows();
|
|
const size_type lastRow = iEnd - 1;
|
|
size_type upperLoopStart = iEnd - interiorSize_;
|
|
size_type lowerLoopEnd = interiorSize_;
|
|
if (iEnd != upper_.rows())
|
|
{
|
|
OPM_THROW(std::logic_error,"ILU: number of lower and upper rows must be the same");
|
|
}
|
|
|
|
// lower triangular solve
|
|
for (size_type i = 0; i < lowerLoopEnd; ++i)
|
|
{
|
|
dblock rhs( md[ i ] );
|
|
const size_type rowI = lower_.rows_[ i ];
|
|
const size_type rowINext = lower_.rows_[ i+1 ];
|
|
|
|
for (size_type col = rowI; col < rowINext; ++col)
|
|
{
|
|
lower_.values_[ col ].mmv( mv[ lower_.cols_[ col ] ], rhs );
|
|
}
|
|
|
|
mv[ i ] = rhs; // Lii = I
|
|
}
|
|
|
|
for (size_type i = upperLoopStart; i < iEnd; ++i)
|
|
{
|
|
vblock& vBlock = mv[ lastRow - i ];
|
|
vblock rhs ( vBlock );
|
|
const size_type rowI = upper_.rows_[ i ];
|
|
const size_type rowINext = upper_.rows_[ i+1 ];
|
|
|
|
for (size_type col = rowI; col < rowINext; ++col)
|
|
{
|
|
upper_.values_[ col ].mmv( mv[ upper_.cols_[ col ] ], rhs );
|
|
}
|
|
|
|
// apply inverse and store result
|
|
inv_[ i ].mv( rhs, vBlock);
|
|
}
|
|
|
|
copyOwnerToAll( mv );
|
|
|
|
if( relaxation_ ) {
|
|
mv *= w_;
|
|
}
|
|
reorderBack(mv, v);
|
|
}
|
|
|
|
template<class Matrix, class Domain, class Range, class ParallelInfoT>
|
|
template<class V>
|
|
void ParallelOverlappingILU0<Matrix,Domain,Range,ParallelInfoT>::
|
|
copyOwnerToAll(V& v) const
|
|
{
|
|
if( comm_ ) {
|
|
comm_->copyOwnerToAll(v, v);
|
|
}
|
|
}
|
|
|
|
template<class Matrix, class Domain, class Range, class ParallelInfoT>
|
|
void ParallelOverlappingILU0<Matrix,Domain,Range,ParallelInfoT>::
|
|
update()
|
|
{
|
|
OPM_TIMEBLOCK(update);
|
|
// (For older DUNE versions the communicator might be
|
|
// invalid if redistribution in AMG happened on the coarset level.
|
|
// Therefore we check for nonzero size
|
|
if (comm_ && comm_->communicator().size() <= 0)
|
|
{
|
|
if (A_->N() > 0)
|
|
{
|
|
OPM_THROW(std::logic_error, "Expected a matrix with zero rows for an invalid communicator.");
|
|
}
|
|
else
|
|
{
|
|
// simply set the communicator to null
|
|
comm_ = nullptr;
|
|
}
|
|
}
|
|
|
|
int ilu_setup_successful = 1;
|
|
std::string message;
|
|
const int rank = comm_ ? comm_->communicator().rank() : 0;
|
|
|
|
if (redBlack_)
|
|
{
|
|
using Graph = Dune::Amg::MatrixGraph<const Matrix>;
|
|
Graph graph(*A_);
|
|
auto colorsTuple = colorVerticesWelshPowell(graph);
|
|
const auto& colors = std::get<0>(colorsTuple);
|
|
const auto& verticesPerColor = std::get<2>(colorsTuple);
|
|
auto noColors = std::get<1>(colorsTuple);
|
|
if ( reorderSphere_ )
|
|
{
|
|
ordering_ = reorderVerticesSpheres(colors, noColors, verticesPerColor,
|
|
graph, 0);
|
|
}
|
|
else
|
|
{
|
|
ordering_ = reorderVerticesPreserving(colors, noColors, verticesPerColor,
|
|
graph);
|
|
}
|
|
}
|
|
|
|
std::vector<std::size_t> inverseOrdering(ordering_.size());
|
|
std::size_t index = 0;
|
|
for (const auto newIndex : ordering_)
|
|
{
|
|
inverseOrdering[newIndex] = index++;
|
|
}
|
|
|
|
try
|
|
{
|
|
OPM_TIMEBLOCK(iluDecomposition);
|
|
if (iluIteration_ == 0) {
|
|
// create ILU-0 decomposition
|
|
if (ordering_.empty())
|
|
{
|
|
if (ILU_) {
|
|
OPM_TIMEBLOCK(iluDecompositionMakeMatrix);
|
|
// The ILU_ matrix is already a copy with the same
|
|
// sparse structure as A_, but the values of A_ may
|
|
// have changed, so we must copy all elements.
|
|
for (size_t row = 0; row < A_->N(); ++row) {
|
|
const auto& Arow = (*A_)[row];
|
|
auto& ILUrow = (*ILU_)[row];
|
|
auto Ait = Arow.begin();
|
|
auto Iit = ILUrow.begin();
|
|
for (; Ait != Arow.end(); ++Ait, ++Iit) {
|
|
*Iit = *Ait;
|
|
}
|
|
}
|
|
} else {
|
|
// First call, must duplicate matrix.
|
|
ILU_ = std::make_unique<Matrix>(*A_);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
ILU_ = std::make_unique<Matrix>(A_->N(), A_->M(),
|
|
A_->nonzeroes(), Matrix::row_wise);
|
|
auto& newA = *ILU_;
|
|
// Create sparsity pattern
|
|
for (auto iter = newA.createbegin(), iend = newA.createend(); iter != iend; ++iter)
|
|
{
|
|
const auto& row = (*A_)[inverseOrdering[iter.index()]];
|
|
for (auto col = row.begin(), cend = row.end(); col != cend; ++col)
|
|
{
|
|
iter.insert(ordering_[col.index()]);
|
|
}
|
|
}
|
|
// Copy values
|
|
for (auto iter = A_->begin(), iend = A_->end(); iter != iend; ++iter)
|
|
{
|
|
auto& newRow = newA[ordering_[iter.index()]];
|
|
for (auto col = iter->begin(), cend = iter->end(); col != cend; ++col)
|
|
{
|
|
newRow[ordering_[col.index()]] = *col;
|
|
}
|
|
}
|
|
}
|
|
|
|
switch (milu_)
|
|
{
|
|
case MILU_VARIANT::MILU_1:
|
|
detail::milu0_decomposition ( *ILU_);
|
|
break;
|
|
case MILU_VARIANT::MILU_2:
|
|
detail::milu0_decomposition ( *ILU_, detail::identityFunctor<typename Matrix::field_type>,
|
|
detail::signFunctor<typename Matrix::field_type> );
|
|
break;
|
|
case MILU_VARIANT::MILU_3:
|
|
detail::milu0_decomposition ( *ILU_, detail::absFunctor<typename Matrix::field_type>,
|
|
detail::signFunctor<typename Matrix::field_type> );
|
|
break;
|
|
case MILU_VARIANT::MILU_4:
|
|
detail::milu0_decomposition ( *ILU_, detail::identityFunctor<typename Matrix::field_type>,
|
|
detail::isPositiveFunctor<typename Matrix::field_type> );
|
|
break;
|
|
default:
|
|
if (interiorSize_ == A_->N())
|
|
#if DUNE_VERSION_LT(DUNE_GRID, 2, 8)
|
|
bilu0_decomposition( *ILU_ );
|
|
#else
|
|
Dune::ILU::blockILU0Decomposition( *ILU_ );
|
|
#endif
|
|
else
|
|
detail::ghost_last_bilu0_decomposition(*ILU_, interiorSize_);
|
|
break;
|
|
}
|
|
}
|
|
else {
|
|
// create ILU-n decomposition
|
|
ILU_ = std::make_unique<Matrix>(A_->N(), A_->M(), Matrix::row_wise);
|
|
std::unique_ptr<detail::Reorderer> reorderer, inverseReorderer;
|
|
if (ordering_.empty())
|
|
{
|
|
reorderer.reset(new detail::NoReorderer());
|
|
inverseReorderer.reset(new detail::NoReorderer());
|
|
}
|
|
else
|
|
{
|
|
reorderer.reset(new detail::RealReorderer(ordering_));
|
|
inverseReorderer.reset(new detail::RealReorderer(inverseOrdering));
|
|
}
|
|
|
|
milun_decomposition( *A_, iluIteration_, milu_, *ILU_, *reorderer, *inverseReorderer );
|
|
}
|
|
}
|
|
catch (const Dune::MatrixBlockError& error)
|
|
{
|
|
message = error.what();
|
|
std::cerr << "Exception occurred on process " << rank << " during " <<
|
|
"setup of ILU0 preconditioner with message: "
|
|
<< message<<std::endl;
|
|
ilu_setup_successful = 0;
|
|
}
|
|
|
|
// Check whether there was a problem on some process
|
|
const bool parallel_failure = comm_ && comm_->communicator().min(ilu_setup_successful) == 0;
|
|
const bool local_failure = ilu_setup_successful == 0;
|
|
if (local_failure || parallel_failure)
|
|
{
|
|
throw Dune::MatrixBlockError();
|
|
}
|
|
|
|
// store ILU in simple CRS format
|
|
detail::convertToCRS(*ILU_, lower_, upper_, inv_);
|
|
}
|
|
|
|
template<class Matrix, class Domain, class Range, class ParallelInfoT>
|
|
Range& ParallelOverlappingILU0<Matrix,Domain,Range,ParallelInfoT>::
|
|
reorderD(const Range& d)
|
|
{
|
|
if (ordering_.empty())
|
|
{
|
|
// As d is non-const in the apply method of the
|
|
// solver casting away constness in this particular
|
|
// setting is not undefined. It is ugly though but due
|
|
// to the preconditioner interface of dune-istl.
|
|
return const_cast<Range&>(d);
|
|
}
|
|
else
|
|
{
|
|
reorderedD_.resize(d.size());
|
|
std::size_t i = 0;
|
|
for (const auto index : ordering_)
|
|
{
|
|
reorderedD_[index] = d[i++];
|
|
}
|
|
return reorderedD_;
|
|
}
|
|
}
|
|
|
|
template<class Matrix, class Domain, class Range, class ParallelInfoT>
|
|
Domain& ParallelOverlappingILU0<Matrix,Domain,Range,ParallelInfoT>::
|
|
reorderV(Domain& v)
|
|
{
|
|
if (ordering_.empty())
|
|
{
|
|
return v;
|
|
}
|
|
else
|
|
{
|
|
reorderedV_.resize(v.size());
|
|
std::size_t i = 0;
|
|
for (const auto index : ordering_)
|
|
{
|
|
reorderedV_[index] = v[i++];
|
|
}
|
|
return reorderedV_;
|
|
}
|
|
}
|
|
|
|
template<class Matrix, class Domain, class Range, class ParallelInfoT>
|
|
void ParallelOverlappingILU0<Matrix,Domain,Range,ParallelInfoT>::
|
|
reorderBack(const Range& reorderedV, Range& v)
|
|
{
|
|
if (!ordering_.empty())
|
|
{
|
|
std::size_t i = 0;
|
|
for (const auto index : ordering_)
|
|
{
|
|
v[i++] = reorderedV[index];
|
|
}
|
|
}
|
|
}
|
|
|
|
} // end namespace Opm
|