mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-16 01:11:58 -06:00
6571488ee8
limits the amount of static variable declarations
1140 lines
50 KiB
C++
1140 lines
50 KiB
C++
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
|
// vi: set et ts=4 sw=4 sts=4:
|
|
/*
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
Consult the COPYING file in the top-level source directory of this
|
|
module for the precise wording of the license and the list of
|
|
copyright holders.
|
|
*/
|
|
/*!
|
|
* \file
|
|
*
|
|
* \brief Contains the classes required to extend the black-oil model by polymer.
|
|
*/
|
|
#ifndef EWOMS_BLACK_OIL_POLYMER_MODULE_HH
|
|
#define EWOMS_BLACK_OIL_POLYMER_MODULE_HH
|
|
|
|
#include "blackoilproperties.hh"
|
|
|
|
#include <opm/models/blackoil/blackoilpolymerparams.hh>
|
|
#include <opm/models/io/vtkblackoilpolymermodule.hh>
|
|
|
|
#include <opm/common/OpmLog/OpmLog.hpp>
|
|
|
|
#if HAVE_ECL_INPUT
|
|
#include <opm/input/eclipse/EclipseState/EclipseState.hpp>
|
|
#include <opm/input/eclipse/EclipseState/Tables/PlyadsTable.hpp>
|
|
#include <opm/input/eclipse/EclipseState/Tables/PlymaxTable.hpp>
|
|
#include <opm/input/eclipse/EclipseState/Tables/PlyrockTable.hpp>
|
|
#include <opm/input/eclipse/EclipseState/Tables/PlyshlogTable.hpp>
|
|
#include <opm/input/eclipse/EclipseState/Tables/PlyviscTable.hpp>
|
|
#endif
|
|
|
|
#include <dune/common/fvector.hh>
|
|
|
|
#include <cmath>
|
|
#include <stdexcept>
|
|
#include <string>
|
|
|
|
namespace Opm {
|
|
/*!
|
|
* \ingroup BlackOil
|
|
* \brief Contains the high level supplements required to extend the black oil
|
|
* model by polymer.
|
|
*/
|
|
template <class TypeTag, bool enablePolymerV = getPropValue<TypeTag, Properties::EnablePolymer>()>
|
|
class BlackOilPolymerModule
|
|
{
|
|
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
|
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
|
|
using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>;
|
|
using IntensiveQuantities = GetPropType<TypeTag, Properties::IntensiveQuantities>;
|
|
using ExtensiveQuantities = GetPropType<TypeTag, Properties::ExtensiveQuantities>;
|
|
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
|
|
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
|
|
using Model = GetPropType<TypeTag, Properties::Model>;
|
|
using Simulator = GetPropType<TypeTag, Properties::Simulator>;
|
|
using EqVector = GetPropType<TypeTag, Properties::EqVector>;
|
|
using RateVector = GetPropType<TypeTag, Properties::RateVector>;
|
|
using Indices = GetPropType<TypeTag, Properties::Indices>;
|
|
|
|
using Toolbox = MathToolbox<Evaluation>;
|
|
|
|
using TabulatedFunction = typename BlackOilPolymerParams<Scalar>::TabulatedFunction;
|
|
using TabulatedTwoDFunction = typename BlackOilPolymerParams<Scalar>::TabulatedTwoDFunction;
|
|
|
|
static constexpr unsigned polymerConcentrationIdx = Indices::polymerConcentrationIdx;
|
|
static constexpr unsigned polymerMoleWeightIdx = Indices::polymerMoleWeightIdx;
|
|
static constexpr unsigned contiPolymerEqIdx = Indices::contiPolymerEqIdx;
|
|
static constexpr unsigned contiPolymerMolarWeightEqIdx = Indices::contiPolymerMWEqIdx;
|
|
static constexpr unsigned waterPhaseIdx = FluidSystem::waterPhaseIdx;
|
|
|
|
|
|
static constexpr unsigned enablePolymer = enablePolymerV;
|
|
static constexpr bool enablePolymerMolarWeight = getPropValue<TypeTag, Properties::EnablePolymerMW>();
|
|
|
|
static constexpr unsigned numEq = getPropValue<TypeTag, Properties::NumEq>();
|
|
static constexpr unsigned numPhases = FluidSystem::numPhases;
|
|
|
|
public:
|
|
#if HAVE_ECL_INPUT
|
|
/*!
|
|
* \brief Initialize all internal data structures needed by the polymer module
|
|
*/
|
|
static void initFromState(const EclipseState& eclState)
|
|
{
|
|
// some sanity checks: if polymers are enabled, the POLYMER keyword must be
|
|
// present, if polymers are disabled the keyword must not be present.
|
|
if (enablePolymer && !eclState.runspec().phases().active(Phase::POLYMER)) {
|
|
throw std::runtime_error("Non-trivial polymer treatment requested at compile time, but "
|
|
"the deck does not contain the POLYMER keyword");
|
|
}
|
|
else if (!enablePolymer && eclState.runspec().phases().active(Phase::POLYMER)) {
|
|
throw std::runtime_error("Polymer treatment disabled at compile time, but the deck "
|
|
"contains the POLYMER keyword");
|
|
}
|
|
|
|
if (enablePolymerMolarWeight && !eclState.runspec().phases().active(Phase::POLYMW)) {
|
|
throw std::runtime_error("Polymer molecular weight tracking is enabled at compile time, but "
|
|
"the deck does not contain the POLYMW keyword");
|
|
}
|
|
else if (!enablePolymerMolarWeight && eclState.runspec().phases().active(Phase::POLYMW)) {
|
|
throw std::runtime_error("Polymer molecular weight tracking is disabled at compile time, but the deck "
|
|
"contains the POLYMW keyword");
|
|
}
|
|
|
|
if (enablePolymerMolarWeight && !enablePolymer) {
|
|
throw std::runtime_error("Polymer molecular weight tracking is enabled while polymer treatment "
|
|
"is disabled at compile time");
|
|
}
|
|
|
|
if (!eclState.runspec().phases().active(Phase::POLYMER))
|
|
return; // polymer treatment is supposed to be disabled
|
|
|
|
const auto& tableManager = eclState.getTableManager();
|
|
|
|
unsigned numSatRegions = tableManager.getTabdims().getNumSatTables();
|
|
params_.setNumSatRegions(numSatRegions);
|
|
|
|
// initialize the objects which deal with the PLYROCK keyword
|
|
const auto& plyrockTables = tableManager.getPlyrockTables();
|
|
if (!plyrockTables.empty()) {
|
|
assert(numSatRegions == plyrockTables.size());
|
|
for (unsigned satRegionIdx = 0; satRegionIdx < numSatRegions; ++ satRegionIdx) {
|
|
const auto& plyrockTable = plyrockTables.template getTable<PlyrockTable>(satRegionIdx);
|
|
params_.setPlyrock(satRegionIdx,
|
|
plyrockTable.getDeadPoreVolumeColumn()[0],
|
|
plyrockTable.getResidualResistanceFactorColumn()[0],
|
|
plyrockTable.getRockDensityFactorColumn()[0],
|
|
static_cast<typename BlackOilPolymerParams<Scalar>::AdsorptionBehaviour>(plyrockTable.getAdsorbtionIndexColumn()[0]),
|
|
plyrockTable.getMaxAdsorbtionColumn()[0]);
|
|
}
|
|
}
|
|
else {
|
|
throw std::runtime_error("PLYROCK must be specified in POLYMER runs\n");
|
|
}
|
|
|
|
// initialize the objects which deal with the PLYADS keyword
|
|
const auto& plyadsTables = tableManager.getPlyadsTables();
|
|
if (!plyadsTables.empty()) {
|
|
assert(numSatRegions == plyadsTables.size());
|
|
for (unsigned satRegionIdx = 0; satRegionIdx < numSatRegions; ++ satRegionIdx) {
|
|
const auto& plyadsTable = plyadsTables.template getTable<PlyadsTable>(satRegionIdx);
|
|
// Copy data
|
|
const auto& c = plyadsTable.getPolymerConcentrationColumn();
|
|
const auto& ads = plyadsTable.getAdsorbedPolymerColumn();
|
|
params_.plyadsAdsorbedPolymer_[satRegionIdx].setXYContainers(c, ads);
|
|
}
|
|
}
|
|
else {
|
|
throw std::runtime_error("PLYADS must be specified in POLYMER runs\n");
|
|
}
|
|
|
|
|
|
unsigned numPvtRegions = tableManager.getTabdims().getNumPVTTables();
|
|
params_.plyviscViscosityMultiplierTable_.resize(numPvtRegions);
|
|
|
|
// initialize the objects which deal with the PLYVISC keyword
|
|
const auto& plyviscTables = tableManager.getPlyviscTables();
|
|
if (!plyviscTables.empty()) {
|
|
// different viscosity model is used for POLYMW
|
|
if (enablePolymerMolarWeight) {
|
|
OpmLog::warning("PLYVISC should not be used in POLYMW runs, "
|
|
"it will have no effect. A viscosity model based on PLYVMH is used instead.\n");
|
|
}
|
|
else {
|
|
assert(numPvtRegions == plyviscTables.size());
|
|
for (unsigned pvtRegionIdx = 0; pvtRegionIdx < numPvtRegions; ++ pvtRegionIdx) {
|
|
const auto& plyadsTable = plyviscTables.template getTable<PlyviscTable>(pvtRegionIdx);
|
|
// Copy data
|
|
const auto& c = plyadsTable.getPolymerConcentrationColumn();
|
|
const auto& visc = plyadsTable.getViscosityMultiplierColumn();
|
|
params_.plyviscViscosityMultiplierTable_[pvtRegionIdx].setXYContainers(c, visc);
|
|
}
|
|
}
|
|
}
|
|
else if (!enablePolymerMolarWeight) {
|
|
throw std::runtime_error("PLYVISC must be specified in POLYMER runs\n");
|
|
}
|
|
|
|
// initialize the objects which deal with the PLYMAX keyword
|
|
const auto& plymaxTables = tableManager.getPlymaxTables();
|
|
const unsigned numMixRegions = plymaxTables.size();
|
|
params_.setNumMixRegions(numMixRegions, enablePolymerMolarWeight);
|
|
if (!plymaxTables.empty()) {
|
|
for (unsigned mixRegionIdx = 0; mixRegionIdx < numMixRegions; ++ mixRegionIdx) {
|
|
const auto& plymaxTable = plymaxTables.template getTable<PlymaxTable>(mixRegionIdx);
|
|
params_.plymaxMaxConcentration_[mixRegionIdx] = plymaxTable.getPolymerConcentrationColumn()[0];
|
|
}
|
|
}
|
|
else {
|
|
throw std::runtime_error("PLYMAX must be specified in POLYMER runs\n");
|
|
}
|
|
|
|
if (!eclState.getTableManager().getPlmixparTable().empty()) {
|
|
if (enablePolymerMolarWeight) {
|
|
OpmLog::warning("PLMIXPAR should not be used in POLYMW runs, it will have no effect.\n");
|
|
}
|
|
else {
|
|
const auto& plmixparTable = eclState.getTableManager().getPlmixparTable();
|
|
// initialize the objects which deal with the PLMIXPAR keyword
|
|
for (unsigned mixRegionIdx = 0; mixRegionIdx < numMixRegions; ++ mixRegionIdx) {
|
|
params_.plymixparToddLongstaff_[mixRegionIdx] = plmixparTable[mixRegionIdx].todd_langstaff;
|
|
}
|
|
}
|
|
}
|
|
else if (!enablePolymerMolarWeight) {
|
|
throw std::runtime_error("PLMIXPAR must be specified in POLYMER runs\n");
|
|
}
|
|
|
|
params_.hasPlyshlog_ = eclState.getTableManager().hasTables("PLYSHLOG");
|
|
params_.hasShrate_ = eclState.getTableManager().useShrate();
|
|
|
|
if ((params_.hasPlyshlog_ || params_.hasShrate_) && enablePolymerMolarWeight) {
|
|
OpmLog::warning("PLYSHLOG and SHRATE should not be used in POLYMW runs, they will have no effect.\n");
|
|
}
|
|
|
|
if (params_.hasPlyshlog_ && !enablePolymerMolarWeight) {
|
|
const auto& plyshlogTables = tableManager.getPlyshlogTables();
|
|
assert(numPvtRegions == plyshlogTables.size());
|
|
params_.plyshlogShearEffectRefMultiplier_.resize(numPvtRegions);
|
|
params_.plyshlogShearEffectRefLogVelocity_.resize(numPvtRegions);
|
|
for (unsigned pvtRegionIdx = 0; pvtRegionIdx < numPvtRegions; ++ pvtRegionIdx) {
|
|
const auto& plyshlogTable = plyshlogTables.template getTable<PlyshlogTable>(pvtRegionIdx);
|
|
|
|
Scalar plyshlogRefPolymerConcentration = plyshlogTable.getRefPolymerConcentration();
|
|
auto waterVelocity = plyshlogTable.getWaterVelocityColumn().vectorCopy();
|
|
auto shearMultiplier = plyshlogTable.getShearMultiplierColumn().vectorCopy();
|
|
|
|
// do the unit version here for the waterVelocity
|
|
UnitSystem unitSystem = eclState.getDeckUnitSystem();
|
|
double siFactor = params_.hasShrate_? unitSystem.parse("1/Time").getSIScaling() : unitSystem.parse("Length/Time").getSIScaling();
|
|
for (size_t i = 0; i < waterVelocity.size(); ++i) {
|
|
waterVelocity[i] *= siFactor;
|
|
// for plyshlog the input must be stored as logarithms
|
|
// the interpolation is then done the log-space.
|
|
waterVelocity[i] = std::log(waterVelocity[i]);
|
|
}
|
|
|
|
Scalar refViscMult = params_.plyviscViscosityMultiplierTable_[pvtRegionIdx].eval(plyshlogRefPolymerConcentration, /*extrapolate=*/true);
|
|
// convert the table using referece conditions
|
|
for (size_t i = 0; i < waterVelocity.size(); ++i) {
|
|
shearMultiplier[i] *= refViscMult;
|
|
shearMultiplier[i] -= 1;
|
|
shearMultiplier[i] /= (refViscMult - 1);
|
|
shearMultiplier[i] = shearMultiplier[i];
|
|
}
|
|
params_.plyshlogShearEffectRefMultiplier_[pvtRegionIdx].resize(waterVelocity.size());
|
|
params_.plyshlogShearEffectRefLogVelocity_[pvtRegionIdx].resize(waterVelocity.size());
|
|
|
|
for (size_t i = 0; i < waterVelocity.size(); ++i) {
|
|
params_.plyshlogShearEffectRefMultiplier_[pvtRegionIdx][i] = shearMultiplier[i];
|
|
params_.plyshlogShearEffectRefLogVelocity_[pvtRegionIdx][i] = waterVelocity[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
if (params_.hasShrate_ && !enablePolymerMolarWeight) {
|
|
if (!params_.hasPlyshlog_) {
|
|
throw std::runtime_error("PLYSHLOG must be specified if SHRATE is used in POLYMER runs\n");
|
|
}
|
|
const auto& shrateTable = eclState.getTableManager().getShrateTable();
|
|
params_.shrate_.resize(numPvtRegions);
|
|
for (unsigned pvtRegionIdx = 0; pvtRegionIdx < numPvtRegions; ++ pvtRegionIdx) {
|
|
if (shrateTable.empty()) {
|
|
params_.shrate_[pvtRegionIdx] = 4.8; //default;
|
|
}
|
|
else if (shrateTable.size() == numPvtRegions) {
|
|
params_.shrate_[pvtRegionIdx] = shrateTable[pvtRegionIdx].rate;
|
|
}
|
|
else {
|
|
throw std::runtime_error("SHRATE must either have 0 or number of NUMPVT entries\n");
|
|
}
|
|
}
|
|
}
|
|
|
|
if constexpr (enablePolymerMolarWeight) {
|
|
const auto& plyvmhTable = eclState.getTableManager().getPlyvmhTable();
|
|
if (!plyvmhTable.empty()) {
|
|
assert(plyvmhTable.size() == numMixRegions);
|
|
for (size_t regionIdx = 0; regionIdx < numMixRegions; ++regionIdx) {
|
|
params_.plyvmhCoefficients_[regionIdx].k_mh = plyvmhTable[regionIdx].k_mh;
|
|
params_.plyvmhCoefficients_[regionIdx].a_mh = plyvmhTable[regionIdx].a_mh;
|
|
params_.plyvmhCoefficients_[regionIdx].gamma = plyvmhTable[regionIdx].gamma;
|
|
params_.plyvmhCoefficients_[regionIdx].kappa = plyvmhTable[regionIdx].kappa;
|
|
}
|
|
}
|
|
else {
|
|
throw std::runtime_error("PLYVMH keyword must be specified in POLYMW rus \n");
|
|
}
|
|
|
|
// handling PLYMWINJ keyword
|
|
const auto& plymwinjTables = tableManager.getPlymwinjTables();
|
|
for (const auto& table : plymwinjTables) {
|
|
const int tableNumber = table.first;
|
|
const auto& plymwinjtable = table.second;
|
|
const std::vector<double>& throughput = plymwinjtable.getThroughputs();
|
|
const std::vector<double>& watervelocity = plymwinjtable.getVelocities();
|
|
const std::vector<std::vector<double>>& molecularweight = plymwinjtable.getMoleWeights();
|
|
TabulatedTwoDFunction tablefunc(throughput, watervelocity, molecularweight, true, false);
|
|
params_.plymwinjTables_[tableNumber] = std::move(tablefunc);
|
|
}
|
|
|
|
// handling SKPRWAT keyword
|
|
const auto& skprwatTables = tableManager.getSkprwatTables();
|
|
for (const auto& table : skprwatTables) {
|
|
const int tableNumber = table.first;
|
|
const auto& skprwattable = table.second;
|
|
const std::vector<double>& throughput = skprwattable.getThroughputs();
|
|
const std::vector<double>& watervelocity = skprwattable.getVelocities();
|
|
const std::vector<std::vector<double>>& skinpressure = skprwattable.getSkinPressures();
|
|
TabulatedTwoDFunction tablefunc(throughput, watervelocity, skinpressure, true, false);
|
|
params_.skprwatTables_[tableNumber] = std::move(tablefunc);
|
|
}
|
|
|
|
// handling SKPRPOLY keyword
|
|
const auto& skprpolyTables = tableManager.getSkprpolyTables();
|
|
for (const auto& table : skprpolyTables) {
|
|
const int tableNumber = table.first;
|
|
const auto& skprpolytable = table.second;
|
|
const std::vector<double>& throughput = skprpolytable.getThroughputs();
|
|
const std::vector<double>& watervelocity = skprpolytable.getVelocities();
|
|
const std::vector<std::vector<double>>& skinpressure = skprpolytable.getSkinPressures();
|
|
const double refPolymerConcentration = skprpolytable.referenceConcentration();
|
|
typename BlackOilPolymerParams<Scalar>::SkprpolyTable tablefunc =
|
|
{refPolymerConcentration,
|
|
TabulatedTwoDFunction(throughput, watervelocity, skinpressure, true, false)};
|
|
params_.skprpolyTables_[tableNumber] = std::move(tablefunc);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*!
|
|
* \brief get the PLYMWINJ table
|
|
*/
|
|
static TabulatedTwoDFunction& getPlymwinjTable(const int tableNumber)
|
|
{
|
|
const auto iterTable = params_.plymwinjTables_.find(tableNumber);
|
|
if (iterTable != params_.plymwinjTables_.end()) {
|
|
return iterTable->second;
|
|
}
|
|
else {
|
|
throw std::runtime_error(" the PLYMWINJ table " + std::to_string(tableNumber) + " does not exist\n");
|
|
}
|
|
}
|
|
|
|
/*!
|
|
* \brief get the SKPRWAT table
|
|
*/
|
|
static TabulatedTwoDFunction& getSkprwatTable(const int tableNumber)
|
|
{
|
|
const auto iterTable = params_.skprwatTables_.find(tableNumber);
|
|
if (iterTable != params_.skprwatTables_.end()) {
|
|
return iterTable->second;
|
|
}
|
|
else {
|
|
throw std::runtime_error(" the SKPRWAT table " + std::to_string(tableNumber) + " does not exist\n");
|
|
}
|
|
}
|
|
|
|
/*!
|
|
* \brief get the SKPRPOLY table
|
|
*/
|
|
static typename BlackOilPolymerParams<Scalar>::SkprpolyTable&
|
|
getSkprpolyTable(const int tableNumber)
|
|
{
|
|
const auto iterTable = params_.skprpolyTables_.find(tableNumber);
|
|
if (iterTable != params_.skprpolyTables_.end()) {
|
|
return iterTable->second;
|
|
}
|
|
else {
|
|
throw std::runtime_error(" the SKPRPOLY table " + std::to_string(tableNumber) + " does not exist\n");
|
|
}
|
|
}
|
|
|
|
/*!
|
|
* \brief Register all run-time parameters for the black-oil polymer module.
|
|
*/
|
|
static void registerParameters()
|
|
{
|
|
if constexpr (enablePolymer)
|
|
VtkBlackOilPolymerModule<TypeTag>::registerParameters();
|
|
}
|
|
|
|
/*!
|
|
* \brief Register all polymer specific VTK and ECL output modules.
|
|
*/
|
|
static void registerOutputModules(Model& model,
|
|
Simulator& simulator)
|
|
{
|
|
if constexpr (enablePolymer)
|
|
model.addOutputModule(new VtkBlackOilPolymerModule<TypeTag>(simulator));
|
|
}
|
|
|
|
static bool primaryVarApplies(unsigned pvIdx)
|
|
{
|
|
if constexpr (enablePolymer) {
|
|
if constexpr (enablePolymerMolarWeight)
|
|
return pvIdx == polymerConcentrationIdx || pvIdx == polymerMoleWeightIdx;
|
|
else
|
|
return pvIdx == polymerConcentrationIdx;
|
|
}
|
|
else
|
|
return false;
|
|
}
|
|
|
|
static std::string primaryVarName(unsigned pvIdx)
|
|
{
|
|
assert(primaryVarApplies(pvIdx));
|
|
|
|
if (pvIdx == polymerConcentrationIdx) {
|
|
return "polymer_waterconcentration";
|
|
}
|
|
else {
|
|
return "polymer_molecularweight";
|
|
}
|
|
}
|
|
|
|
static Scalar primaryVarWeight([[maybe_unused]] unsigned pvIdx)
|
|
{
|
|
assert(primaryVarApplies(pvIdx));
|
|
|
|
// TODO: it may be beneficial to chose this differently.
|
|
return static_cast<Scalar>(1.0);
|
|
}
|
|
|
|
static bool eqApplies(unsigned eqIdx)
|
|
{
|
|
if constexpr (enablePolymer) {
|
|
if constexpr (enablePolymerMolarWeight)
|
|
return eqIdx == contiPolymerEqIdx || eqIdx == contiPolymerMolarWeightEqIdx;
|
|
else
|
|
return eqIdx == contiPolymerEqIdx;
|
|
}
|
|
else
|
|
return false;
|
|
}
|
|
|
|
static std::string eqName(unsigned eqIdx)
|
|
{
|
|
assert(eqApplies(eqIdx));
|
|
|
|
if (eqIdx == contiPolymerEqIdx)
|
|
return "conti^polymer";
|
|
else
|
|
return "conti^polymer_molecularweight";
|
|
}
|
|
|
|
static Scalar eqWeight([[maybe_unused]] unsigned eqIdx)
|
|
{
|
|
assert(eqApplies(eqIdx));
|
|
|
|
// TODO: it may be beneficial to chose this differently.
|
|
return static_cast<Scalar>(1.0);
|
|
}
|
|
|
|
// must be called after water storage is computed
|
|
template <class LhsEval>
|
|
static void addStorage(Dune::FieldVector<LhsEval, numEq>& storage,
|
|
const IntensiveQuantities& intQuants)
|
|
{
|
|
if constexpr (enablePolymer) {
|
|
const auto& fs = intQuants.fluidState();
|
|
|
|
LhsEval surfaceVolumeWater =
|
|
Toolbox::template decay<LhsEval>(fs.saturation(waterPhaseIdx))
|
|
* Toolbox::template decay<LhsEval>(fs.invB(waterPhaseIdx))
|
|
* Toolbox::template decay<LhsEval>(intQuants.porosity());
|
|
|
|
// avoid singular matrix if no water is present.
|
|
surfaceVolumeWater = max(surfaceVolumeWater, 1e-10);
|
|
|
|
// polymer in water phase
|
|
const LhsEval massPolymer = surfaceVolumeWater
|
|
* Toolbox::template decay<LhsEval>(intQuants.polymerConcentration())
|
|
* (1.0 - Toolbox::template decay<LhsEval>(intQuants.polymerDeadPoreVolume()));
|
|
|
|
// polymer in solid phase
|
|
const LhsEval adsorptionPolymer =
|
|
Toolbox::template decay<LhsEval>(1.0 - intQuants.porosity())
|
|
* Toolbox::template decay<LhsEval>(intQuants.polymerRockDensity())
|
|
* Toolbox::template decay<LhsEval>(intQuants.polymerAdsorption());
|
|
|
|
LhsEval accumulationPolymer = massPolymer + adsorptionPolymer;
|
|
|
|
storage[contiPolymerEqIdx] += accumulationPolymer;
|
|
|
|
// tracking the polymer molecular weight
|
|
if constexpr (enablePolymerMolarWeight) {
|
|
accumulationPolymer = max(accumulationPolymer, 1e-10);
|
|
|
|
storage[contiPolymerMolarWeightEqIdx] += accumulationPolymer
|
|
* Toolbox::template decay<LhsEval> (intQuants.polymerMoleWeight());
|
|
}
|
|
}
|
|
}
|
|
|
|
static void computeFlux([[maybe_unused]] RateVector& flux,
|
|
[[maybe_unused]] const ElementContext& elemCtx,
|
|
[[maybe_unused]] unsigned scvfIdx,
|
|
[[maybe_unused]] unsigned timeIdx)
|
|
|
|
{
|
|
if constexpr (enablePolymer) {
|
|
const auto& extQuants = elemCtx.extensiveQuantities(scvfIdx, timeIdx);
|
|
|
|
const unsigned upIdx = extQuants.upstreamIndex(FluidSystem::waterPhaseIdx);
|
|
const unsigned inIdx = extQuants.interiorIndex();
|
|
const auto& up = elemCtx.intensiveQuantities(upIdx, timeIdx);
|
|
const unsigned contiWaterEqIdx = Indices::conti0EqIdx + Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx);
|
|
|
|
if (upIdx == inIdx) {
|
|
flux[contiPolymerEqIdx] =
|
|
extQuants.volumeFlux(waterPhaseIdx)
|
|
*up.fluidState().invB(waterPhaseIdx)
|
|
*up.polymerViscosityCorrection()
|
|
/extQuants.polymerShearFactor()
|
|
*up.polymerConcentration();
|
|
|
|
// modify water
|
|
flux[contiWaterEqIdx] /=
|
|
extQuants.waterShearFactor();
|
|
}
|
|
else {
|
|
flux[contiPolymerEqIdx] =
|
|
extQuants.volumeFlux(waterPhaseIdx)
|
|
*decay<Scalar>(up.fluidState().invB(waterPhaseIdx))
|
|
*decay<Scalar>(up.polymerViscosityCorrection())
|
|
/decay<Scalar>(extQuants.polymerShearFactor())
|
|
*decay<Scalar>(up.polymerConcentration());
|
|
|
|
// modify water
|
|
flux[contiWaterEqIdx] /=
|
|
decay<Scalar>(extQuants.waterShearFactor());
|
|
}
|
|
|
|
// flux related to transport of polymer molecular weight
|
|
if constexpr (enablePolymerMolarWeight) {
|
|
if (upIdx == inIdx)
|
|
flux[contiPolymerMolarWeightEqIdx] =
|
|
flux[contiPolymerEqIdx]*up.polymerMoleWeight();
|
|
else
|
|
flux[contiPolymerMolarWeightEqIdx] =
|
|
flux[contiPolymerEqIdx]*decay<Scalar>(up.polymerMoleWeight());
|
|
}
|
|
}
|
|
}
|
|
|
|
/*!
|
|
* \brief Return how much a Newton-Raphson update is considered an error
|
|
*/
|
|
static Scalar computeUpdateError(const PrimaryVariables&,
|
|
const EqVector&)
|
|
{
|
|
// do not consider consider the cange of polymer primary variables for
|
|
// convergence
|
|
// TODO: maybe this should be changed
|
|
return static_cast<Scalar>(0.0);
|
|
}
|
|
|
|
template <class DofEntity>
|
|
static void serializeEntity(const Model& model, std::ostream& outstream, const DofEntity& dof)
|
|
{
|
|
if constexpr (enablePolymer) {
|
|
unsigned dofIdx = model.dofMapper().index(dof);
|
|
const PrimaryVariables& priVars = model.solution(/*timeIdx=*/0)[dofIdx];
|
|
outstream << priVars[polymerConcentrationIdx];
|
|
outstream << priVars[polymerMoleWeightIdx];
|
|
}
|
|
}
|
|
|
|
template <class DofEntity>
|
|
static void deserializeEntity(Model& model, std::istream& instream, const DofEntity& dof)
|
|
{
|
|
if constexpr (enablePolymer) {
|
|
unsigned dofIdx = model.dofMapper().index(dof);
|
|
PrimaryVariables& priVars0 = model.solution(/*timeIdx=*/0)[dofIdx];
|
|
PrimaryVariables& priVars1 = model.solution(/*timeIdx=*/1)[dofIdx];
|
|
|
|
instream >> priVars0[polymerConcentrationIdx];
|
|
instream >> priVars0[polymerMoleWeightIdx];
|
|
|
|
// set the primary variables for the beginning of the current time step.
|
|
priVars1[polymerConcentrationIdx] = priVars0[polymerConcentrationIdx];
|
|
priVars1[polymerMoleWeightIdx] = priVars0[polymerMoleWeightIdx];
|
|
}
|
|
}
|
|
|
|
static const Scalar plyrockDeadPoreVolume(const ElementContext& elemCtx,
|
|
unsigned scvIdx,
|
|
unsigned timeIdx)
|
|
{
|
|
unsigned satnumRegionIdx = elemCtx.problem().satnumRegionIndex(elemCtx, scvIdx, timeIdx);
|
|
return params_.plyrockDeadPoreVolume_[satnumRegionIdx];
|
|
}
|
|
|
|
static const Scalar plyrockResidualResistanceFactor(const ElementContext& elemCtx,
|
|
unsigned scvIdx,
|
|
unsigned timeIdx)
|
|
{
|
|
unsigned satnumRegionIdx = elemCtx.problem().satnumRegionIndex(elemCtx, scvIdx, timeIdx);
|
|
return params_.plyrockResidualResistanceFactor_[satnumRegionIdx];
|
|
}
|
|
|
|
static const Scalar plyrockRockDensityFactor(const ElementContext& elemCtx,
|
|
unsigned scvIdx,
|
|
unsigned timeIdx)
|
|
{
|
|
unsigned satnumRegionIdx = elemCtx.problem().satnumRegionIndex(elemCtx, scvIdx, timeIdx);
|
|
return params_.plyrockRockDensityFactor_[satnumRegionIdx];
|
|
}
|
|
|
|
static const Scalar plyrockAdsorbtionIndex(const ElementContext& elemCtx,
|
|
unsigned scvIdx,
|
|
unsigned timeIdx)
|
|
{
|
|
unsigned satnumRegionIdx = elemCtx.problem().satnumRegionIndex(elemCtx, scvIdx, timeIdx);
|
|
return params_.plyrockAdsorbtionIndex_[satnumRegionIdx];
|
|
}
|
|
|
|
static const Scalar plyrockMaxAdsorbtion(const ElementContext& elemCtx,
|
|
unsigned scvIdx,
|
|
unsigned timeIdx)
|
|
{
|
|
unsigned satnumRegionIdx = elemCtx.problem().satnumRegionIndex(elemCtx, scvIdx, timeIdx);
|
|
return params_.plyrockMaxAdsorbtion_[satnumRegionIdx];
|
|
}
|
|
|
|
static const TabulatedFunction& plyadsAdsorbedPolymer(const ElementContext& elemCtx,
|
|
unsigned scvIdx,
|
|
unsigned timeIdx)
|
|
{
|
|
unsigned satnumRegionIdx = elemCtx.problem().satnumRegionIndex(elemCtx, scvIdx, timeIdx);
|
|
return params_.plyadsAdsorbedPolymer_[satnumRegionIdx];
|
|
}
|
|
|
|
static const TabulatedFunction& plyviscViscosityMultiplierTable(const ElementContext& elemCtx,
|
|
unsigned scvIdx,
|
|
unsigned timeIdx)
|
|
{
|
|
unsigned pvtnumRegionIdx = elemCtx.problem().pvtRegionIndex(elemCtx, scvIdx, timeIdx);
|
|
return params_.plyviscViscosityMultiplierTable_[pvtnumRegionIdx];
|
|
}
|
|
|
|
static const TabulatedFunction& plyviscViscosityMultiplierTable(unsigned pvtnumRegionIdx)
|
|
{
|
|
return params_.plyviscViscosityMultiplierTable_[pvtnumRegionIdx];
|
|
}
|
|
|
|
static const Scalar plymaxMaxConcentration(const ElementContext& elemCtx,
|
|
unsigned scvIdx,
|
|
unsigned timeIdx)
|
|
{
|
|
unsigned polymerMixRegionIdx = elemCtx.problem().plmixnumRegionIndex(elemCtx, scvIdx, timeIdx);
|
|
return params_.plymaxMaxConcentration_[polymerMixRegionIdx];
|
|
}
|
|
|
|
static const Scalar plymixparToddLongstaff(const ElementContext& elemCtx,
|
|
unsigned scvIdx,
|
|
unsigned timeIdx)
|
|
{
|
|
unsigned polymerMixRegionIdx = elemCtx.problem().plmixnumRegionIndex(elemCtx, scvIdx, timeIdx);
|
|
return params_.plymixparToddLongstaff_[polymerMixRegionIdx];
|
|
}
|
|
|
|
static const typename BlackOilPolymerParams<Scalar>::PlyvmhCoefficients&
|
|
plyvmhCoefficients(const ElementContext& elemCtx,
|
|
const unsigned scvIdx,
|
|
const unsigned timeIdx)
|
|
{
|
|
const unsigned polymerMixRegionIdx = elemCtx.problem().plmixnumRegionIndex(elemCtx, scvIdx, timeIdx);
|
|
return params_.plyvmhCoefficients_[polymerMixRegionIdx];
|
|
}
|
|
|
|
static bool hasPlyshlog()
|
|
{
|
|
return params_.hasPlyshlog_;
|
|
}
|
|
|
|
static bool hasShrate()
|
|
{
|
|
return params_.hasShrate_;
|
|
}
|
|
|
|
static const Scalar shrate(unsigned pvtnumRegionIdx)
|
|
{
|
|
return params_.shrate_[pvtnumRegionIdx];
|
|
}
|
|
|
|
/*!
|
|
* \brief Computes the shear factor
|
|
*
|
|
* Input is polymer concentration and either the water velocity or the shrate if hasShrate_ is true.
|
|
* The pvtnumRegionIdx is needed to make sure the right table is used.
|
|
*/
|
|
template <class Evaluation>
|
|
static Evaluation computeShearFactor(const Evaluation& polymerConcentration,
|
|
unsigned pvtnumRegionIdx,
|
|
const Evaluation& v0)
|
|
{
|
|
using ToolboxLocal = MathToolbox<Evaluation>;
|
|
|
|
const auto& viscosityMultiplierTable = params_.plyviscViscosityMultiplierTable_[pvtnumRegionIdx];
|
|
Scalar viscosityMultiplier = viscosityMultiplierTable.eval(scalarValue(polymerConcentration), /*extrapolate=*/true);
|
|
|
|
const Scalar eps = 1e-14;
|
|
// return 1.0 if the polymer has no effect on the water.
|
|
if (std::abs((viscosityMultiplier - 1.0)) < eps)
|
|
return ToolboxLocal::createConstant(v0, 1.0);
|
|
|
|
const std::vector<Scalar>& shearEffectRefLogVelocity = params_.plyshlogShearEffectRefLogVelocity_[pvtnumRegionIdx];
|
|
auto v0AbsLog = log(abs(v0));
|
|
// return 1.0 if the velocity /sharte is smaller than the first velocity entry.
|
|
if (v0AbsLog < shearEffectRefLogVelocity[0])
|
|
return ToolboxLocal::createConstant(v0, 1.0);
|
|
|
|
// compute shear factor from input
|
|
// Z = (1 + (P - 1) * M(v)) / P
|
|
// where M(v) is computed from user input
|
|
// and P = viscosityMultiplier
|
|
const std::vector<Scalar>& shearEffectRefMultiplier = params_.plyshlogShearEffectRefMultiplier_[pvtnumRegionIdx];
|
|
size_t numTableEntries = shearEffectRefLogVelocity.size();
|
|
assert(shearEffectRefMultiplier.size() == numTableEntries);
|
|
|
|
std::vector<Scalar> shearEffectMultiplier(numTableEntries, 1.0);
|
|
for (size_t i = 0; i < numTableEntries; ++i) {
|
|
shearEffectMultiplier[i] = (1.0 + (viscosityMultiplier - 1.0)*shearEffectRefMultiplier[i]) / viscosityMultiplier;
|
|
shearEffectMultiplier[i] = log(shearEffectMultiplier[i]);
|
|
}
|
|
// store the logarithmic velocity and logarithmic multipliers in a table for easy look up and
|
|
// linear interpolation in the logarithmic space.
|
|
TabulatedFunction logShearEffectMultiplier = TabulatedFunction(numTableEntries, shearEffectRefLogVelocity, shearEffectMultiplier, /*bool sortInputs =*/ false);
|
|
|
|
// Find sheared velocity (v) that satisfies
|
|
// F = log(v) + log (Z) - log(v0) = 0;
|
|
|
|
// Set up the function
|
|
// u = log(v)
|
|
auto F = [&logShearEffectMultiplier, &v0AbsLog](const Evaluation& u) {
|
|
return u + logShearEffectMultiplier.eval(u, true) - v0AbsLog;
|
|
};
|
|
// and its derivative
|
|
auto dF = [&logShearEffectMultiplier](const Evaluation& u) {
|
|
return 1 + logShearEffectMultiplier.evalDerivative(u, true);
|
|
};
|
|
|
|
// Solve F = 0 using Newton
|
|
// Use log(v0) as initial value for u
|
|
auto u = v0AbsLog;
|
|
bool converged = false;
|
|
// TODO make this into parameters
|
|
for (int i = 0; i < 20; ++i) {
|
|
auto f = F(u);
|
|
auto df = dF(u);
|
|
u -= f/df;
|
|
if (std::abs(scalarValue(f)) < 1e-12) {
|
|
converged = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!converged) {
|
|
throw std::runtime_error("Not able to compute shear velocity. \n");
|
|
}
|
|
|
|
// return the shear factor
|
|
return exp(logShearEffectMultiplier.eval(u, /*extrapolate=*/true));
|
|
|
|
}
|
|
|
|
const Scalar molarMass() const
|
|
{
|
|
return 0.25; // kg/mol
|
|
}
|
|
|
|
private:
|
|
static BlackOilPolymerParams<Scalar> params_;
|
|
};
|
|
|
|
|
|
template <class TypeTag, bool enablePolymerV>
|
|
BlackOilPolymerParams<typename BlackOilPolymerModule<TypeTag, enablePolymerV>::Scalar>
|
|
BlackOilPolymerModule<TypeTag, enablePolymerV>::params_;
|
|
|
|
/*!
|
|
* \ingroup BlackOil
|
|
* \class Opm::BlackOilPolymerIntensiveQuantities
|
|
*
|
|
* \brief Provides the volumetric quantities required for the equations needed by the
|
|
* polymers extension of the black-oil model.
|
|
*/
|
|
template <class TypeTag, bool enablePolymerV = getPropValue<TypeTag, Properties::EnablePolymer>()>
|
|
class BlackOilPolymerIntensiveQuantities
|
|
{
|
|
using Implementation = GetPropType<TypeTag, Properties::IntensiveQuantities>;
|
|
|
|
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
|
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
|
|
using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>;
|
|
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
|
|
using MaterialLaw = GetPropType<TypeTag, Properties::MaterialLaw>;
|
|
using Indices = GetPropType<TypeTag, Properties::Indices>;
|
|
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
|
|
|
|
using PolymerModule = BlackOilPolymerModule<TypeTag>;
|
|
|
|
enum { numPhases = getPropValue<TypeTag, Properties::NumPhases>() };
|
|
static constexpr int polymerConcentrationIdx = Indices::polymerConcentrationIdx;
|
|
static constexpr int waterPhaseIdx = FluidSystem::waterPhaseIdx;
|
|
static constexpr bool enablePolymerMolarWeight = getPropValue<TypeTag, Properties::EnablePolymerMW>();
|
|
static constexpr int polymerMoleWeightIdx = Indices::polymerMoleWeightIdx;
|
|
|
|
|
|
public:
|
|
|
|
/*!
|
|
* \brief Update the intensive properties needed to handle polymers from the
|
|
* primary variables
|
|
*
|
|
*/
|
|
void polymerPropertiesUpdate_(const ElementContext& elemCtx,
|
|
unsigned dofIdx,
|
|
unsigned timeIdx)
|
|
{
|
|
const auto linearizationType = elemCtx.linearizationType();
|
|
const PrimaryVariables& priVars = elemCtx.primaryVars(dofIdx, timeIdx);
|
|
polymerConcentration_ = priVars.makeEvaluation(polymerConcentrationIdx, timeIdx, linearizationType);
|
|
if constexpr (enablePolymerMolarWeight) {
|
|
polymerMoleWeight_ = priVars.makeEvaluation(polymerMoleWeightIdx, timeIdx, linearizationType);
|
|
}
|
|
|
|
// permeability reduction due to polymer
|
|
const Scalar& maxAdsorbtion = PolymerModule::plyrockMaxAdsorbtion(elemCtx, dofIdx, timeIdx);
|
|
const auto& plyadsAdsorbedPolymer = PolymerModule::plyadsAdsorbedPolymer(elemCtx, dofIdx, timeIdx);
|
|
polymerAdsorption_ = plyadsAdsorbedPolymer.eval(polymerConcentration_, /*extrapolate=*/true);
|
|
if (PolymerModule::plyrockAdsorbtionIndex(elemCtx, dofIdx, timeIdx) == BlackOilPolymerParams<Scalar>::NoDesorption) {
|
|
const Scalar& maxPolymerAdsorption = elemCtx.problem().maxPolymerAdsorption(elemCtx, dofIdx, timeIdx);
|
|
polymerAdsorption_ = std::max(Evaluation(maxPolymerAdsorption) , polymerAdsorption_);
|
|
}
|
|
|
|
// compute resitanceFactor
|
|
const Scalar& residualResistanceFactor = PolymerModule::plyrockResidualResistanceFactor(elemCtx, dofIdx, timeIdx);
|
|
const Evaluation resistanceFactor = 1.0 + (residualResistanceFactor - 1.0) * polymerAdsorption_ / maxAdsorbtion;
|
|
|
|
// compute effective viscosities
|
|
if constexpr (!enablePolymerMolarWeight) {
|
|
const Scalar cmax = PolymerModule::plymaxMaxConcentration(elemCtx, dofIdx, timeIdx);
|
|
const auto& fs = asImp_().fluidState_;
|
|
const Evaluation& muWater = fs.viscosity(waterPhaseIdx);
|
|
const auto& viscosityMultiplier = PolymerModule::plyviscViscosityMultiplierTable(elemCtx, dofIdx, timeIdx);
|
|
const Evaluation viscosityMixture = viscosityMultiplier.eval(polymerConcentration_, /*extrapolate=*/true) * muWater;
|
|
|
|
// Do the Todd-Longstaff mixing
|
|
const Scalar plymixparToddLongstaff = PolymerModule::plymixparToddLongstaff(elemCtx, dofIdx, timeIdx);
|
|
const Evaluation viscosityPolymer = viscosityMultiplier.eval(cmax, /*extrapolate=*/true) * muWater;
|
|
const Evaluation viscosityPolymerEffective = pow(viscosityMixture, plymixparToddLongstaff) * pow(viscosityPolymer, 1.0 - plymixparToddLongstaff);
|
|
const Evaluation viscosityWaterEffective = pow(viscosityMixture, plymixparToddLongstaff) * pow(muWater, 1.0 - plymixparToddLongstaff);
|
|
|
|
const Evaluation cbar = polymerConcentration_ / cmax;
|
|
// waterViscosity / effectiveWaterViscosity
|
|
waterViscosityCorrection_ = muWater * ((1.0 - cbar) / viscosityWaterEffective + cbar / viscosityPolymerEffective);
|
|
// effectiveWaterViscosity / effectivePolymerViscosity
|
|
polymerViscosityCorrection_ = (muWater / waterViscosityCorrection_) / viscosityPolymerEffective;
|
|
}
|
|
else { // based on PLYVMH
|
|
const auto& plyvmhCoefficients = PolymerModule::plyvmhCoefficients(elemCtx, dofIdx, timeIdx);
|
|
const Scalar k_mh = plyvmhCoefficients.k_mh;
|
|
const Scalar a_mh = plyvmhCoefficients.a_mh;
|
|
const Scalar gamma = plyvmhCoefficients.gamma;
|
|
const Scalar kappa = plyvmhCoefficients.kappa;
|
|
|
|
// viscosity model based on Mark-Houwink equation and Huggins equation
|
|
// 1000 is a emperical constant, most likely related to unit conversion
|
|
const Evaluation intrinsicViscosity = k_mh * pow(polymerMoleWeight_ * 1000., a_mh);
|
|
const Evaluation x = polymerConcentration_ * intrinsicViscosity;
|
|
waterViscosityCorrection_ = 1.0 / (1.0 + gamma * (x + kappa * x * x));
|
|
polymerViscosityCorrection_ = 1.0;
|
|
}
|
|
|
|
// adjust water mobility
|
|
asImp_().mobility_[waterPhaseIdx] *= waterViscosityCorrection_ / resistanceFactor;
|
|
|
|
// update rock properties
|
|
polymerDeadPoreVolume_ = PolymerModule::plyrockDeadPoreVolume(elemCtx, dofIdx, timeIdx);
|
|
polymerRockDensity_ = PolymerModule::plyrockRockDensityFactor(elemCtx, dofIdx, timeIdx);
|
|
}
|
|
|
|
const Evaluation& polymerConcentration() const
|
|
{ return polymerConcentration_; }
|
|
|
|
const Evaluation& polymerMoleWeight() const
|
|
{
|
|
if constexpr (enablePolymerMolarWeight)
|
|
return polymerMoleWeight_;
|
|
else
|
|
throw std::logic_error("polymerMoleWeight() is called but polymer milecular weight is disabled");
|
|
}
|
|
|
|
const Scalar& polymerDeadPoreVolume() const
|
|
{ return polymerDeadPoreVolume_; }
|
|
|
|
const Evaluation& polymerAdsorption() const
|
|
{ return polymerAdsorption_; }
|
|
|
|
const Scalar& polymerRockDensity() const
|
|
{ return polymerRockDensity_; }
|
|
|
|
// effectiveWaterViscosity / effectivePolymerViscosity
|
|
const Evaluation& polymerViscosityCorrection() const
|
|
{ return polymerViscosityCorrection_; }
|
|
|
|
// waterViscosity / effectiveWaterViscosity
|
|
const Evaluation& waterViscosityCorrection() const
|
|
{ return waterViscosityCorrection_; }
|
|
|
|
|
|
protected:
|
|
Implementation& asImp_()
|
|
{ return *static_cast<Implementation*>(this); }
|
|
|
|
Evaluation polymerConcentration_;
|
|
// polymer molecular weight
|
|
Evaluation polymerMoleWeight_;
|
|
Scalar polymerDeadPoreVolume_;
|
|
Scalar polymerRockDensity_;
|
|
Evaluation polymerAdsorption_;
|
|
Evaluation polymerViscosityCorrection_;
|
|
Evaluation waterViscosityCorrection_;
|
|
|
|
|
|
};
|
|
|
|
template <class TypeTag>
|
|
class BlackOilPolymerIntensiveQuantities<TypeTag, false>
|
|
{
|
|
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
|
|
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
|
|
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
|
|
|
public:
|
|
void polymerPropertiesUpdate_(const ElementContext&,
|
|
unsigned,
|
|
unsigned)
|
|
{ }
|
|
|
|
const Evaluation& polymerMoleWeight() const
|
|
{ throw std::logic_error("polymerMoleWeight() called but polymer molecular weight is disabled"); }
|
|
|
|
const Evaluation& polymerConcentration() const
|
|
{ throw std::runtime_error("polymerConcentration() called but polymers are disabled"); }
|
|
|
|
const Evaluation& polymerDeadPoreVolume() const
|
|
{ throw std::runtime_error("polymerDeadPoreVolume() called but polymers are disabled"); }
|
|
|
|
const Evaluation& polymerAdsorption() const
|
|
{ throw std::runtime_error("polymerAdsorption() called but polymers are disabled"); }
|
|
|
|
const Evaluation& polymerRockDensity() const
|
|
{ throw std::runtime_error("polymerRockDensity() called but polymers are disabled"); }
|
|
|
|
const Evaluation& polymerViscosityCorrection() const
|
|
{ throw std::runtime_error("polymerViscosityCorrection() called but polymers are disabled"); }
|
|
|
|
const Evaluation& waterViscosityCorrection() const
|
|
{ throw std::runtime_error("waterViscosityCorrection() called but polymers are disabled"); }
|
|
};
|
|
|
|
|
|
/*!
|
|
* \ingroup BlackOil
|
|
* \class Opm::BlackOilPolymerExtensiveQuantities
|
|
*
|
|
* \brief Provides the polymer specific extensive quantities to the generic black-oil
|
|
* module's extensive quantities.
|
|
*/
|
|
template <class TypeTag, bool enablePolymerV = getPropValue<TypeTag, Properties::EnablePolymer>()>
|
|
class BlackOilPolymerExtensiveQuantities
|
|
{
|
|
using Implementation = GetPropType<TypeTag, Properties::ExtensiveQuantities>;
|
|
|
|
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
|
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
|
|
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
|
|
using IntensiveQuantities = GetPropType<TypeTag, Properties::IntensiveQuantities>;
|
|
using ExtensiveQuantities = GetPropType<TypeTag, Properties::ExtensiveQuantities>;
|
|
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
|
|
using GridView = GetPropType<TypeTag, Properties::GridView>;
|
|
|
|
static constexpr unsigned gasPhaseIdx = FluidSystem::gasPhaseIdx;
|
|
static constexpr int dimWorld = GridView::dimensionworld;
|
|
static constexpr unsigned waterPhaseIdx = FluidSystem::waterPhaseIdx;
|
|
|
|
using Toolbox = MathToolbox<Evaluation>;
|
|
using PolymerModule = BlackOilPolymerModule<TypeTag>;
|
|
using DimVector = Dune::FieldVector<Scalar, dimWorld>;
|
|
using DimEvalVector = Dune::FieldVector<Evaluation, dimWorld>;
|
|
|
|
public:
|
|
/*!
|
|
* \brief Method which calculates the shear factor based on flow velocity
|
|
*
|
|
* This is the variant of the method which assumes that the problem is specified
|
|
* using permeabilities, i.e., *not* via transmissibilities.
|
|
*/
|
|
template <class Dummy = bool> // we need to make this method a template to avoid
|
|
// compiler errors if it is not instantiated!
|
|
void updateShearMultipliersPerm(const ElementContext&,
|
|
unsigned,
|
|
unsigned)
|
|
{
|
|
throw std::runtime_error("The extension of the blackoil model for polymers is not yet "
|
|
"implemented for problems specified using permeabilities.");
|
|
}
|
|
|
|
/*!
|
|
* \brief Method which calculates the shear factor based on flow velocity
|
|
*
|
|
* This is the variant of the method which assumes that the problem is specified
|
|
* using transmissibilities, i.e., *not* via permeabilities.
|
|
*/
|
|
template <class Dummy = bool> // we need to make this method a template to avoid
|
|
// compiler errors if it is not instantiated!
|
|
void updateShearMultipliers(const ElementContext& elemCtx,
|
|
unsigned scvfIdx,
|
|
unsigned timeIdx)
|
|
{
|
|
|
|
waterShearFactor_ = 1.0;
|
|
polymerShearFactor_ = 1.0;
|
|
|
|
if (!PolymerModule::hasPlyshlog())
|
|
return;
|
|
|
|
const ExtensiveQuantities& extQuants = asImp_();
|
|
unsigned upIdx = extQuants.upstreamIndex(waterPhaseIdx);
|
|
unsigned interiorDofIdx = extQuants.interiorIndex();
|
|
unsigned exteriorDofIdx = extQuants.exteriorIndex();
|
|
const auto& up = elemCtx.intensiveQuantities(upIdx, timeIdx);
|
|
const auto& intQuantsIn = elemCtx.intensiveQuantities(interiorDofIdx, timeIdx);
|
|
const auto& intQuantsEx = elemCtx.intensiveQuantities(exteriorDofIdx, timeIdx);
|
|
|
|
// compute water velocity from flux
|
|
Evaluation poroAvg = intQuantsIn.porosity()*0.5 + intQuantsEx.porosity()*0.5;
|
|
unsigned pvtnumRegionIdx = elemCtx.problem().pvtRegionIndex(elemCtx, scvfIdx, timeIdx);
|
|
const Evaluation& Sw = up.fluidState().saturation(waterPhaseIdx);
|
|
unsigned cellIdx = elemCtx.globalSpaceIndex(scvfIdx, timeIdx);
|
|
const auto& materialLawManager = elemCtx.problem().materialLawManager();
|
|
const auto& scaledDrainageInfo =
|
|
materialLawManager->oilWaterScaledEpsInfoDrainage(cellIdx);
|
|
const Scalar& Swcr = scaledDrainageInfo.Swcr;
|
|
|
|
// guard against zero porosity and no mobile water
|
|
Evaluation denom = max(poroAvg * (Sw - Swcr), 1e-12);
|
|
Evaluation waterVolumeVelocity = extQuants.volumeFlux(waterPhaseIdx) / denom;
|
|
|
|
// if shrate is specified. Compute shrate based on the water velocity
|
|
if (PolymerModule::hasShrate()) {
|
|
const Evaluation& relWater = up.relativePermeability(waterPhaseIdx);
|
|
Scalar trans = elemCtx.problem().transmissibility(elemCtx, interiorDofIdx, exteriorDofIdx);
|
|
if (trans > 0.0) {
|
|
Scalar faceArea = elemCtx.stencil(timeIdx).interiorFace(scvfIdx).area();
|
|
auto dist = elemCtx.pos(interiorDofIdx, timeIdx) - elemCtx.pos(exteriorDofIdx, timeIdx);
|
|
// compute permeability from transmissibility.
|
|
Scalar absPerm = trans / faceArea * dist.two_norm();
|
|
waterVolumeVelocity *=
|
|
PolymerModule::shrate(pvtnumRegionIdx)*sqrt(poroAvg*Sw / (relWater*absPerm));
|
|
assert(isfinite(waterVolumeVelocity));
|
|
}
|
|
}
|
|
|
|
// compute share factors for water and polymer
|
|
waterShearFactor_ =
|
|
PolymerModule::computeShearFactor(up.polymerConcentration(),
|
|
pvtnumRegionIdx,
|
|
waterVolumeVelocity);
|
|
polymerShearFactor_ =
|
|
PolymerModule::computeShearFactor(up.polymerConcentration(),
|
|
pvtnumRegionIdx,
|
|
waterVolumeVelocity*up.polymerViscosityCorrection());
|
|
|
|
}
|
|
|
|
const Evaluation& polymerShearFactor() const
|
|
{ return polymerShearFactor_; }
|
|
|
|
const Evaluation& waterShearFactor() const
|
|
{ return waterShearFactor_; }
|
|
|
|
|
|
private:
|
|
Implementation& asImp_()
|
|
{ return *static_cast<Implementation*>(this); }
|
|
|
|
Evaluation polymerShearFactor_;
|
|
Evaluation waterShearFactor_;
|
|
|
|
};
|
|
|
|
template <class TypeTag>
|
|
class BlackOilPolymerExtensiveQuantities<TypeTag, false>
|
|
{
|
|
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
|
|
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
|
|
|
|
public:
|
|
void updateShearMultipliers(const ElementContext&,
|
|
unsigned,
|
|
unsigned)
|
|
{ }
|
|
|
|
void updateShearMultipliersPerm(const ElementContext&,
|
|
unsigned,
|
|
unsigned)
|
|
{ }
|
|
|
|
const Evaluation& polymerShearFactor() const
|
|
{ throw std::runtime_error("polymerShearFactor() called but polymers are disabled"); }
|
|
|
|
const Evaluation& waterShearFactor() const
|
|
{ throw std::runtime_error("waterShearFactor() called but polymers are disabled"); }
|
|
};
|
|
|
|
|
|
} // namespace Opm
|
|
|
|
#endif
|