opm-simulators/examples/problems/navierstokestestproblem.hh
Andreas Lauser 55bb38118c problems: make the name() methods static
this allows to retrieve the name of the problem before it is
instantiated. this is required to be able to print the "Initializing
problem" message at the correct point (i.e., before instantiating the
problem).
2014-03-07 12:38:19 +01:00

261 lines
7.9 KiB
C++

/*
Copyright (C) 2012-2013 by Andreas Lauser
Copyright (C) 2012 by Klaus Mosthaf
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
/*!
* \file
* \copydoc Ewoms::NavierStokesTestProblem
*/
#ifndef EWOMS_NAVIER_STOKES_TEST_PROBLEM_HH
#define EWOMS_NAVIER_STOKES_TEST_PROBLEM_HH
#include <ewoms/models/stokes/stokesmodel.hh>
#include <opm/material/fluidsystems/H2ON2FluidSystem.hpp>
#include <opm/material/fluidsystems/GasPhase.hpp>
#include <opm/material/components/N2.hpp>
#include <dune/grid/alugrid/2d/alugrid.hh>
#include <dune/common/version.hh>
#include <dune/common/fvector.hh>
namespace Ewoms {
template <class TypeTag>
class NavierStokesTestProblem;
}
namespace Opm {
namespace Properties {
NEW_TYPE_TAG(NavierStokesTestProblem, INHERITS_FROM(NavierStokesModel));
// Set the grid type
SET_TYPE_PROP(NavierStokesTestProblem, Grid, Dune::ALUGrid<2, 2, Dune::cube, Dune::nonconforming>);
// Set the property which defines the type of the physical problem
SET_TYPE_PROP(NavierStokesTestProblem, Problem,
Ewoms::NavierStokesTestProblem<TypeTag>);
SET_PROP(NavierStokesTestProblem, Fluid)
{
private:
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
public:
typedef Opm::GasPhase<Scalar, Opm::N2<Scalar> > type;
};
// Disable gravity
SET_BOOL_PROP(NavierStokesTestProblem, EnableGravity, false);
// Enable constraints
SET_BOOL_PROP(NavierStokesTestProblem, EnableConstraints, true);
// Default simulation end time [s]
SET_SCALAR_PROP(NavierStokesTestProblem, EndTime, 1e-3);
// Default initial time step size [s]
SET_SCALAR_PROP(NavierStokesTestProblem, InitialTimeStepSize, 1e-3);
// Default grid file to load
SET_STRING_PROP(NavierStokesTestProblem, GridFile,
"grids/test_navierstokes.dgf");
}
}
namespace Ewoms {
/*!
* \ingroup StokesModel
* \ingroup VcfvTestProblems
* \brief Stokes flow problem with modified nitrogen (N2) circulating in
* a cavity. (lid-driven cavity-flow)
*
* The example is taken from Ghia, Ghia, and Shin (1982), "High-Re solutions
* for incompressible flow using the Navier-Stokes equations and a multigrid
* method", Journal of Computational Physics, Vol. 48, pp. 387-411.
*
* The domain is two-dimensional and sized 1m times 1m. The boundary
* conditions for the momentum balances are no-flow boundary
* conditions except for the top, which is floating from left to right
* with 1 m/s. The mass balance features outflow boundary
* conditions. All vertices at the bottom, left and right boundaries
* are constraint to a constant pressure level and zero velocity.
*/
template <class TypeTag>
class NavierStokesTestProblem : public StokesProblem<TypeTag>
{
typedef StokesProblem<TypeTag> ParentType;
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
typedef typename GET_PROP_TYPE(TypeTag, TimeManager) TimeManager;
typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) PrimaryVariables;
typedef typename GET_PROP_TYPE(TypeTag, RateVector) RateVector;
typedef typename GET_PROP_TYPE(TypeTag, BoundaryRateVector) BoundaryRateVector;
typedef typename GET_PROP_TYPE(TypeTag, Constraints) Constraints;
typedef typename GET_PROP_TYPE(TypeTag, Indices) Indices;
enum {
// Number of equations and grid dimension
dimWorld = GridView::dimensionworld,
// copy some indices for convenience
pressureIdx = Indices::pressureIdx,
velocity0Idx = Indices::velocity0Idx,
conti0EqIdx = Indices::conti0EqIdx,
momentum0EqIdx = Indices::momentum0EqIdx
};
typedef typename GridView::ctype CoordScalar;
typedef Dune::FieldVector<CoordScalar, dimWorld> GlobalPosition;
public:
/*!
* \copydoc Doxygen::defaultProblemConstructor
*/
NavierStokesTestProblem(TimeManager &timeManager)
#if DUNE_VERSION_NEWER(DUNE_COMMON, 2, 3)
: ParentType(timeManager,
GET_PROP_TYPE(TypeTag, GridCreator)::grid().leafGridView())
#else
: ParentType(timeManager,
GET_PROP_TYPE(TypeTag, GridCreator)::grid().leafView())
#endif
{ eps_ = 1e-6; }
/*!
* \name Problem parameters
*/
//! \{
/*!
* \copydoc VcfvProblem::name
*/
static std::string name()
{ return "navierstokes"; }
/*!
* \brief StokesProblem::temperature
*
* This problem assumes a constant temperature of 10 degrees Celsius.
*/
template <class Context>
Scalar temperature(const Context &context, int spaceIdx, int timeIdx) const
{ return 273.15 + 10; }
//! \}
/*!
* \name Boundary conditions
*/
//! \{
/*!
* \copydoc VcfvProblem::boundary
*/
template <class Context>
void boundary(BoundaryRateVector &values, const Context &context,
int spaceIdx, int timeIdx) const
{
/* const GlobalPosition &pos = context.pos(spaceIdx, timeIdx);
values.setOutflow(massBalanceIdx);
values.setDirichlet(momentumXIdx);
values.setDirichlet(momentumYIdx);
// set pressure for all vertices at the bottom
if (onLowerBoundary_(pos)) {
values.setDirichlet(massBalanceIdx);
}
*/
values.setNoFlow(context, spaceIdx, timeIdx);
}
//! \}
/*!
* \name Volume terms
*/
//! \{
/*!
* \copydoc VcfvProblem::initial
*/
template <class Context>
void initial(PrimaryVariables &values, const Context &context, int spaceIdx,
int timeIdx) const
{ initial_(values); }
/*!
* \copydoc VcfvProblem::constraints
*
* For this problem, we fix the velocity of upper boundary.
*/
template <class Context>
void constraints(Constraints &constraints, const Context &context,
int spaceIdx, int timeIdx) const
{
const auto &pos = context.pos(spaceIdx, timeIdx);
if (onUpperBoundary_(pos)) {
// lid moves from left to right
const Scalar lidVelocity = 1.0;
constraints.setConstraint(momentum0EqIdx, velocity0Idx + 0,
lidVelocity);
constraints.setConstraint(momentum0EqIdx + 1, velocity0Idx + 1, 0);
constraints.setConstraint(conti0EqIdx, pressureIdx, 1e5);
}
}
/*!
* \copydoc VcfvProblem::source
*/
template <class Context>
void source(RateVector &rate, const Context &context, int spaceIdx,
int timeIdx) const
{ rate = Scalar(0.0); }
//! \}
private:
// internal method for the initial condition
void initial_(PrimaryVariables &priVars) const
{
priVars[pressureIdx] = 1e5;
priVars[velocity0Idx + 0] = 0.0;
priVars[velocity0Idx + 1] = 0.0;
}
bool onLeftBoundary_(const GlobalPosition &globalPos) const
{ return globalPos[0] < this->boundingBoxMin()[0] + eps_; }
bool onRightBoundary_(const GlobalPosition &globalPos) const
{ return globalPos[0] > this->boundingBoxMax()[0] - eps_; }
bool onLowerBoundary_(const GlobalPosition &globalPos) const
{ return globalPos[1] < this->boundingBoxMin()[1] + eps_; }
bool onUpperBoundary_(const GlobalPosition &globalPos) const
{ return globalPos[1] > this->boundingBoxMax()[1] - eps_; }
Scalar eps_;
};
} // namespace Ewoms
#endif