opm-simulators/examples/problems/stokestestproblem.hh
Andreas Lauser 55bb38118c problems: make the name() methods static
this allows to retrieve the name of the problem before it is
instantiated. this is required to be able to print the "Initializing
problem" message at the correct point (i.e., before instantiating the
problem).
2014-03-07 12:38:19 +01:00

304 lines
9.1 KiB
C++

/*
Copyright (C) 2012-2013 by Andreas Lauser
Copyright (C) 2012 by Klaus Mosthaf
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
/*!
* \file
*
* \copydoc Ewoms::StokesTestProblem
*/
#ifndef EWOMS_STOKES_TEST_PROBLEM_HH
#define EWOMS_STOKES_TEST_PROBLEM_HH
#include <ewoms/models/stokes/stokesmodel.hh>
#include <opm/material/fluidsystems/H2ON2FluidSystem.hpp>
#include <opm/material/fluidsystems/GasPhase.hpp>
#include <dune/grid/yaspgrid.hh>
#include <dune/common/version.hh>
#include <dune/common/fvector.hh>
namespace Ewoms {
template <class TypeTag>
class StokesTestProblem;
}
namespace Opm {
namespace Properties {
NEW_TYPE_TAG(StokesTestProblem, INHERITS_FROM(StokesModel));
// Set the grid type
SET_TYPE_PROP(StokesTestProblem, Grid, Dune::YaspGrid<2>);
// Set the problem property
SET_TYPE_PROP(StokesTestProblem, Problem, Ewoms::StokesTestProblem<TypeTag>);
// Use the default fluid system of the Stokes model. It requires to
// specify a fluid, though.
SET_PROP(StokesTestProblem, Fluid)
{
private:
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
public:
typedef Opm::GasPhase<Scalar, Opm::N2<Scalar> > type;
};
// Disable gravity
SET_BOOL_PROP(StokesTestProblem, EnableGravity, false);
// Enable constraints
SET_BOOL_PROP(StokesTestProblem, EnableConstraints, true);
// Default simulation end time [s]
SET_SCALAR_PROP(StokesTestProblem, EndTime, 10.0);
// Default initial time step size [s]
SET_SCALAR_PROP(StokesTestProblem, InitialTimeStepSize, 10.0);
// Default grid file to load
SET_STRING_PROP(StokesTestProblem, GridFile, "grids/test_stokes.dgf");
} // namespace Properties
} // namespace Opm
namespace Ewoms {
/*!
* \ingroup StokesModel
* \ingroup VcfvTestProblems
*
* \brief Stokes flow problem with nitrogen (\f$N_2\f$) flowing
* from the left to the right.
*
* The domain is sized 1m times 1m. The boundary conditions for the
* momentum balances are set to outflow on the right boundary and to
* no-flow at the top and bottom of the domain. For the mass balance
* equation, outflow boundary conditions are assumed on the right,
* free-flow on the left and no-flow at the top and bottom boundaries.
*/
template <class TypeTag>
class StokesTestProblem : public GET_PROP_TYPE(TypeTag, BaseProblem)
{
typedef typename GET_PROP_TYPE(TypeTag, BaseProblem) ParentType;
typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
typedef typename GET_PROP_TYPE(TypeTag, TimeManager) TimeManager;
typedef typename GET_PROP_TYPE(TypeTag, Indices) Indices;
typedef typename GET_PROP_TYPE(TypeTag, RateVector) RateVector;
typedef typename GET_PROP_TYPE(TypeTag, BoundaryRateVector) BoundaryRateVector;
typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) PrimaryVariables;
typedef typename GET_PROP_TYPE(TypeTag, Fluid) Fluid;
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, Constraints) Constraints;
typedef typename GET_PROP_TYPE(TypeTag, Model) Model;
enum {
// Number of equations and grid dimension
dimWorld = GridView::dimensionworld,
// equation indices
conti0EqIdx = Indices::conti0EqIdx,
momentum0EqIdx = Indices::momentum0EqIdx,
// primary variable indices
velocity0Idx = Indices::velocity0Idx,
pressureIdx = Indices::pressureIdx
};
typedef typename GridView::ctype CoordScalar;
typedef Dune::FieldVector<CoordScalar, dimWorld> GlobalPosition;
typedef Dune::FieldVector<Scalar, dimWorld> DimVector;
public:
/*!
* \copydoc Doxygen::defaultProblemConstructor
*/
StokesTestProblem(TimeManager &timeManager)
#if DUNE_VERSION_NEWER(DUNE_COMMON, 2, 3)
: ParentType(timeManager,
GET_PROP_TYPE(TypeTag, GridCreator)::grid().leafGridView())
#else
: ParentType(timeManager,
GET_PROP_TYPE(TypeTag, GridCreator)::grid().leafView())
#endif
{ eps_ = 1e-6; }
/*!
* \name Problem parameters
*/
//! \{
/*!
* \copydoc VcfvProblem::name
*/
static std::string name()
{ return "stokestest"; }
/*!
* \brief StokesProblem::temperature
*
* This problem assumes a constant temperature of 10 degrees Celsius.
*/
template <class Context>
Scalar temperature(const Context &context, int spaceIdx, int timeIdx) const
{ return 273.15 + 10; } // -> 10 deg C
//! \}
/*!
* \name Boundary conditions
*/
//! \{
/*!
* \copydoc VcfvProblem::boundary
*
* For this problem, we use an out-flow boundary on the right,
* no-flow at the top and at the bottom and the left boundary gets
* a parabolic velocity profile via constraints.
*/
template <class Context>
void boundary(BoundaryRateVector &values, const Context &context,
int spaceIdx, int timeIdx) const
{
const GlobalPosition &pos = context.pos(spaceIdx, timeIdx);
Scalar y = pos[1] - this->boundingBoxMin()[1];
Scalar height = this->boundingBoxMax()[1] - this->boundingBoxMin()[1];
// parabolic velocity profile
const Scalar maxVelocity = 1.0;
Scalar a = -4 * maxVelocity / (height * height);
Scalar b = -a * height;
Scalar c = 0;
DimVector velocity(0.0);
velocity[0] = a * y * y + b * y + c;
if (onRightBoundary_(pos))
values.setOutFlow(context, spaceIdx, timeIdx);
else if (onLeftBoundary_(pos)) {
// left boundary is constraint!
values = 0.0;
}
else {
// top and bottom
values.setNoFlow(context, spaceIdx, timeIdx);
}
}
//! \}
/*!
* \name Volume terms
*/
//! \{
/*!
* \copydoc VcfvProblem::initial
*/
template <class Context>
void initial(PrimaryVariables &values, const Context &context, int spaceIdx,
int timeIdx) const
{
const auto &pos = context.pos(spaceIdx, timeIdx);
Scalar y = pos[1] - this->boundingBoxMin()[1];
Scalar height = this->boundingBoxMax()[1] - this->boundingBoxMin()[1];
// parabolic velocity profile on boundaries
const Scalar maxVelocity = 1.0;
Scalar a = -4 * maxVelocity / (height * height);
Scalar b = -a * height;
Scalar c = 0;
DimVector velocity(0.0);
velocity[0] = a * y * y + b * y + c;
for (int axisIdx = 0; axisIdx < dimWorld; ++axisIdx)
values[velocity0Idx + axisIdx] = velocity[axisIdx];
values[pressureIdx] = 1e5;
}
/*!
* \copydoc VcfvProblem::source
*
* For this problem, the source term of all conserved quantities
* is 0 everywhere.
*/
template <class Context>
void source(RateVector &rate, const Context &context, int spaceIdx,
int timeIdx) const
{ rate = Scalar(0.0); }
/*!
* \copydoc VcfvProblem::constraints
*
* For this problem, the left side of the domain gets a parabolic
* velocity profile using constraints.
*/
template <class Context>
void constraints(Constraints &constraints, const Context &context,
int spaceIdx, int timeIdx) const
{
const auto &pos = context.pos(spaceIdx, timeIdx);
if (onLeftBoundary_(pos) || onRightBoundary_(pos)) {
PrimaryVariables initCond;
initial(initCond, context, spaceIdx, timeIdx);
constraints.setConstraint(pressureIdx, conti0EqIdx,
initCond[pressureIdx]);
;
for (int axisIdx = 0; axisIdx < dimWorld; ++axisIdx)
constraints.setConstraint(velocity0Idx + axisIdx,
momentum0EqIdx + axisIdx,
initCond[velocity0Idx + axisIdx]);
}
}
//! \}
private:
bool onLeftBoundary_(const GlobalPosition &pos) const
{ return pos[0] < this->boundingBoxMin()[0] + eps_; }
bool onRightBoundary_(const GlobalPosition &pos) const
{ return pos[0] > this->boundingBoxMax()[0] - eps_; }
bool onLowerBoundary_(const GlobalPosition &pos) const
{ return pos[1] < this->boundingBoxMin()[1] + eps_; }
bool onUpperBoundary_(const GlobalPosition &pos) const
{ return pos[1] > this->boundingBoxMax()[1] - eps_; }
bool onBoundary_(const GlobalPosition &pos) const
{
return onLeftBoundary_(pos) || onRightBoundary_(pos)
|| onLowerBoundary_(pos) || onUpperBoundary_(pos);
}
Scalar eps_;
};
} // namespace Ewoms
#endif